首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
In a large (8 ha) salt marsh restoration site, we tested the effects of excavating tidal creeks patterned after reference systems. Our purposes were to enhance understanding of tidal creek networks and to test the need to excavate creeks during salt marsh restoration. We compared geomorphic changes in areas with and without creek networks (n = 3; each area 1.3 ha) and monitored creek cross-sectional areas, creek lengths, vertical accretion, and marsh surface elevations for 5 yr that included multiple sedimentation events. We hypothesized that cells with creeks would develop different marsh surface and creek network characteristics (i.e., surface elevation change, sedimentation rate, creek cross-sectional area, length, and drainage density). Marsh surface vertical accretion averaged 1.3 cm yr−1 with large storm inputs, providing the opportunity to assess the response of the drainage network to extreme sedimentation rates. The constructed creeks initially filled due to high accretion rates but stabilized at cross-sectional areas matching, or on a trajectory toward, equilibrium values predicted by regional regression equations. Sedimentation on the marsh surface was greatest in low elevation areas and was not directly influenced by creeks. Time required for cross-sectional area stabilization ranged from 0 to > 5 yr, depending on creek order. First-order constructed creeks lengthened rapidly (mean rate of 1.3 m yr−1) in areas of low elevation and low vegetation cover. New (volunteer) creeks formed rapidly in cells without creeks in areas with low elevation, low vegetation cover, and high elevation gradient (mean rate of 6.2 m yr−1). After 5 yr, volunteer creeks were, at most, one-fourth the area of constructed creeks and had not yet reached the upper marsh plain. In just 4 yr, the site’s drainage density expanded from 0.018 to reference levels of 0.022 m m−2. Pools also formed on the marsh plain due to sediment resuspension associated with wind-driven waves. We conclude that excavated creeks jump-started the development of drainage density and creek and channel dimensions, and that the tidal prism became similar to those of the reference site in 4–5 yr.  相似文献   

2.
In the lower delta of the Paraná River, at the head of the Río de la Plata estuary (Argentina), we compared net aboveground primary production (NAPP) and soil properties of the dominant macrophyteScirpus giganteus (Kunth) in a floating and an attached marsh community. Both marshes are tidally influenced but in different ways. The floating marsh site is relatively isolated from tidal influences because its ability to float makes it resistant to overland flow and to sediment inputs from the estuary. The attached marsh lacks the capacity to float and receives sediment supplies from the estuary through overland flow. These hydrologic differences are reflected in lower mineral content in sediments of the floating marsh. Using a leaf tagging technique, estimated NAPP was 1,109 ± 206 g m−2 yr−1 for the floating marsh and 1,866 ±258 g m−2 yr−1 for the attached marsh. We attribute the lower NAPP of the floating marsh to isolation from sediment input from overland flow.  相似文献   

3.
A model for the geomorphic and vegetation development of a river valley tidal marsh in southern New England (Connecticut) is based on both the species composition of roots and rhizomes and on the mineralogic sediments preserved in peat. The maximum depth of salt marsh peat is 3.8 m and in the deepest areas this can overlie up to 1.9 m of fresh to brackish water peat. Based on a radiocarbon date of 3670±140 yr before the present (B.P.) for basal peat at a depth of 4.0 m, vertical accretion rates have averaged ca. 1.1 mm yr?1. Salt marsh formation began in response to rising sea level 3800–4000 yr B.P., as brackish marshes, dominated by bulrush (Scirpus sp.), replaced freshwater wetlands along stream and river channels. Gradually salt marsh vegetation developed over submerging brackish marshes, adjacent uplands, and accreting tidal flats. By 3000 yr B.P. the lower estuary was tidal, with sufficient salinity for salt marsh to dominate most wetlands. Spikegrass (Distichlis spicata) was an important early colonizer in salt marsh formation and its role in marsh development has not been documented previously. Blackgrass (Juncus gerardi), currently a typical upper border species, appears in the peat record relatively recently, perhaps within the last few centuries. In contrast, reed (Phragmites australis) has been present for at least 3500 yr. The dominance of reed along the upper border today, however, appears to be a relatively recent phenomenon.  相似文献   

