首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using the empirical magnetic field model dependent on the Dst index and solar wind dynamic pressure, we calculated the behaviour of the contour B = Bs in the equatorial plane of the magnetosphere where Bs is the magnetic field in the subsolar point at the magnetopause. The inner domain of the magnetosphere outlined by this contour contains the bulk of geomag-netically trapped particles. During quiet time the boundary of the inner magnetosphere passes at the distance ∼10RE at noon and at ∼7RE at midnight. During very intense storms this distance can be reduced to 4–5 RE for all MLT. The calculation results agree well with the satellite measurements of the magneto-pause location during storms. The ionospheric projection of the B = Bs contour calculated with the Euler potential technique is close to the equatorward edge of the auroral oval.  相似文献   

2.
Nonlinear disturbance of the dipole field by nonaxisymmetric plasma pressure distribution was analyzed under the assumption of magnetostatic equilibrium for finite values of the plasma parameter at the pressure maximum area. The distributions of isolines of the constant value of magnetic-field component B Z and the volume of magnetic flux tube in the equatorial plane were obtained. At a finite plasma pressure, local minima and maxima of the magnetic field are formed. The formation of these local maxima and minima leads to the formation of contours (not surrounding the Earth) B min = const, where B min is the minimum magnetic field on the magnetic field line. This changes the direction of the gradient of the volume of the magnetic flux tube. The configuration of appearing field-aligned currents was determined. The results obtained are discussed in terms of their use in explaining a number of effects observed in the Earth’s magnetosphere.  相似文献   

3.
Earth’s bow shock is the result of interaction between the supersonic solar wind and Earth’s magnetopause. However, data limitations mean the model of the shape and position of the bow shock are based largely on near-Earth satellite data. The model of the bow shock in the distant magnetotail and other factors that affect the bow shock, such as the interplanetary magnetic field (IMF) By, remain unclear. Here, based on the bow shock crossings of ARTEMIS from January 2011 to January 2015, new coefficients of the tail-flaring angle α of the Chao model (one of the most accurate models currently available) were obtained by fitting data from the middle-distance magnetotail (near-lunar orbit, geocentric distance -20RE>X>-50RE). In addition, the effects of the IMF By on the flaring angle α were analyzed. Our results showed that: (1) the new fitting coefficients of the Chao model in the middle-distance magnetotail are more consistent with the observed results; (2) the tail-flaring angle α of the bow shock increases as the absolute value of the IMF By increases. Moreover, positive IMF By has a greater effect than negative IMF By on flaring angle. These results provide a reference for bow shock modeling that includes the IMF By.  相似文献   

4.
A simple new method is described for extracting, from magnetic observations taken at Earth's surface, the vertical growth rate of vertical motion, ?u/?r, at special isolated points on the top surface of Earth's liquid core. The technique utilizes only the radial component of the frozen-flux induction equation and it requires information only on the radial magnetic field, Br, its horizontal gradient, and its secular variations, ?Br/?t, at the core-mantle boundary.  相似文献   

5.
The electric field generation at the front of the current pulse, which originates in a coronal magnetic loop owing to the development of the Rayleigh–Taylor magnetic instability at loop footpoints, has been considered. During the τAl/V A ≈ 5?25 s time (where l is the plasma plume height entering a magnetic loop as a result of the Rayleigh–Taylor instability), a disturbance related to the magnetic field tension B ?(r,t), “escapes” the instability region with the Alfvén velocity in this case. As a result, an electric current pulse Iz(z ? V A t), at the front of which an induction magnetic field E z, which is directed along the magnetic tube axis and can therefore accelerate particles, starts propagating along a magnetic loop with a characteristic scale of Δξ ≈ l. In the case of sufficiently large currents, when B ? 2/8π > p, an electric current pulse propagates nonlinearly, and a relatively large longitudinal electric field originates E z ≈ 2I z 3 V A/c 4a2Bz 2l, which can be larger than the Dreicer field, depending on the electric current value.  相似文献   

