首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
张团峰 《地学前缘》2008,15(1):26-35
基于三维空间中稀疏的观测数据,地质学家和储层建模人员尝试预测井间的地质沉积相的空间非均质性时,地质概念模型和先验认识在其中扮演着重要的角色。这种整合先验模型或解释的过程有时是隐蔽或不易察觉的,正如在手工绘等值线图中的情形;它也能够被显式地运用到某种算法当中,比如数字绘图中的算法。新近兴起的多点地质统计学为地质学家和储层建模人员提供了一种有力工具,它强调使用训练图像把先验模型明确而定量地引入到储层建模当中。先验地质模型包含了被研究的真实储层中确信存在的样式,而训练图像则是该模型的定量化表达。通过再现高阶统计量,多点算法能够从训练图像中捕捉复杂的(非线性)特征样式并把它们锚定到观测的井位数据。文中描述了多点地质统计学原理,以突出训练图像概念重要性为主线,描述了多点地质统计学在建立三维储层模型中的应用。  相似文献   

2.
In many earth sciences applications, the geological objects or structures to be reproduced are curvilinear, e.g., sand channels in a clastic reservoir. Their modeling requires multiple-point statistics involving jointly three or more points at a time, much beyond the traditional two-point variogram statistics. Actual data from the field being modeled, particularly if it is subsurface, are rarely enough to allow inference of such multiple-point statistics. The approach proposed in this paper consists of borrowing the required multiple-point statistics from training images depicting the expected patterns of geological heterogeneities. Several training images can be used, reflecting different scales of variability and styles of heterogeneities. The multiple-point statistics inferred from these training image(s) are exported to the geostatistical numerical model where they are anchored to the actual data, both hard and soft, in a sequential simulation mode. The algorithm and code developed are tested for the simulation of a fluvial hydrocarbon reservoir with meandering channels. The methodology proposed appears to be simple (multiple-point statistics are scanned directly from training images), general (any type of random geometry can be considered), and fast enough to handle large 3D simulation grids.  相似文献   

3.
Applications of multiple-point statistics (mps) algorithms to large non-repetitive geological objects such as those found in mining deposits are difficult because most mps algorithms rely on pattern repetition for simulation. In many cases, an interpreted geological model built from a computer-aided design system is readily available but suffers as a training image due to the lack of patterns repetitiveness. Porphyry copper deposits and iron ore formations are good examples of such mining deposits with non-repetitive patterns. This paper presents an algorithm called contactsim that focuses on reproducing the patterns of the contacts between geological types. The algorithm learns the shapes of the lithotype contacts as interpreted by the geologist, and simulates their patterns at a later stage. Defining a zone of uncertainty around the lithological contact is a critical step in contactsim, because it defines both the zones where the simulation is performed and where the algorithm should focus to learn the transitional patterns between lithotypes. A larger zone of uncertainty results in greater variation between realizations. The definition of the uncertainty zone must take into consideration the geological understanding of the deposit, and the reliability of the contact zones. The contactsim algorithm is demonstrated on an iron ore formation.  相似文献   

4.
The multiple-point simulation (MPS) method has been increasingly used to describe the complex geologic features of petroleum reservoirs. The MPS method is based on multiple-point statistics from training images that represent geologic patterns of the reservoir heterogeneity. The traditional MPS algorithm, however, requires the training images to be stationary in space, although the spatial distribution of geologic patterns/features is usually nonstationary. Building geologically realistic but statistically stationary training images is somehow contradictory for reservoir modelers. In recent research on MPS, the concept of a training image has been widely extended. The MPS approach is no longer restricted by the size or the stationarity of training images; a training image can be a small geometrical element or a full-field reservoir model. In this paper, the different types of training images and their corresponding MPS algorithms are first reviewed. Then focus is placed on a case where a reservoir model exists, but needs to be conditioned to well data. The existing model can be built by process-based, object-based, or any other type of reservoir modeling approach. In general, the geologic patterns in a reservoir model are constrained by depositional environment, seismic data, or other trend maps. Thus, they are nonstationary, in the sense that they are location dependent. A new MPS algorithm is proposed that can use any existing model as training image and condition it to well data. In particular, this algorithm is a practical solution for conditioning geologic-process-based reservoir models to well data.  相似文献   

