首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Diatom assemblages and organic carbon records from two sediment cores located within an estuarian bay of the inner Kara Sea trace changes in Yenisei River runoff and postglacial depositional environments. Paleosalinity and sea-ice reconstructions are based on modern relationships of local diatom assemblages and summer surface-water salinity. Approximately 15,500 cal yr B.P., rivers and bogs characterized the study area. When sea level reached the 38- to 40-m paleo-isobath approximately 9300 cal yr B.P., the coring site was flooded. From 9300–9100 cal yr B.P., estuarine conditions occurred proximal to the depocenter of fluvially derived material, and salinity was <7–8. Paleosalinity increased to 11–13 by 7500 cal yr B.P., following postglacial sea-level rise and the southward shift of the Siberian coast. Sharp decreases in diatom accumulation rates, total sediment, and organic carbon also occurred, suggesting the presence of brackish conditions and greater distance between the coast and study site. Maximum paleosalinity (up to 13) was recorded between 7500 and 6000 cal yr B.P., which was likely caused by the enhanced penetration of Atlantic waters to the Kara Sea. Stepwise decreases to modern salinity levels happened over the last 6000 cal yr.  相似文献   

2.
Radiocarbon dates from critical stratigraphic localities in southern British Columbia indicate that the growth history of the late Wisconsin Cordilleran Ice Sheet was different from that of most of the Laurentide Ice Sheet to the east. Much of southern British Columbia remained free of ice until after about 19,000 to 20,000 yr ago; only adjacent to the Coast Mountains is there a record of lowland glacier tongues in the interval 22,000 to 20,000 yr B.P. A major advance to the climax of late Wisconsin Cordilleran glacier ice in the northern States was not begun until after about 18,000 yr B.P. in the southwest of British Columbia and after about 17,500 yr B.P. in the southeast. The rate of glacier growth must have been very rapid in the two to three millennia prior to the climax, which has been dated in western Washington at shortly after 15,000 yr B.P.  相似文献   

3.
During the last glacial stage, Washington Land in western North Greenland was probably completely inundated by the Greenland Ice Sheet. The oldest shell dates from raised marine deposits that provide minimum ages for the last deglaciation are 9300 cal. yr BP (northern Washington Land) and 7600 cal. yr BP (SW Washington Land). These dates indicate that Washington Land, which borders the central part of Nares Strait separating Greenland from Ellesmere Island in Canada, did not become free of glacier ice until well into the Holocene. The elevation of the marine limit falls from 110 m a.s.l. in the north to 60 m a.s.l. in the southwest. The recession was followed by readvance of glaciers in the late Holocene, and the youngest shell date from Neoglacial lateral moraines north of Humboldt Gletscher is 600 cal. yr BP. Since the Neoglacial maximum, probably around 100 years ago, glaciers have receded. The Holocene marine assemblages comprise a few southern extralimital records, notably of Chlamys islandica dated to 7300 cal. yr BP. Musk ox and reindeer disappeared from Washington Land recently, perhaps in connection with the cold period that culminated about 100 years ago.  相似文献   

4.
An assemblage of fossil sockeye salmon was discovered in Pleistocene lake sediments along the South Fork Skokomish River, Olympic Peninsula, Washington. The fossils were abundant near the head of a former glacial lake at 115 m elevation. Large adult salmon are concentrated in a sequence of death assemblages that include individuals with enlarged breeding teeth and worn caudal fins indicating migration, nest digging, and spawning prior to death. The specimens were 4 yr old and 45-70 cm in total length, similar in size to modern sockeye salmon, not landlocked kokanee. The fossils possess most of the characteristics of sockeye salmon, Oncorhynchus nerka, but with several minor traits suggestive of pink salmon, O. gorbuscha. This suggests the degree of divergence of these species at about 1 million yr ago, when geological evidence indicates the salmon were deposited at the head of a proglacial lake impounded by the Salmon Springs advance of the Puget lobe ice sheet. Surficial geology and topography record a complicated history of glacial damming and river diversion that implies incision of the modern gorge of the South Fork Skokomish River after deposition of the fossil-bearing sediments.  相似文献   