6.
A rigorous singular perturbation theory is developed to estimate the electric field E produced in the mantle M by the core dynamo when the electrical conductivity σ in M depends only on radius r, and when |r?rln σ| ? 1 in most of M. It is assumed that σ has only one local minimum in M, either (a) at the Earth's surface ?V, or (b) at a radius b inside the mantle, or (c) at the core-mantle boundary ?K. In all three cases, the region where σ is no more than e times its minimum value constitutes a thin critical layer; in case (a), the radial electric field Er ≈ 0 there, while in cases (b) and (c), Er is very large there. Outside the critical layer, Er ≈ 0 in all three cases. In no case is the tangential electric field ES small, nearly toroidal, or nearly calculable from the magnetic vector potential A as ??tAS. The defects in Muth's (1979) argument which led him to contrary conclusions are identified. Benton (1979) cited Muth's work to argue that the core-fluid velocity u just below ?K can be estimated from measurements on ?V of the magnetic field B and its time derivative ?tB. A simple model for westward drift is discussed which shows that Benton's conclusion is also wrong.In case (a), it is shown that knowledge of σ in M is unnecessary for estimating ES on ?K with a relative error |r?r 1nσ|?1from measurements of ES on ?V and knowledge of ?tB in M (calculable from ?tB on ?V if σ is small). Then, in case (a), u just below ?K can be estimated as ?r×ES/Br. The method is impractical unless the contribution to ES on ?V from ocean currents can be removed.The perturbation theory appropriate when σ in M is small is considered briefly; smallness of σ and of |r?r ln σ|?1 a independent questions. It is found that as σ → 0, B approaches the vacuum field in M but E does not; the explanation lies in the hydromagnetic approximation, which is certainly valid in M but fails as σ → 0. It is also found that the singular perturbation theory for |r?r ln σ|?1 is a useful tool in the perturbation calculations for σ when both σ and |r?r ln σ|?1 are small.  相似文献   

7.
On the basis of the model of the three-dimensional (3D) generalized Kadomtsev-Petviashvili equation for magnetic field h = B ~/B the formation, stability, and dynamics of 3D soliton-like structures, such as the beams of fast magnetosonic (FMS) waves generated in ionospheric and magnetospheric plasma at a low-frequency branch of oscillations when β = 4πnT/B 2 ? 1 and β > 1, are studied. The study takes into account the highest dispersion correction determined by values of the plasma parameters and the angle θ = (B, k), which plays a key role in the FMS beam propagation at those angles to the magnetic field that are close to π/2. The stability of multidimensional solutions is studied by an investigation of the Hamiltonian boundness under its deformations on the basis of solving of the corresponding variational problem. The evolution and dynamics of the 3D FMS wave beam are studied by the numerical integration of equations with the use of specially developed methods. The results can be interpreted in terms of the self-focusing phenomenon, as the formation of a stationary beam and the scattering and self-focusing of the solitary beam of FMS waves. These cases were studied with a detailed investigation of all evolutionary stages of the 3D FMS wave beams in the ionospheric and magnetospheric plasma.  相似文献   

8.
The variations in the density of the ionospheric F2 layer maximum (NmF2) under the action of the zonal plasma drift perpendicularly to the magnetic (B) and electric (E) fields in the direction geomagnetic west-geomagnetic east have been studied using the three-dimensional nonstationary theoretical model of electron and ion densities (N e and N i ) and temperatures (T e and T i ) in the low-latitude and midlatitude ionospheric F region and plasmasphere. The method of numerical calculations of N e , N i , T e , and T i , including the advantages of the Lagrangian and Eulerian methods, is used in the model. A dipole approximation of the geomagnetic field (B), taking into account the non-coincidence of the geographic and geomagnetic poles and differences between the positions of the Earth’s and geomagnetic dipole centers, is accepted in the calculations. The calculated NmF2 and altitudes of the F2 layer maximum (hmF2) have been compared with these quantities measured at 16 low-latitude ionospheric sounding stations during the geomagnetically quiet period October 11–12, 1958. This comparison made it possible to correct the input model parameters: the NRLMSISE-00 model [O], the meridional component of the neutral wind velocity according to the HWW90 model, and the meridional component of the equatorial plasma drift due to the electric field specified by the empirical model. It has been indicated that the effect of the zonal E × B plasma drift on NmF2 can be neglected under daytime conditions and changes in NmF2 and hmF2 under the action of this drift are insignificant under nighttime conditions north of 25° and south of ?26° geomagnetic latitude. The effect of the zonal E × B plasma drift on NmF2 and hmF2 is most substantial in the nightside ionosphere approximately from ?20° to 20° geomagnetic latitude, and the neglect of this drift results in an up to 2.4-fold underestimation of NmF2. The found dependence of the effect of the zonal E × B plasma drift on NmF2 and hmF2 on geomagnetic latitude is related to the longitudinal asymmetry of B, asymmetry of the neutral wind about the geomagnetic equator, and changes in the meridional E × B plasma drift at a change in geomagnetic longitude.  相似文献   