5.
An Improved Parallel Multiple-point Algorithm Using a List Approach   总被引:15,自引:8,他引:7  
Among the techniques used to simulate categorical variables, multiple-point statistics is becoming very popular because it allows the user to provide an explicit conceptual model via a training image. In classic implementations, the multiple-point statistics are inferred from the training image by storing all the observed patterns of a certain size in a tree structure. This type of algorithm has the advantage of being fast to apply, but it presents some critical limitations. In particular, a tree is extremely RAM demanding. For three-dimensional problems with numerous facies, large templates cannot be used. Complex structures are then difficult to simulate. In this paper, we propose to replace the tree by a list. This structure requires much less RAM. It has three main advantages. First, it allows for the use of larger templates. Second, the list structure being parsimonious, it can be extended to include additional information. Here, we show how this can be used to develop a new approach for dealing with non-stationary training images. Finally, an interesting aspect of the list is that it allows one to parallelize the part of the algorithm in which the conditional probability density function is computed. This is especially important for large problems that can be solved on clusters of PCs with distributed memory or on multicore machines with shared memory.  相似文献   

6.
多点地质统计学建模的发展趋势   总被引:2,自引:0,他引:2  
从算法研究、训练图像处理和实际应用三个方面详细解剖了国内外多点地质统计学的发展历程,在此基础上,分析了多点地质统计学主流的几种算法的核心原理、适用范围及优缺点,以此来对储层建模的发展趋势作出展望。目前,多点地质统计学虽是随机建模的一种前沿研究热点,但由于其尚未成熟,仍需对建模算法进行研究。为此,在前人研究的基础上,重点分析了多点地质统计学的发展趋势:合理处理训练图像;合理利用软信息;选择合适的相似性方法;选择合适的标准化方法;合理利用平稳性;算法间的耦合;选择合适的过滤器;拓展缝洞型碳酸盐岩模拟。最后,提出多点地质统计学在储层建模方面,应从增加储层的模拟区域、提高模拟精度、扩大储层相的模拟范围和提高计算机模拟效率等方面进行改进。  相似文献   

7.
In order to determine to what extent a spatial random field can be characterized by its low-order distributions, we consider four models (specifically, random spatial tessellations) with exactly the same univariate and bivariate distributions and we compare the statistics associated with various multiple-point configurations and the responses to specific transfer functions. The three- and four-point statistics are found to be the same or experimentally hardly distinguishable because of ergodic fluctuations, whereas change of support and flow simulation produce very different outcomes. This example indicates that low-order distributions may not discriminate between contending random field models, that simulation algorithms based on such distributions may not reproduce the spatial properties of a given model or training image, and that the inference of high-order distribution may require very large training images.  相似文献   

8.
Multiple-point statistics are widely used for the simulation of categorical variables because the method allows for integrating a conceptual model via a training image and then simulating complex heterogeneous fields. The multiple-point statistics inferred from the training image can be stored in several ways. The tree structure used in classical implementations has the advantage of being efficient in terms of CPU time, but is very RAM demanding and then implies limitations on the size of the template, which serves to make a proper reproduction of complex structures difficult. Another technique consists in storing the multiple-point statistics in lists. This alternative requires much less memory and allows for a straightforward parallel algorithm. Nevertheless, the list structure does not benefit from the shortcuts given by the branches of the tree for retrieving the multiple-point statistics. Hence, a serial algorithm based on list structure is generally slower than a tree-based algorithm. In this paper, a new approach using both list and tree structures is proposed. The idea is to index the lists by trees of reduced size: the leaves of the tree correspond to distinct sublists that constitute a partition of the entire list. The size of the indexing tree can be controlled, and then the resulting algorithm keeps memory requirements low while efficiency in terms of CPU time is significantly improved. Moreover, this new method benefits from the parallelization of the list approach.  相似文献   

9.
Modeling complex reservoir geometries with multiple-point statistics   总被引:2,自引:0,他引:2  
Large-scale reservoir architecture constitutes first-order reservoir heterogeneity and dietates to a large extent reservoir flow behavior. It also manifests geometric characteristics beyond the capability of traditional geostatistical models conditioned only on single-point and two-point statistics. Multiple-point statistics, as obtained by scanning a training image deemed representative of the actual reservoir, if reproduced properly provides stochastic models that better capture the essence of the heterogeneity. A growth algorithm, coupled with an optimization procedure, is proposed to reproduce target multiple-point histograms. The growth algorithm makes an analogy between geological accretion process and stochastic process and amounts to restricting the random path of sequential simulation at any given stage to a set of eligible nodes (immediately adjacent to a previously simulated node or sand grain). The proposed algorithm, combined with a multiple-grid approach, is shown to reproduce effectively the geometric essence of complex training images exhibiting long-range and curvilinear structures. Also, by avoiding a rigorous search for global minimum and accepting local minima, the proposed algorithm improves CPU time over traditional optimization procedures by several orders of magnitude. Average flow responses run on simulated realizations are shown to bracket correctly the reference responses of the training image.  相似文献   