5.
We have examined the circulation of the subpolar North Atlantic at 9300 yr BP by using a dispersed layer of silicic volcanic ash as a synchronous horizon. At the level of this datum, we have reconstructed from foraminiferal evidence a geologically synoptic view of seasonal variations in sea-surface temperatures and salinities. The reconstruction defines two oceanic fronts at 9300 yr BP: (1) the meridionally oriented Polar Front bordering the axis of deglacial outflow of Arctic and Laurentide ice and meltwater and (2) a zonal portion of the Subarctic Convergence along 48° N, marking a major confluence between the subtropical and subpolar gyres. The 9300-yr configuration primarily differed from the modern pattern in the more easterly position (by 3°) of the Polar Front and the more southerly (3°) and easterly (5°) position of the Subarctic Convergene. Both fronts had been merged at 18,000 yr BP into the full-glacial Polar Front; at 9300 yr BP, they were approaching the end of a northwestward deglacial retreat toward the modern interglacial positions.There were two dominant departures at 9300 yr BP from the Earth's modern configuration, both related to deglaciation: the very large Laurentide Ice Sheet still covering eastern North America to 48° N, and the region of cold Arctic/Laurentide deglacial outflow. These two features caused: a more easterly position than now of the region of upper air divergence and lower air convergence downstream from the Ice Sheet and meltwater outflow; a more intense expression of this upper air divergence and lower air convergence over the central portion of the subpolar North Atlantic; and a latitudinally more stable axis of convergence of surface westerlies over this region. These factors apparently caused the stronger oceanic convergence along 48°N than at present. They also created a stronger, southeastward-directed wind drift current, which opposed the meridional (northward) flow typical of the present interglaciation.  相似文献   

6.
Lithology, pollen, macrofossils, and stable carbon isotopes from an intermontane basin bog site in southern New Zealand provide a detailed late-glacial and early Holocene vegetation and climate record. Glacial retreat occurred before 17,000 cal yr B.P., and tundra-like grassland–shrubland occupied the basin shortly after. Between 16,500 and 14,600 cal yr B.P., a minor regional expansion of forest patches occurred in response to warming, but the basin remained in shrubland. Forest retreated between 14,600 and 13,600 cal yr B.P., at about the time of the Antarctic Cold Reversal. At 13,600 cal yr B.P., a steady progression from shrubland to tall podocarp forest began as the climate ameliorated. Tall, temperate podocarp trees replaced stress-tolerant shrubs and trees between 12,800 and 11,300 cal yr B.P., indicating sustained warming during the Younger Dryas Chronozone (YDC). Stable isotopes suggest increasing atmospheric humidity from 11,800 to 9300 cal yr B.P. Mild (annual temperatures at least 1°C higher than present), and moist conditions prevailed from 11,000 to 10,350 cal yr B.P. Cooler, more variable conditions followed, and podocarp forest was completely replaced by montane Nothofagus forest at around 7500 cal yr B.P. with the onset of the modern climate regime. The Cass Basin late-glacial climate record closely matches the Antarctic ice core records and is in approximate antiphase with the North Atlantic.  相似文献   

7.
Calibrated radiocarbon dates of organic matter below and above till of the last (Fraser) glaciation provide limiting ages that constrain the chronology and duration of the last advance–retreat cycle of the Puget Lobe in the central and southeastern Puget Lowland. Seven dates for wood near the top of a thick proglacial delta have a weighted mean age of 17,420 ± 90 cal yr B.P., which is the closest limiting age for arrival of the glacier near the latitude of Seattle. A time–distance curve constructed along a flowline extending south from southwestern British Columbia to the central Puget Lowland implies an average glacier advance rate of ca. 135 m/yr. The glacier terminus reached its southernmost limit ca. 16,950 yr ago and likely remained there for ca. 100 yr. In the vicinity of Seattle, where the glacier reached a maximum thickness of 1000 m, ice covered the landscape for ca. 1020 yr. Postglacial dates constraining the timing of ice retreat in the central lowland are as old as 16,420 cal yr B.P. and show that the terminus had retreated to the northern limit of the lowland within three to four centuries after the glacial maximum. The average rate of retreat was about twice the rate of advance and was enhanced by rapid calving recession along flowline sectors where the glacier front crossed deep proglacial lakes.  相似文献   