4.
The mummichog,Fundulus heteroclitus, is one of the most important macrofaunal components of salt marsh surfaces and an important link to subtidal areas of the adjacent estuary along the east coast of the U.S. We estimated growth, population size, and production of the mummichog in a restored marsh in order to improve our understanding of the role of this resident fish and to evaluate the success of the restoration. The restored marsh, covering 234 ha, was a former salt hay farm located in the mesohaline portion of Delaware Bay that was restored to tidal influence in August 1996. We separated the mummichog population into two components based on life history stage and summer habitat use patterns. One component, consisting of adults and large young-of-the-year (YOY), exhibited tidal movements to and from the marsh surface and the subtidal creeks. These were examined with an intensive mark and recapture program using coded wire tags. Another component, consisting of small YOY, remained on the marsh surface throughout the tidal cycle. Throw traps were used to sample these small YOY. The mean annual population density of adults and large YOY for the entire marsh was approximately 1.2 fish m−2 and mean monthly density peaked at 2.9 fish m−2. The mean annual density of small YOY on the marsh surface was 15.1 fish m−2 and mean monthly density peaked at 41.4 fish m−2. Size and season influenced the growth rate of individual fish and instantaneous growth rates ranged from 0.03 to 2.26 mo−1. Total annual mummichog production was estimated to be 8.37 g dw m−2 yr−1, with adults and large YOY contributing 28.4% (2.38 g dw m−2 yr−1) and small YOY on the marsh surface contributing 71.6% (5.99 g dw m−2 yr−1). The seasonal use and population densities were comparable to previous studies in natural marshes while growth and production of mummichog in this restored marsh appeared to be higher. Coupled with the results of other studies on the feeding, movement, and habitat use of this species in this restored marsh, the species has responded well to the restoration.  相似文献   

5.
The influence of canals on vertical marsh accretion, including mineral sediment and organic matter accumulation, was evaluated at three locations along the Louisiana coast representing different geographic regions. The isotopes210Pb and157Cs were used to determine vertical accretion along transects representing a canal and a control site. Rapid rates of vertical accretion were measured at all sites and ranged from 0.47 cm yr?1 to 0.90 cm yr?1. Results indicated that there was no measurable effect of canals on marsh accretionary processes. In general, greater variation in vertical accretion, including mineral sediment deposition and organic matter accumulation, was observed between geographical regions than between canal and control sites within a region. Statistical analysis of data suggest that any difference between canal and control site would be less than 0.20 cm yr?1. Such a change in marsh surface-water level relationships as a result of any canal influence on marsh accretionary processes would be less than reported eustatic sea-level rise for the Gulf of Mexico. Results suggest that any change in the marsh surface-water level relationship could be the influence of canals on local hydrology, resulting in increased water level rather than any appreciable reduction in accretionary processes. Such changes in hydrology under certain conditions could stress vegetation, resulting in marsh deterioration.  相似文献   

6.
Recent (6–12 month) marsh sediment accretion and accumulation rates were measured with feldspar marker horizons in the vicinity of natural waterways and man-made canals with spoil banks in the rapidly subsiding environment of coastal Louisiana. Annual accretion rates in aSpartina alterniflora salt marsh in the Mississippi deltaic plain averaged 6 mm in marsh adjacent to canals compared to 10 mm in marsh adjacent to natural waterways. The rates, however, were not statistically significantly different. The average rate of sediment accretion in the same salt marsh region for a transect perpendicular to a canal (13 mm yr?1) was significantly greater than the rate measured for a transect perpendicular to a natural waterway (7 mm yr?1). Measurements of soil bulk density and organic matter content from the two transects were also different. This spatial variability in accretion rates is probably related to (1) spoil bank influences on local hydrology; and (2) a locally high rate of sediment input from lateral erosion associated with pond enlargement. In a brackishSpartina patens marsh on Louisiana’s Chenier plain, vertical accretion rates were the same along natural and canal waterways (3–4 mm yr?1) in a hydrologically restricted marsh region. However, the accretion rates for both waterways were significantly lower than the rates along a nonhydrologically restricted natural waterway nearby (11 mm yr?1). The vertical accretion of matter displayed semi-annual differences in the brackish marsh environment.  相似文献   