10.
Adding Local Accuracy to Direct Sequential Simulation   总被引:3,自引:0,他引:3  
Geostatistical simulations are globally accurate in the sense that they reproduce global statistics such as variograms and histograms. Kriging is locally accurate in the minimum local error variance sense. Building on the concept of direct sequential simulation, we propose a fast simulation method that can share these opposing objectives. It is shown that the multiple-point entropy of the resulting simulation is related to the univariate entropy of the local conditional distributions used to draw simulated values. Adding local accuracy to conditional simulations does not detract much from variogram reproduction and can be used to increase multiple-point entropy. The methods developed are illustrated using a case study.  相似文献   

11.
Characterization of complex geological features and patterns remains one of the most challenging tasks in geostatistics. Multiple point statistics (MPS) simulation offers an alternative to accomplish this aim by going beyond classical two-point statistics. Reproduction of features in the final realizations is achieved by borrowing high-order spatial statistics from a training image. Most MPS algorithms use one training image at a time chosen by the geomodeler. This paper proposes the use of multiple training images simultaneously for spatial modeling through a scheme of data integration for conditional probabilities known as a linear opinion pool. The training images (TIs) are based on the available information and not on conceptual geological models; one image comes from modeling the categories by a deterministic approach and another comes from the application of conventional sequential indicator simulation. The first is too continuous and the second too random. The mixing of TIs requires weights for each of them. A methodology for calibrating the weights based on the available drillholes is proposed. A measure of multipoint entropy along the drillholes is matched by the combination of the two TIs. The proposed methodology reproduces geologic features from both TIs with the correct amount of continuity and variability. There is no need for a conceptual training image from another modeling technique; the data-driven TIs permit a robust inference of spatial structure from reasonably spaced drillhole data.  相似文献   

12.
Sedimentological processes often result in complex three-dimensional subsurface heterogeneity of hydrogeological parameter values. Variogram-based stochastic approaches are often not able to describe heterogeneity in such complex geological environments. This work shows how multiple-point geostatistics can be applied in a realistic hydrogeological application to determine the impact of complex geological heterogeneity on groundwater flow and transport. The approach is applied to a real aquifer in Belgium that exhibits a complex sedimentary heterogeneity and anisotropy. A training image is constructed based on geological and hydrogeological field data. Multiple-point statistics are borrowed from this training image to simulate hydrofacies occurrence, while intrafacies permeability variability is simulated using conventional variogram-based geostatistical methods. The simulated hydraulic conductivity realizations are used as input to a groundwater flow and transport model to investigate the effect of small-scale sedimentary heterogeneity on contaminant plume migration. Results show that small-scale sedimentary heterogeneity has a significant effect on contaminant transport in the studied aquifer. The uncertainty on the spatial facies distribution and intrafacies hydraulic conductivity distribution results in a significant uncertainty on the calculated concentration distribution. Comparison with standard variogram-based techniques shows that multiple-point geostatistics allow better reproduction of irregularly shaped low-permeability clay drapes that influence solute transport.  相似文献   

13.
Traditional simulation methods that are based on some form of kriging are not sensitive to the presence of strings of connectivity of low or high values. They are particularly inappropriate in many earth sciences applications, where the geological structures to be simulated are curvilinear. In such cases, techniques allowing the reproduction of multiple-point statistics are required. The aim of this paper is to point out the advantages of integrating such multiple-statistics in a model in order to allow shape reproduction, as well as heterogeneity structures, of complex geological patterns to emerge. A comparison between a traditional variogram-based simulation algorithm, such as the sequential indicator simulation, and a multiple-point statistics algorithm (e.g., the single normal equation simulation) is presented. In particular, it is shown that the spatial distribution of limestone with meandering channels in Lecce, Italy is better reproduced by using the latter algorithm. The strengths of this study are, first, the use of a training image that is not a fluvial system and, more importantly, the quantitative comparison between the two algorithms. The paper focuses on different metrics that facilitate the comparison of the methods used for limestone spatial distribution simulation: both objective measures of similarity of facies realizations and high-order spatial cumulants based on different third- and fourth-order spatial templates are considered.  相似文献   