8.
Interbedded, organic-rich terrestrial and marine sediments exposed along the eastern coastal lowland of Vancouver Island contain an almost continuous record of middle Wisconsin vegetation and climate. The record has been interpreted largely from palynostratigraphic studies at three sites and supported by a study of modern pollen spectra from the three major biogeoclimatic zones of the extant vegetation. Radiocarbon dates from a variety of organic materials in the middle Wisconsin beds reveal that the fossil pollen spectra span an interval ranging from approximately 21,000 yr B.P. to more than 51,000 yr B.P. The spectra are divided into eight major pollen zones encompassing the Olympia Interglaciation and early Fraser Glaciation geologicclimate units of the Pacific Northwest. The Olympia Interglaciation extended from before 51,000 yr B.P. to ca. 29,000 yr B.P. and was characterized by a climate similar to present. During the early Fraser Glaciation, from 29,000 years ago to approximately 21,000 yr B.P., climate deteriorated until tundra like conditions prevailed. These pollen sequences are correlative with those of coastal British Columbia and partly with those from Olympic Peninsula, but apparently are not comparable with events in the Puget Lowland.  相似文献   

9.
The last ca. 20,000 yr of palaeoenvironmental conditions in Podocarpus National Park in the southeastern Ecuadorian Andes have been reconstructed from two pollen records from Cerro Toledo (04°22'28.6"S, 79°06'41.5"W) at 3150 m and 3110 m elevation. Páramo vegetation with high proportions of Plantago rigida characterised the last glacial maximum (LGM), reflecting cold and wet conditions. The upper forest line was at markedly lower elevations than present. After ca. 16,200 cal yr BP, páramo vegetation decreased slightly while mountain rainforest developed, suggesting rising temperatures. The trend of increasing temperatures and mountain rainforest expansion continued until ca. 8500 cal yr BP, while highest temperatures probably occurred from 9300 to 8500 cal yr BP. From ca. 8500 cal yr BP, páramo vegetation re-expanded with dominance of Poaceae, suggesting a change to cooler conditions. During the late Holocene after ca. 1800 cal yr BP, a decrease in páramo indicates a change to warmer conditions. Anthropogenic impact near the study site is indicated for times after 2300 cal yr BP. The regional environmental history indicates that through time the eastern Andean Cordillera in South Ecuador was influenced by eastern Amazonian climates rather than western Pacific climates.  相似文献   

10.
A Holocene lake sediment record is presented from Lake N14 situated on Angissoq Island 15 km off the main coast of southern Greenland. The palaeoclimatic development has been interpreted on the basis of flux and percentage content of biogenic silica, clastic material, organic material and sulphur as well as sedimentation rate, moss content and magnetic susceptibility. A total of 43 radiocarbon dates has ensured a reliable chronology. It is argued that varying sediment composition mainly reflects changing precipitation. By analogy with the present meteorological conditions in southern Greenland, Holocene climate development is inferred. Between 11 550 and 9300 cal. yr BP temperature and precipitation increase markedly, but this period is climatically unstable. From 9300 yr BP conditions become more stable and a Holocene climatic optimum, characterised by warm and humid conditions, is observed from 8000 to 5000 cal. yr BP. From 4700 cal. yr BP the first signs of a climatic deterioration are observed, and from 3700 cal. yr BP the climate has become more dry and cold. Superimposed on the climatic long‐term trend is climate variability on a centennial time‐scale that increases in amplitude after 3700 cal. yr BP. A climatic scenario related to the strength and position of the Greenland high‐pressure cell and the Iceland low‐pressure cell is proposed to explain the Holocene centennial climate variability. A comparison of the Lake N14 record with a terrestrial as well as a marine record from the eastern North Atlantic Ocean suggests that the centennial climate variability was uniform over large areas at certain times. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