7.
Negative connotations of invasive plants worldwide have implicated them as the bearers of unfavorable ecosystem change. We contrasted 5-yr-old and 20-yr-oldPhragmites populations with pre-invasion areas occupied byTypha spp. andPanicum virgatum in an oligohaline tidal marsh of Chesapeake Bay. Peak live biomass was 3 times greater, while standing dead and litter was twice as great in the 20-yr-oldPhragmites. It is this abundance of concentrated litter on the marsh surface of maturePhragmites populations that we implicate as encouraging the trapping of organic and mineral matter. The rate of vertical accretion in 20-yr-oldPhragmites populations is 3–4 mm yr−1 above the adjacent populations. By integrating the constant initial concentration and constant rate of supply models on individual210Pb cores, we estimate thatPhragmites populations require a minimum of 7-yr post-colonization to enhance rates of accretion in this system. In ligh of the considerable loss of marsh habitat from relative sea-level rise, this finding contests the view that invasion creates strictly undesirable change at the ecosystem level.  相似文献   

8.
We measured the amount of arsenic, chromium, copper, lead, nickel, vanadium, and zinc accumulated over a five-year period from 1997 to 2002 in surface sediments of seven salt marshes along the New Brunswick coast of the Bay of Fundy, Canada. Study sites extended from outer to inner Bay, spanning a gradient in tidal range (6–12 m) and mean sediment deposition rate (0.27–1.76 cm yr−1). In each study site, metal concentrations were measured in low and high marsh areas. Concentrations of chromium, nickel, and zinc appear to be within their natural range, while arsenic, lead, and vanadium are enriched in some sites. Calculated sediment metal loadings rates showed variability among marsh sites that closely followed sediment deposition patterns, suggesting sediment deposition rate is the driving factor of short-term metal accumulation in Fundy marshes. The value of salt marshes as a sink for metals may be enhanced by high sedimentation rates.  相似文献   

9.
We studied organic matter cycling in two Gulf Coast tidal, nonsaline marsh sites where subsidence causes marine intrusion and rapid submergence, which mimics increased sea-level rise. The sites experienced equally rapid submergence but different degrees of marine intrusion. Vegetation was hummocked and much of the marsh lacked rooted vegetation. Aboveground standing crop and production, as measured by sequential harvesting, were low relative to other Gulf CoastSpartina patens marshes. Soil bulk density was lower than reported for healthyS. alterniflora growth but that may be unimportant at the current, moderate sulfate levels. Belowground production, as measured by sequential harvesting, was extremely fast within hummocks, but much of the marsh received little or no belowground inputs. Aboveground production was slower at the more saline site (681 g m?2 yr?1) than at the less saline site (1,252 g m?2 yr?1). Belowground production over the entire marsh surface averaged 1,401 g m?2 yr?1 at the less saline site and 585 g m?2 yr?1 at the more saline site. Respiration, as measured by CO2 emissions in the field and corrected for CH4 emissions, was slower at the less saline site (956 g m?2 yr?1) than at the more saline site (1,438 g m?2 yr?1), reflecting greater contributions byS. alterniflora at the more saline site which is known to decompose more rapidly thanS. patens. Burial of organic matter was faster at the less saline site (796 g m?2 yr?1) than at the more saline site (434 g m?2, yr?1), likely in response to faster production and slower decomposition at the less saline site. Thus vertical accretion was faster at the less saline site (1.3 cm yr?1) than at the more saline site (0.85 cm yr?1); slower vertical accretion increased flooding at the more saline site. More organic matter was available for export at the less saline site (1,377 g m?2 yr?1) than at the more saline site (98 g m?2 yr?1). These data indicated that organic matter production decreased and burial increased in response to greenhouse-like conditions brought on by subsidence. *** DIRECT SUPPORT *** A01BY069 00016  相似文献   