14.
Stochastic Simulation of Patterns Using Distance-Based Pattern Modeling   总被引:6,自引:2,他引:4  
The advent of multiple-point geostatistics (MPS) gave rise to the integration of complex subsurface geological structures and features into the model by the concept of training images. Initial algorithms generate geologically realistic realizations by using these training images to obtain conditional probabilities needed in a stochastic simulation framework. More recent pattern-based geostatistical algorithms attempt to improve the accuracy of the training image pattern reproduction. In these approaches, the training image is used to construct a pattern database. Consequently, sequential simulation will be carried out by selecting a pattern from the database and pasting it onto the simulation grid. One of the shortcomings of the present algorithms is the lack of a unifying framework for classifying and modeling the patterns from the training image. In this paper, an entirely different approach will be taken toward geostatistical modeling. A novel, principled and unified technique for pattern analysis and generation that ensures computational efficiency and enables a straightforward incorporation of domain knowledge will be presented.  相似文献   

15.
Direct Pattern-Based Simulation of Non-stationary Geostatistical Models   总被引:5,自引:2,他引:3  
Non-stationary models often capture better spatial variation of real world spatial phenomena than stationary ones. However, the construction of such models can be tedious as it requires modeling both statistical trend and stationary stochastic component. Non-stationary models are an important issue in the recent development of multiple-point geostatistical models. This new modeling paradigm, with its reliance on the training image as the source for spatial statistics or patterns, has had considerable practical appeal. However, the role and construction of the training image in the non-stationary case remains a problematic issue from both a modeling and practical point of view. In this paper, we provide an easy to use, computationally efficient methodology for creating non-stationary multiple-point geostatistical models, for both discrete and continuous variables, based on a distance-based modeling and simulation of patterns. In that regard, the paper builds on pattern-based modeling previously published by the authors, whereby a geostatistical realization is created by laying down patterns as puzzle pieces on the simulation grid, such that the simulated patterns are consistent (in terms of a similarity definition) with any previously simulated ones. In this paper we add the spatial coordinate to the pattern similarity calculation, thereby only borrowing patterns locally from the training image instead of globally. The latter would entail a stationary assumption. Two ways of adding the geographical coordinate are presented, (1) based on a functional that decreases gradually away from the location where the pattern is simulated and (2) based on an automatic segmentation of the training image into stationary regions. Using ample two-dimensional and three-dimensional case studies we study the behavior in terms of spatial and ensemble uncertainty of the generated realizations.  相似文献   

16.
Comparing Training-Image Based Algorithms Using an Analysis of Distance   总被引:1,自引:1,他引:0  
As additional multiple-point statistical (MPS) algorithms are developed, there is an increased need for scientific ways for comparison beyond the usual visual comparison or simple metrics, such as connectivity measures. In this paper, we start from the general observation that any (not just MPS) geostatistical simulation algorithm represents two types of variability: (1) the within-realization variability, namely, that realizations reproduce a spatial continuity model (variogram, Boolean, or training-image based), (2) the between-realization variability representing a model of spatial uncertainty. In this paper, it is argued that any comparison of algorithms needs, at a minimum, to be based on these two randomizations. In fact, for certain MPS algorithms, it is illustrated with different examples that there is often a trade-off: Increased pattern reproduction entails reduced spatial uncertainty. In this paper, the subjective choice that the best algorithm maximizes pattern reproduction is made while at the same time maximizes spatial uncertainty. The discussion is also limited to fairly standard multiple-point algorithms and that our method does not necessarily apply to more recent or possibly future developments. In order to render these fundamental principles quantitative, this paper relies on a distance-based measure for both within-realization variability (pattern reproduction) and between-realization variability (spatial uncertainty). It is illustrated in this paper that this method is efficient and effective for two-dimensional, three-dimensional, continuous, and discrete training images.  相似文献   