11.
The objective of this study was to determine if exploitative competition between between juvenile Chinook salmon (Oncorhynchus tshawytscha) and threespine stickleback (Gasterosteus aculeatus) reduces the foraging opportunity of juvenile Chinook salmon in tidal channels of the Columbia River estuary. We sampled Chinook salmon and stickleback diets monthly and over a diel cycle in spatially distinct emergent marshes of the Columbia River estuary. Diets of the two fish species did not differ among marsh systems, but both fish species exhibited diel and seasonal differences in diet composition. Diet overlap between the two fish species was greatest in March and June. Exploitative competition was unlikely based on a comparison between consumption rates and estimated invertebrate production.  相似文献   

12.
A sediment core from Hulun Lake, Inner Mongolia was analyzed for species assemblages and shell chemistry of ostracodes to investigate changes in the hydrology and climate of the East Asian summer monsoon margin during the Holocene. Darwinula stevensoni was abundant, Ilyocypris spp. scarce, littoral ostracodes absent and Mg/Ca, Sr/Ca and δ18O were low 11,100 to 8300 yr ago, indicating high lake levels and cool/fresh waters. Darwinula stevensoni declined largely, Ilyocypris spp. throve, littoral ostracodes were rare and chemical indicators remained in low values 8300 to 6200 yr ago, suggesting that the lake continued high stands but water became warm. The lake then contracted and water became cool/brackish 6200 to 4300 yr ago. Littoral ostracodes flourished 4300 to 3350 yr ago, marking the lowest lake levels of the entire Holocene. The lake level recovered and water salinity decreased 3350 to 1900 yr ago. From 1900 to 500 yr ago, the lake maintained the preceding status albeit lowered stands and increased salinities 1100 to 800 yr ago. During the recent 500 yr, the lake expanded and water salinity decreased. The data imply that the East Asian summer monsoon did not intensify until 8300 yr ago and weakened dramatically 4300 to 3350 yr ago.  相似文献   

13.
A 33,000-yr pollen record from Carp Lake provides information on the vegetation history of the forest/steppe border in the southwestern Columbia Basin. The site is located in the Pinus ponderosa Zone but through much of late Quaternary time the area was probably treeless. Pollen assemblages in sediments dating from 33,000 to 23,500 yr B.P. suggest a period of temperate climate and steppe coinciding with the end of the Olympia Interglaciation. The Fraser Glaciation (ca. 25,000–10,000 yr B.P.) was a period of periglacial steppe or tundra vegetation and conditions too dry and cold to support forests at low altitudes. Aridity is also inferred from the low level of the lake between 21,000 and 8500 yr B.P., and especially after about 13,500 yr B.P. About 10,000 yr B.P. Chenopodiineae and other temperate taxa spread locally, providing palynological evidence for a shift from cold, dry to warm, dry conditions. Pine woodland developed at the site with the onset of humid conditions at 8500 yr B.P.; further cooling is suggested at 4000 yr B.P., when Pseudotsuga and Abies were established locally.  相似文献   

14.
The shore displacement during the Holocene in southeastern Ångermanland, Sweden, has been investigated by means of radiocarbon-dating of isolation intervals in sediment cores from a total of nine new basins. Results from earlier investigations have been used in complement. There is a forced regression in the area from c. 9300 BP ( c . 10500 cal. yr BP) until c . 8000 BP ( c . 9000 cal. yr BP), on average c . 8 m/100 years, after which there is a gradually slowing regression of c . 2.5–1.0 m/100 years up to the present time. The most rapid regression occurs during the later phase of the Ancylus Lake stage, 9500–9000 cal. yr BP. There is no evidence of halts in the regression. Crustal uplift in the area since deglaciation is c . 310 m. The deglaciation of southeastern Ångermanland took place c . 9300 BP ( c . 10500 cal. yr BP); this is c . 900 years earlier than the age given by clay varve dating. The shore displacement curve provides a means of estimating the difference between the clay varve time scale and calibrated radiocarbon dates, by comparison with varve-dated altitudes of alluvial deltas of the River Ångermanalven. From c. 2500 to c. 8000 cal. BP there is a deficit in clay varves of some 300 years; further back in time this discrepancy increases significantly. The main explanation for the discrepancy is most likely lacking varves in the time-span 8500–10200 cal. yr BP, located along the upper reaches of River Ångermanalven below the highest shore level.  相似文献   