9.
The dependence of the zonal geomagnetic indices (AE, Ap, Kp, Kn, and Dst) on the solar wind parameters (the electric field E y component, dynamic pressure P d and IMF irregularity σB) has been studied for two types of events: magnetic clouds and high-speed streams. Based on the empirical relationships, it has been established that the AE, Ap, Kp, and Kn indices are directly proportional to the E y value at E y < 12 mV m?1 and are inversely proportional to this value at E y > 12 mV m?1 for the first-type events. On the contrary, the dependence of Dst on E y is monotonous nonlinear. A linear dependence of all geomagnetic indices on E y is typical of the second-type events. It has been indicated that the specific features of geoeffectiveness of magnetic clouds and high-speed solar wind streams are caused by the dependence of the electric field potential across the polar cap on the electric field, solar wind dynamic pressure, and IMF fluctuations.  相似文献   

10.
Equations describing trace element and isotopic evolution in a magma chamber affected simultaneously by fractional crystallization and wallrock assimilation are presented for a model where the mass assimilation rate(?a) is an arbitrary fraction(r) of the fractional crystallization rate(?c). The equations also apply to recharge of a crystallizing magma. Relatively simple analytical expressions are obtained for both radiogenic isotope variations (Nd, Sr, Pb) and stable isotopes (O, H) including the effects of mass-dependent fractionation. Forr = 1 a modified zone refining equation is obtained for trace element concentrations, but forr < 1 behavior is a combination of zone refining and fractional crystallization. Asr → ∞, simple binary mixing is approached. The isotopic and trace element “mixing” trends generated can be much different from binary mixing, especially forr < 1. The model provides the basis for a more general approach to the problem of wallrock assimilation, and shows that binary mixing models are insufficient to rule out crustal assimilation as a cause of some of the isotopic variations observed in igneous rocks, including cases where clustering of isotopic values occurs partway between presumed endmember values. The coupled assimilation-fractional crystallization model provides an explanation for certain trace element and isotopic properties of continental margin orogenic magmas (e.g. Sr concentration versus87Sr/86Sr) which had previously been interpreted as evidence against assimilation. So-called “pseudoisochrons” can be understood as artifacts of contamination using this model. A significant correlation exists between country rock age and low143Nd/144Nd ratios in continental igneous rocks, clearly suggestive that crustal contamination is generally important.  相似文献   

11.
Motivated by the high degree of correlation between the variable parts of the magnetic and gravitational potentials of the Earth discovered by Hide and Malin (using a harmonic analysis approach and utilizing the geomagnetic data) when one field is suitably displaced relative to the other, Moffatt and Dillon (1976) studied a simple planar model in an attempt to find a quantitative explanation for the suggestion that this high degree of correlation may be due to the influences produced by bumps on the core-mantle interface. Moffatt and Dillon assumed that the core-mantle interface was z = η(x) where |/| ? 1 and such that in the core [z < η(x)] a uniform flow (U0, 0, 0) prevails in the presence of a uniform ‘toroidal’ field (B0, 0, 0); (here z is the vertical coordinate and x is the eastward distance). The whole system rotates uniformly about the vertical with angular velocity Ω. The present work extends the model discussed by Moffatt and Dillon to include a horizontal component of angular velocity ΩH and a uniform small poloidal field Bp. In addition, the uniform toroidal field is here replaced by one which vanishes everywhere in the mantle and increases linearly, from zero on the interface, with z. It is shown that the presence of ΩH and Bp, together with the present choice of toroidal magnetic field, has a profound effect both on the correlation between the variable parts of the magnetic and gravitational fields of the Earth, and on how far the disturbances caused by the topography of the interface [which is necessarily three-dimensional i.e. z = η(x, y) here] can penetrate into the liquid core. In particular it is found that the highest value of the correlation function is +0.79 which corresponds to a situation in which the magnetic potential is displaced both latitudinally and longitudinally relative to the gravitational potential.  相似文献   