17.
In the last 10 years, Multiple-Point Statistics (MPS) modeling has emerged in Geostatistics as a valuable alternative to traditional variogram-based and object-based modeling. In contrast to variogram-based simulation, which is limited to two-point correlation reproduction, MPS simulation extracts and reproduces multiple-point statistics moments from training images; this allows modeling geologically realistic features, such as channels that control reservoir connectivity and flow behavior. In addition, MPS simulation works on individual pixels or small groups of pixels (patterns), thus does not suffer from the same data conditioning limitations as object-based simulation. The Single Normal Equation Simulation program SNESIM was the first implementation of MPS simulation to propose, through the introduction of search trees, an efficient solution to the extraction and storage of multiple-point statistics moments from training images. SNESIM is able to simulate three-dimensional models; however, memory and speed issues can occur when applying it to multimillion cell grids. Several other implementations of MPS simulation were proposed after SNESIM, but most of them manage to reduce memory demand or simulation time only at the expense of data conditioning exactitude and/or training pattern reproduction quality. In this paper, the original SNESIM program is revisited, and solutions are presented to eliminate both memory demand and simulation time limitations. First, we demonstrate that the time needed to simulate a grid node is a direct function of the number of uninformed locations in the conditioning data search neighborhood. Thus, two improvements are proposed to maximize the ratio of informed to uniformed locations in search neighborhoods: a new multiple-grid approach introducing additional intermediary subgrids; and a new search neighborhood designing process to preferentially include previously simulated node locations. Finally, because SNESIM memory demand and simulation time increase with the size of the data template used to extract multiple-point statistics moments from the training image and build the search tree, a simple method is described to minimize data template sizes while preserving training pattern reproduction quality.  相似文献   

18.
Indicator Simulation Accounting for Multiple-Point Statistics   总被引:7,自引:0,他引:7  
Geostatistical simulation aims at reproducing the variability of the real underlying phenomena. When nonlinear features or large-range connectivity is present, the traditional variogram-based simulation approaches do not provide good reproduction of those features. Connectivity of high and low values is often critical for grades in a mineral deposit. Multiple-point statistics can help to characterize these features. The use of multiple-point statistics in geostatistical simulation was proposed more than 10 years ago, on the basis of the use of training images to extract the statistics. This paper proposes the use of multiple-point statistics extracted from actual data. A method is developed to simulate continuous variables. The indicator kriging probabilities used in sequential indicator simulation are modified by probabilities extracted from multiple-point configurations. The correction is done under the assumption of conditional independence. The practical implementation of the method is illustrated with data from a porphyry copper mine.  相似文献   

19.
Thin, irregularly shaped surfaces such as clay drapes often have a major control on flow and transport in heterogeneous porous media. Clay drapes are often complex, curvilinear three-dimensional surfaces and display a very complex spatial distribution. Variogram-based stochastic approaches are also often not able to describe the spatial distribution of clay drapes since complex, curvilinear, continuous, and interconnected structures cannot be characterized using only two-point statistics. Multiple-point geostatistics aims to overcome the limitations of the variogram. The premise of multiple-point geostatistics is to move beyond two-point correlations between variables and to obtain (cross) correlation moments at three or more locations at a time using training images to characterize the patterns of geological heterogeneity. Multiple-point geostatistics can reproduce thin irregularly shaped surfaces such as clay drapes, but this is often computationally very intensive. This paper describes and applies a methodology to simulate thin, irregularly shaped surfaces with a smaller CPU and RAM demand than the conventional multiple-point statistical methods. The proposed method uses edge properties for indicating the presence of thin irregularly shaped surfaces. Instead of pixel values, edge properties indicating the presence of irregularly shaped surfaces are simulated using snesim. This method allows direct simulation of edge properties instead of pixel properties to make it possible to perform multiple-point geostatistical simulations with a larger cell size and thus a smaller computation time and memory demand. This method is particularly valuable for three-dimensional applications of multiple-point geostatistics.  相似文献   

20.
Inverse problems are ubiquitous in the Earth Sciences. Many such problems are ill-posed in the sense that multiple solutions can be found that match the data to be inverted. To impose restrictions on these solutions, a prior distribution of the model parameters is required. In a spatial context this prior model can be as simple as a Multi-Gaussian law with prior covariance matrix, or could come in the form of a complex training image describing the prior statistics of the model parameters. In this paper, two methods for generating inverse solutions constrained to such prior model are compared. The gradual deformation method treats the problem of finding inverse solution as an optimization problem. Using a perturbation mechanism, the gradual deformation method searches (optimizes) in the prior model space for those solutions that match the data to be inverted. The perturbation mechanism guarantees that the prior model statistics are honored. However, it is shown with a simple example that this perturbation method does not necessarily draw accurately samples from a given posterior distribution when the inverse problem is framed within a Bayesian context. On the other hand, the probability perturbation method approaches the inverse problem as a data integration problem. This method explicitly deals with the problem of combining prior probabilities with pre-posterior probabilities derived from the data. It is shown that the sampling properties of the probability perturbation method approach the accuracy of well-known Markov chain Monte Carlo samplers such as the rejection sampler. The paper uses simple examples to illustrate the clear differences between these two methods  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号