15.
We reviewed the biological and oceanographic data used to help decide on the siting of salmon farms in Canada (British Columbia and New Brunswick), Norway, Scotland, Ireland, Iceland, United State (Washington and Maine). The LENKA program in Norway and a ranking technique based on biophysical features in British Columbia are examples of semi-quantitative approaches. A zoning system partially based on detailed data on fjord oceanography has been initiated in Scotland. Guidelines to protect critical fish habitat, especially for wild salmon, have been developed in each of the jurisdictions. Models to help predict sedimentation, hypernutrification, and dissolved oxygen levels have been used in Norway and Washington. Siting criteria need to be supplemented with these models, which consider cumulative effects and predict the carrying capacity of key fjord areas where farms are likely to cluster. Coordinated and comprehensive research programs are needed which consider salmon production in the context of the oceanographic regimes within fjords. For site-specific evaluations and as communication methods, referral systems and guidelines are relied on extensively in site evaluations in the various jurisdictions.  相似文献   

16.
As the late Wisconsin Cordilleran Ice Sheet retreated, sediment accumulated in shallow depressions at the Manis Mastodon Archaeological site on the Olympic Peninsula, near Sequim, Washington. Pollen, plant macrofossils, and bones of mastodon, caribou, and bison occur within the lower 47 cm of these deposits. The fossil pollen and seed assemblages indicate persistence for 1000 yr (11,000–12,000 yr B.P.) of an herb-and-shrub-dominated landscape at a time when forest species appear elsewhere in Washington and in adjacent British Columbia.At present, Sequim is near the northern coastal limits of both Cactaceae and Ceratophyllum. Mean annual precipitation is 42.7 cm and summer temperatures average 15°–16°C in July. The absence of coniferous trees and the presence of cactus and Ceratophyllum in late-glacial sediments are explained by a regional climate that was drier and at least as warm as today. These conditions persisted in the rain shadow of the Olympic Mountains until at least 11,000 yr B.P.  相似文献   

17.
Estuarine rearing has been shown to enhance within watershed biocomplexity and support growth and survival for juvenile salmon (Oncorhynchus sp.). However, less is known about how growth varies across different types of wetland habitats and what explains this variability in growth. We focused on the estuarine habitat use of Columbia River Chinook salmon (Oncorhynchus tshawytscha), which are listed under the Endangered Species Act. We employed a generalized linear model (GLM) to test three hypotheses: (1) juvenile Chinook growth was best explained by temporal factors, (2) habitat, or (3) demographic characteristics, such as stock of origin. This study examined estuarine growth rate, incorporating otolith microstructure, individual assignment to stock of origin, GIS habitat mapping, and diet composition along ~130 km of the upper Columbia River estuary. Juvenile Chinook grew on average 0.23 mm/day in the freshwater tidal estuary. When compared to other studies in the basin our growth estimates from the freshwater tidal estuary were similar to estimates in the brackish estuary, but ~4 times slower than those in the plume and upstream reservoirs. However, previous survival studies elucidated a possible tradeoff between growth and survival in the Columbia River basin. Our GLM analysis found that variation in growth was best explained by habitat and an interaction between fork length and month of capture. Juvenile Chinook salmon captured in backwater channel habitats and later in the summer (mid-summer and late summer/fall subyearlings) grew faster than salmon from other habitats and time periods. These findings present a unique example of the complexity of understanding the influences of the many processes that generate variation in growth rate for juvenile anadromous fish inhabiting estuaries.  相似文献   

18.
For years paleoclimatologists have held the general view that the last deglaciation began around 17,000 to 15,000 yr ago, that the shape of the globally integrated deglacial curve was smoothly sigmoidal with the fastest rate of change centered around 11,000 yr ago, and that the deglaciation ended around 7000 to 5000 yr ago. Recent studies have challenged several aspects of this consensus and have suggested that the mechanisms responsible for the deglaciation are significantly different from those previously proposed. As a result, an international workshop was held at Airlie House in Virginia during May 2–6 of 1983 to evaluate a wide range of evidence relevant to this controversy. The conference results suggested that (1) the decrease in global ice volume occurred in two steps, with the dating of the earlier step still in doubt, but the later step occurring at about 10,000–7000 yr ago and (2) the most likely feedback mechanisms for accelerating the initial forcing by orbital variations are delayed bedrock rebound, marine downdraw/calving, and CO2 heating.  相似文献   