10.
Aerial photographs and GIS analysis were used to map the distribution of tidal marsh vegetation along the salinity gradients of the estuaries of the Altamaha and Satilla Rivers in coastal Georgia. Vegetation maps were constructed from 1993 U.S. Geological Survey Digital Orthophoto Quarter Quads, 1∶77,000-scale color infrared photographs taken in 1974 and 1∶24,000-scale black and white photographs taken in 1953, Changes between years were identified using a GIS overlay analysis. Four vegetation classifications were identified and groundtruthed with field surveys: salt marsh (areas containing primarilySpartina alterniflora), brackish marsh (Spartina cynosuroides andS. alterniflora), Juncus (Juncus roemerianus), and fresh marsh (Zizania aquatica, Zizaniopsis miliacae, and others). There was no evidence for an upstream shift in marsh vegetation along the longitudinal axis of either estuary over the time frame of this analysis, which implies there has not been a long-term increase in salinity. Although the inland extent of each marsh zone was further upstream in the Satilla than the Altamaha, they corresponded to similar average high tide salinities in each estuary: areas classified as salt marsh occurred from the mouth up to where average high tide salinity in the water was approximately 15 psu;Juncus ranged from 21 to 1 psu; brackish marsh ranged from 15 to 1 psu; and fresh marsh was upstream of 1 psu. Approximately 63% of the 6,786 ha of tidal marsh vegetation mapped in the Altamaha and 75% of the 10,220 ha mapped in the Satilla remained the same in all 3 yr.Juncus was the dominant classification in the intermediate regions of both estuaries, and shifts between areas classified asJuncus and either brackish or salt marsh constituted the primary vegetation change between 1953 and 1993 (87% of the changes observed in the Altamaha and 95% of those in the Satilla). This analysis suggests that the broad distribution of tidal marsh vegetation along these two estuaries is driven by salinity, but that at the local scale these are dynamic systems with a larger number of factors affecting the frequently changing borders of vegetation patches.  相似文献   

11.
This paper documents the role of salt marsh algal mats in the productivity of a southern California tidal wetland. The productivity of the mats, which are composed of filamentous bluegreen and green algae and diatoms, varies both temporally and spatially in relation to tidal inundation and overstory vegetation. The estimates of net primary productivity (NPP) were highest under the canopy ofJaumea carnosa (Less.) Gray (341 g C m?2 yr?1) at low elevation. Elsewhere, NPP appeared to be limited by low light (276 g C m?2 yr?1 underSpartina foliosa Trin.) and desiccation (185 g C m?2 yr?1 underBatis martima L. and 253 g C m?2 yr?1 underMonanthochloe littoralis Engelm). Algal NPP was from 0.8 to 1.4 times that of the vascular plant overstory NPP. It is hypothesized that the arid environment of southern California and resulting hypersaline soils reduce vascular plant cover, which leads to high algal productivity.  相似文献   

12.
This study represents the first report on sediment accretion rates using137Cs dating for a southern California salt marsh. Vertical accretion rates ranged from 0.7 to 1.2 cm yr−1, which is at the high end of sediment accretion values for coastal wetlands. This has lead to increases in elevation within the estuary from 18 to 35 cm over the last 35 years. Depth profiles of metal concentrations were converted to time-based profiles using vertical accretion rates. Chronologies for most cores indicate a consistent peak in sediment lead (Pb) concentrations in the early to mid 1980s, corresponding to the historic decline in Pb use, which was completed in the U.S. by the early 1980s, but not begun in Mexico until 1991. Sediment Pb levels ranged from about 6–56 μg g−1. Other metals did not show any consistent trends in sediment chronology, except for a single core from a mid-marsh site (east-mid 2), which showed a 2–3-fold increase in levels of Cu, Ni, and Zn during the past two decades. Sediment levels of copper (Cu), nickel (Ni), and zinc (Zn) ranged from 6–34 μg g−1, 11–27 μg g−1, and 42–122 μg g−1, respectively. Despite rapid industrial development of the watershed, a comparison of the sediment metal concentrations in the Tijuana Estuary to other anthropogenically-impacted estuaries in the United States and Europe, shows that metal levels in sediments of the north arm of the estuary are relatively low.  相似文献   