12.
The mean tangential stresses at a corrugated interface between a solid, electrically insulating mantle and a liquid core of magnetic diffusivity λ are calculated for uniform rotation of both mantle and core at an angular velocity Ω in the presence of a corotating magnetic field B. The core and mantle are assumed to extend indefinitely in the horizontal plane. The interface has the form z = η(x, y), where z is the upward vertical distance and x, y are the zonal and latitudinal distances respectively. The function η(x, y) has a planetary horizontal length scale (i.e. of the order of the radius of the Earth) and small amplitude and vertical gradient. The liquid core flows with uniform mean zonal velocity U0 relative to the mantle. Ω and B possess vertical and horizontal components.The vertical (poloidal) component Bp is uniform and has a value of 5 G while the horizontal (toroidal) field BT = Bpαz, where α is a constant. When |α| ? 1, the mean horizontal stresses are found to have the same order of magnitude (10?2 N m?2) as those inferred from variations in the decade fluctuations in the length of the day, although the exact numerical values depend on the orientation of Ω as well as on the wavenumbers in the zonal and latitudinal directions.The influence of the steepness (as measured by α) of the toroidal field on the stresses is investigated to examine whether the constraint that the mean horizontal stresses at the core-mantle interface be of the order of 10?2 N m?2 might provide a selection mechanism for the behaviour of the toroidal field in the upper reaches of the outer core of the Earth. The results indicate that the restriction imposed on α is related to the value assigned to the toroidal field deep into the core. For example, if |α| ? 1 then the tangential stresses are of the right order of magnitude only if the toroidal field is comparable with the poloidal field deep in the core.  相似文献   

13.
In a previous work the authors have developed a model, providing Kp as a function of the interplanetary magnetic field Bz component. They introduced a modified Bz function (denoted as Bzm), exhibiting a delayed reaction to Bz changes. The modified function Bzm was defined by using the analogy with a damping RC-circuit output voltage. The delaying reaction of Bzm to Bz was characterized by two time constants, one for rising and one for decreasing parts of Bz. The cross-correlation between Kp and Bzm has increased to 0.7, compared with −0.4 between Kp and Bz. In this paper, new dependences of Kp on solar wind velocity and dynamic pressure are included in the model to improve its accuracy. These solar wind parameters are found to correlate best with Kp. The hourly interpolated values are also added to the 3-h Kp values to increase the statistics. The new Kp data set is denoted as Kp1. The mean dependence of Kp on Bzm and dynamic pressure are approximated with parabolas, while the dependence on the velocity is linear. The constants in the model expression are obtained by using ACE data (1998–2000). The overall model error is estimated at 0.63 units Kp. The improvement over the previous simpler dependence in terms of the model error is about 30%.  相似文献   

14.
Laboratory analogue model magnetic measurements are carried out for a model of the region including Tasmania, Bass Strait with its highly conductive deep sedimentary basins, and the south coast of mainland Australia. The model source frequencies used simulate naturally occurring geomagnetic variations of periods 5–120 min. In-phase and quadrature magnetic Hx, Hy and Hz field measurements for the modelled region are presented for an approximately uniform overhead horizontal source field for E-polarization (electric field of the source in the N-S direction) and for H-polarization (electric field of the source in the E-W direction). Large anomalous in-phase and quadrature model magnetic fields are observed over Bass Strait and the coastal regions at short periods for both E- and H-polarization, but with increasing period, the field anomalies decrease more rapidly for E-polarization, than for H-polarization. The difference in response with polarization for the Bass Strait region is attributed to current induced in the deep ocean, for all periods, being channelled through Bass Strait for H-polarization but not for E-polarization. The persistent large coastal field anomalies elsewhere, for H-polarization, can be accounted for by the coastal current concentrations due to currents induced in the deep ocean for all periods deflected to the south and to the north by the shelving sea-floor and channelled through Bass Strait and around the southern coast of Tasmania. The phenomena of current deflection and channelling for H-polarization for the geometry of the southern Australia coastline and associated ocean bathymetry is particularly effective in producing field anomalies for a large period range.The coastal horizontal Hx and Hy field anomalies, present for E-polarization at short periods and for H-polarization at all periods, do not extend far inland, and thus, for inland station sites somewhat removed from the coast, should not present serious problems for magnetic soundings in field work. The sharp vertical field (Hz) gradient over Tasmania at short periods, which is predominantly in the E-W direction for E-polarization and the N-S direction for H-polarization, is strongly frequency dependent, becoming almost undetectable at 60 min. The behaviour of the Hz field gradients, however, are very similar from traverse to traverse over inland Tasmania, and thus, the effects of the ocean should not present too serious a problem in the interpretation of field station studies. The discrepancies between model and field station results should be useful in mapping geological boundaries in the region.  相似文献   