19.
Late Quaternary paleotemperatures and paleosalinities of surface waters of the Gulf of Mexico were estimated using a multivariate statistical analysis of census data of planktonic foraminifera. Two climatic extremes were selected for detailed basinwide study, the climatic optimum 125,000 yr ago and the glacial maximum 18,000 yr ago. In addition, patterns of climatic change were examined in seven piston cores from 127,000 yr ago to the present day. During the climatic optimum 125,000 yr ago temperature distributions in surface waters were similar to those of the present. The 22°C winter isotherm trended northeastward across the central basin and paleotemperatures decreased northward. Summer distributions were nearly homogeneous and ranged between 28° and 29°C. Winter salinities were 1‰ fresher than present values in the northmost Gulf and 0.4‰ fresher in the central basin. Summer salinities were similar during both times. In contrast, during the last glacial maximum temperatures were 1° to 2°C cooler in winter and 1°C cooler in summer, and isotherms formed a circular pattern in the Gulf during both seasons. Salinity was 0.3‰ fresher in winter than at present but 0.6‰ saltier in summer. Conditions deteriorated from the climatic optimum to the glacial maximum. In the Mexico Basin, winter temperatures were 2°C cooler from 75,000 to 45,000 yr ago (Y6 to Y3 Subzones), summer temperatures reached a minimum (3°C cooler) 32,000 yr ago (Y2–Y3 boundary), and seasonality reached minimal values (5°C) from 45,000 to 15,000 yr ago. All three parameters became similar in value to those in the Straits of Florida from 45,000 to 15,000 yr ago, suggesting that the exchange of surface waters was enhanced at this time between the two regions. Summer salinities remained similar to present conditions in the Mexico Basin, whereas, winter salinities increased 2‰ by 32,000 yr ago and then fell 0.5‰ until the glacial maximum ended. The Westerlies may have migrated southward over the Mexico Basin in winter from 32,000 to 15,000 yr ago.  相似文献   

20.
A 12 000 to 4000 yr BP pollen and tephra-bearing profile from Auckland, New Zealand, provides insights into the vegetation history and evidence for early Holocene volcanic activity in this area centred on the Mount Wellington basaltic volcano. Possibly 500 yr separated initial scoriaceous ash deposition (ca. 9500 yr ago) and subsequent major lava flows (ca. 9000 yr ago) from Mount Wellington. The local vegelation, topography, and drainage patterns were substantially modified during this time, and damming by the lava flows resulted in the formation of Lake Waiatarua in a shallow valley head ca. 9000 yr ago. Diatom evidence indicates that this lake was initially deep (> 5 m) but was shallowing around 4000 yr ago. In contrast to the Mount Wellington eruptions, tephra deposition resulting from distant rhyolitic volcanic activity of the central North Island and Mayor Island has had little effect on the Auckland vegetation during this time interval (12 000–4000 yr ago). Between ca. 12 000 and 10 000 yr ago, conifer-angiosperm forest was the predominant vegetation cover on Auckland Isthmus, but during the early Holocene, forest dominated by Metrosideros expanded, probably on to fresh volcanic surfaces resulting from the Mount Wellington eruptions. At this time, swamp forest communities developed in Waiatarua valley basin, and included species indicative of moist, mild, relatively frost-free climates. Some taxa show histories consistent with other records from the northern New Zealand region, including the rise of Ascarina lucida ca. 11 000 to 9000 yr ago, and its subsequent decline, and the expansion of Agathis australis (kauri) forest communities from ca. 6000 yr ago. Taken together the history of local and regional vegetation points to a mild, moist and weakly seasonal early Holocene climate, which subsequently became drier with greater seasonal temperature extremes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号