13.
Sulfate reduction rates were measured over the course of a year in the sediments of aJuncus roemerianus marsh located in coastal Alabama. Sulfate reduction rates were typically highest in the surface 0–2 cm and at depths corresponding to peak belowground biomass of the plants. The highest volume-based sulfate reduction rate measured was 1,350 μmol liter-sediment−1 d−1 in September 1995. Areal sulfate reduction rates (integrated to 20 cm depth) were strongly correlated to sediment temperature and varied seasonally from 15.2 mmol SO 4 2− m−2 d−1 in January 1995 to 117 mmol SO 4 2− m−2 d−1 in late August 1995. Despite high sulfate reduction rates porewater dissolved sulfide concentrations were low (<73 μM), indicating rapid sulfide oxidation or precipitation. Sulfate depletion data indicated that net oxidation of sediment sulfides occurred in March through May, following a period of infrequent tidal flooding and during a period of high plant production. Porewater Fe(II) reached very high levels (maximum of 969 μM; mean for all dates was 160 μM), particularly during periods of high sulfate reduction. The annual sulfate reduction rate integrated over the upper 20 cm of sediment was 22.0 mol SO 4 2− m−2 yr−1, which is among the highest rates measured in a wetland ecosystem. Based on literature values of net primary production inJ. roemerianus marshes, we estimate that an amount equivalent to 16% to 90% of the annual belowground production may be remineralized through sulfate reduction.  相似文献   

14.
Tidal freshwater marshes exist at the interface between watersheds and estuaries, and thus may serve as critical buffers protecting estuaries from anthropogenic metal pollution. Bi-weekly samples of newly deposited marsh sediments were collected and analyzed for Cu, Zn, and Fe concentrations over 21 months from July 1995 to March 1997 in five distinct habitats at the head of Bush River, Maryland. Bi-weekly anthropogenic metal enrichments ranged from 0.9–4.7. Anthropogenic excess metal loadings averaged over 1996 ranged from 6–306 and 25–1302 μg cm−2 year−1 between sites for Cu and Zn, respectively. Based on Fe-normalized trace metal signatures, Susquehanna River sediment does not significantly contribute to upper Bush River. Organic matter was found to dilute total metal concentrations, whereas past studies suggested organics enhance labile metal content. Analysis of metal input pathways shows that marsh metals are primarily imported from nearby subtidal accumulations of historic watershed material by tidal flushing. Received: 29 April 1999 / Accepted: 7 December 1999  相似文献   

15.
We used a combined field and modeling approach to estimate the potential for submergence for one rapidly deteriorating (Bayou Chitigue Marsh) and one apparently stable (Old Oyster Bayou Marsh) saltmarsh wetland in coastal Louisiana, given two eustatic sea level rise scenarios: the current rate (0.15 cm year−1); and the central value predicted by the Intergovernmental Panel on Climate Change (48 cm by the year 2100). We also used the model to determine what processes were most critical for maintaining and influencing salt marsh elevation including, mineral matter deposition, organic matter production, shallow subsidence (organic matter decomposition + primary sediment compaction), deep subsidence, and sediment pulsing events (e.g., hurricanes). Eight years of field measurements from feldspar marker horizons and surface elevation tables revealed that the rates of vertical accretion at the Bayou Chitigue Marsh were high (2.26 (0.09) cm yr−1 (mean ± SE)) because the marsh exists at the lower end of the tidal range. The rate of shallow subsidence was also high (2.04 (0.1) cm yr−1), resulting in little net elevation gain (0.22 (0.06) cm yr−1). In contrast, vertical accretion at the Old Oyster Bayou Marsh, which is 10 cm higher in elevation, was 0.48 (0.09) cm yr−1. However, there was a net elevation gain of 0.36 (0.08) cm yr−1 because there was no significant shallow subsidence. When these rates of elevation gain were compared to rates of relative sea level rise (deep subsidence plus eustatic sea level rise), both sites showed a net elevation deficit although the Bayou Chitigue site was subsiding at approximately twice the rate of the Old Oyster Bayou site (1.1 cm yr−1 versus 0.49 cm yr−1 respectively). These field data were used to modify, initialize, and calibrate a previously published wetland soil development model that simulates primary production and mineral matter deposition as, feedback functions of elevation. Sensitivity analyses revealed that wetland elevation was most sensitive to changes in the rates of deep subsidence, a model forcing function that is difficult to measure in the field and for which estimates in the literature vary widely. The model also revealed that, given both the current rate of sea level rise and the central value estimate, surface elevation at both sites would fall below mean sea level over the next 100 years. Although these results were in agreement with the field study, they contradicted long term observations that the Old Oyster Bayou site has been in equilibrium with sea level for at least the past 50 years. Further simulations showed that the elevation at the Old Oyster Bayou site could keep pace with current rates of sea level rise if either a lower rate for deep subsidence was used as a forcing function, or if a periodic sediment pulsing function (e.g., from hurricanes) was programmed into the model.  相似文献   