15.
This study presents the results of the comparison of B0, B1 and hmF2 with ΔH. B0 and B1 are parameters used in the international reference ionosphere model for the calculation of the F region bottom side profiles. The parameter ΔH obtained from the magnetic data recorded during the International Equatorial Electrojet Year (IEEY) in West Africa is used to describe the strength of the equatorial electrojet. This work covers the years 1993 and 1994, two years of low and moderate solar activity. The result shows that the electric field (E), which drives the equatorial electrojet, plays a major role in the variation of the thickness and the height of the F2 layer. However, the variation of the shape of the bottomside F2 is not sensitive to the electric field.  相似文献   

16.
A laboratory inorganic carbonate precipitation experiment at high pH of 8.96 to 9.34 was conducted, and the boron isotopic fractionations of the precipitated carbonate were measured. The data show that boron isotopic fractionation factors (αcarb-3) between carbonate and B(OH)3 in seawater range 0.937 and 0.965, with an average value of 0.953. Our results together with those reported by Sanyal and collaborators show that the αcarb-3 values between carbonate and B(OH)3 in solution are not constant but are negatively correlated with the pH of seawater. The measured boron isotopic compositions of carbonate precipitation (δ11Bcarb) do not exactly lie on the best-fit theoretical δ11B4-pH curves and neither do they exactly parallel any theoretical δ11B4-pH curves. Therefore, it is reasonable to argue that a changeable proportion of B(OH)3 with pH of seawater should also be incorporated into carbonate except for the dominant incorporation of B(OH)4 in carbonate. Hence, in the reconstruction of the paleo-pH of seawater from boron isotopes in marine biogenic carbonates, the use of theoretical boron isotopic fractionation factor (α4−3) between B(OH)4 and B(OH)3 is not suitable. Instead, an empirical equation should be established. Supported by National Natural Science Foundation of China (Nos. 40573013 and 40776071), State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences (Grant No SKLLQG0502) and State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences  相似文献   

17.
The relation of the Kp index of geomagnetic activity to the solar wind electric field (E SW) and the projection of this field onto the geomagnetic dipole has been estimated. An analysis indicated that the southward component of the IMF vector (B z < 0) is the main geoeffective parameter, as was repeatedly indicated by many researchers. The presence of this component in any combinations of the interplanetary medium parameters is responsible for a high correlation between such combinations and geomagnetic activity referred to by the authors of different studies. Precisely this field component also plays the main role in the relation between the Kp index and the relative orientation of E SW and the Earth’ magnetic moment.  相似文献   

18.
19.
Nd isotopic characteristics of S- and I-type granites   总被引:1,自引:0,他引:1  
The initial Nd and Sr isotopic composition has been determined in S- and I-type granites from the Paleozoic Berridale and Kosciusko Batholiths of southeast Australia. The Nd and Sr isotopic variations form a strongly covariant array with S-types granites having a relatively restricted range inεNd values from ?6.1 to ?9.8 but a large range in initial87Sr86Sr of from 0.7094 to 0.7184. These characteristics are indicative of an~1400-m.y. sedimentary or metasedimentary source for S-types. I-types have variable initial Nd ranging from +0.4 to ?8.9, and a more limited range in initial87Sr86Sr of from 0.70453 to 0.7119. These isotopic characteristics are consistent with a two-component mixing model whereby a depleted mantle-like component (DMC) withεNd = +6 and87Sr86Sr= 0.703, is mixed with a crustal component (CC) havingεNd = ?9 and87Sr86Sr= 0.720. Although this two-component mixing model satisfies the isotopic constraints the source rock chemistry of the I-types is not compatible with the large proportion (up to 50%) of sedimentary material implied by the isotopic data. This indicates that more than two components are required to account for both the isotopic and chemical data. Both the chemical and isotopic data are consistent with I-type granites having been formed from source rocks of predominantly mantle derivation and obtained progressively from the mantle over a period of 1000 m.y. prior to granite formation.  相似文献   

20.
Using model simulations, the morphological picture (revealed earlier) of the disturbances in the F 2 region of the equatorial ionosphere under quiet geomagnetic conditions (Q-disturbances) is interpreted. It is shown that the observed variations in the velocity of the vertical E × B plasma drift, related to the zonal E y component of the electric field, are responsible for the formation of Q-disturbances. The plasma recombination at altitudes of the lower part of the F 2 region and the dependence of the rate of this process on heliogeophysical conditions compose the mechanism of Q-disturbance formation at night. The daytime positive Q-disturbances are caused exclusively by a decrease in the upward E × B drift, and this type of disturbances could be related to the known phenomenon of counter electrojet. Possible causes of formation of the daytime negative Q-disturbances are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号