16.
The objective of this study was to determine if the placement of dredged material on sediment-starved back barrier marshes in southeastern North Carolina could offset submergence without negatively affecting function. Clean sediment was placed in thickness from 0 to 10 cm, on deteriorated and non-deteriorated marsh plots. Original stem densities were greater, in non-deteriorated plots (256 stems m−2) compared to deteriorated sites (149 stems m−2). By the second growing season (after sediment additions), stem densities in the deteriorated plots (308 stems m−2) approached levels in the non-deteriorated plots (336 stems m−2). Sediment additions to, both nos-deteriorated and deteriorated plots resulted in a higher redox potential with plots receiving the most sediment exhibiting the highest Eh values. In deteriorated plots, placement of dredged material had the greatest effect on plant density, but also affected soil oxidation-reduction potential and sediment deposition (or mobility). Following sediment placement, substrate texture and composition incrementally returned to prefill conditions due to a combination of bioturbation and sedimentation. Where infaunal differences occurred, they were generally less abundant in deteriorated plots, but responses to sediment addition were variable. Sediment addition had little effect on the non-deteriorated plots, suggesting that the disposal of certain types of dredged material in marshes may be useful to mitigate the effects of marsh degradation without adversely affecting non-deteriorating marsh.  相似文献   

17.
We sampled nekton (fishes and decapod crustaceans) in submerged aquatic vegetation (SAV) (Potanogeton nodosus, Najas guadalupensis), in emergent marsh vegetation (Sagittaria spp. andScirpus americanus), and over unvegetated bottom associated with three islands in the Atchafalaya River Delta, Louisiana. The purpose of our study was to quantify nekton densities in these major aquatic habitat types and to document the relative importance of these areas to numerically dominant aquatic organisms. We collected a total of 33 species of fishes and 7 species of crustaceans in 298 1-m2 throw trap samples taken over three seasons: summer (July and August 1994), fall (September and October 1994), and spring (May and June 1995). Fishes numerically accounted for >65% of the total organisms collected. Vegetated areas generally supported much higher nekton densities than unvegetated sites, although bay anchoviesAnchoa mitchilli were more abundant over unvegetated bottom than in most vegetated habitat types. Among vegetation types, most species showed no apparent preference between SAV and marsh. However, inland silversidesMenidia beryllina and freshwater gobiesGobionellus shufeldti were most abundant inScirpus marsh in summer, and blue crabsCallinectes sapidus were most abundant in SAV (Potamogeton) in spring. Several species (sheepshead minnowCyprinodon variegatus, rainwater killifishLucania parva, and blue crab) apparently selected the vegetated backmarsh of islands (opposite of riverside) over stream-sideScirpus marsh. Freshwater gobies, in contrast, were most abundant in streamsideScirpus marsh. Densities of juvenile blue crabs were high (up to 17 m−2) in vegetated delta habitat types and comparable to values reported from more saline regions of Gulf Coast estuaries. Shallow vegetated habitat types of the Atchafalaya River Delta and other tidal freshwater systems of the Gulf Coast may be important nursery areas for blue crabs and other estuarine species.  相似文献   

18.
Salt marsh elevation and geomorphic stability depends on mineral sedimentation. Many Mediterranean-climate salt marshes along southern California, USA coast import sediment during El Niño storm events, but sediment fluxes and mechanisms during dry weather are potentially important for marsh stability. We calculated tidal creek sediment fluxes within a highly modified, sediment-starved, 1.5-km2 salt marsh (Seal Beach) and a less modified 1-km2 marsh (Mugu) with fluvial sediment supply. We measured salt marsh plain suspended sediment concentration and vertical accretion using single stage samplers and marker horizons. At Seal Beach, a 2014 storm yielded 39 and 28 g/s mean sediment fluxes and imported 12,000 and 8800 kg in a western and eastern channel. Western channel storm imports offset 8700 kg exported during 2 months of dry weather, while eastern channel storm imports augmented 9200 kg imported during dry weather. During the storm at Mugu, suspended sediment concentrations on the marsh plain increased by a factor of four; accretion was 1–2 mm near creek levees. An exceptionally high tide sequence yielded 4.4 g/s mean sediment flux, importing 1700 kg: 20 % of Mugu’s dry weather fluxes. Overall, low sediment fluxes were observed, suggesting that these salt marshes are geomorphically stable during dry weather conditions. Results suggest storms and high lunar tides may play large roles, importing sediment and maintaining dry weather sediment flux balances for southern California salt marshes. However, under future climate change and sea level rise scenarios, results suggest that balanced sediment fluxes lead to marsh elevational instability based on estimated mineral sediment deficits.  相似文献   

19.
One year’s measurements of surficial sedimentation rates (1986–1987) for 26 Maine marsh sites were made over marker horizons of brick dust. Observed sediment accumulation rates, from 0 to 13 mm yr?1, were compared with marsh morphology, local relative sea-level rise rate, mean tidal range, and ice rafting activity. Marshes with four different morphologies (back-barrier, fluvial, bluff-toe, and transitional) showed distinctly different sediment accumulation rates. In general, back-barrier marshes had the highest accumulation rates and blufftoe marshes had the lowest rates, with intermediate values for transitional and fluvial marshes. No causal relationship between modern marsh sediment accumulation rate and relative sea-level rise rate (from tide gauge records) was observed. Marsh accretionary balance (sediment accumulation rate minus relative sea-level rise rate) did not correlate with mean tidal range for this meso- to macro-tidal area. Estimates of ice-rafted debris on marsh sites ranged from 0% to >100% of measured surficial sedimentation rates, indicating that ice transport of sediment may make a significant contribution to surficial sedimentation on Maine salt marshes.  相似文献   

20.
Natural radionuclides in the uranium and thorium series were measured in solid tidal phases (suspended particles, bottom sediment, surface microlayer colloids) of a salt marsh in lower Delaware. The purpose was to identify potential processes responsible for trace element cycling (sources, redistribution and exchange) in salt water marshes and with their coastal waters. Generally, concentrations of U, Th,210Pb, and210Po on the tidal solid phases suggest a general mechanism by which tidal marshes appear to be trapping the nuclides into their interiors. The processes may include transport of enriched fine particles into the marsh, capture by salt marsh grass and chemical fixation by redox processes at the sediment surface. Specifically, the uranium contents of most of the samples are similar with activity ratios234U238U≧1, indicating a mixture of detrital and nondetrital (authigenic) uranium inputs such as seawater or ground water. Since the230Th daughter is generally deficient by about 50%, the authigenic enrichment process appears to favor uranium and is potentially linked to the extensive diagenetic sulfur redox cycle of salt marsh sediments. The210Po/210Pb activity ratio is less than one on Spartina adsorbed solids, and could suggest a general process in salt marshes which favors210Pb enrichment by atmospheric fallout over enrichment of210Po on time scales of weeks which correspond to complete tide marsh exchange. A228Th/232Th activity ratio of less than unity on the solids adsorbed onto marsh grass suggests a net process whereby diffusive loss of the intermediate daughter228Ra from the adsorbed solids to tidal waters dominates over potential228Th scavenging by suspended sediment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号