首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
In the present work, the first results are reported for both Li and B isotope ratios in rainwater samples collected over a long time period (i.e. monthly rainfall events over 1 a) at a national scale (from coastal and inland locations). In addition, the stable isotopes of the water molecule (δD and δ18O) are also reported here for the same locations so that the Li and B isotope data can be discussed in the same context. The range of Li and B isotopic variations in these rainwaters were measured to enable the determination of the origin of these elements in rainwaters and the characterization of both the seasonal and spatio-temporal effects for δ7Li and δ11B signatures in rainwaters. Lithium and B concentrations are low in rainwater samples, ranging from 0.004 to 0.292 μmol/L and from 0.029 to 6.184 μmol/L, respectively. δ7Li and δ11B values in rainwaters also show a great range of variation between +3.2‰ and +95.6‰ and between −3.3‰ and +40.6‰ over a period of 1 a, respectively, clearly different from the signature of seawater. Seasonal effects (i.e. rainfall amount and month) are not the main factors controlling element concentrations and isotopic variations. δ7Li and δ11B values in rainwaters are clearly different from one site to another, indicating the variable contribution of sea salts in the rainwater depending on the sampling site (coastal vs. inland: also called the distance-from-the-coast-effect). This is well illustrated when wind direction data (origin of air masses) is included. It was found that seawater is not the main supplier of dissolved atmospheric Li and B, and non-sea-salt sources (i.e. crustal, anthropogenic, biogenic) should also be taken into account when Li and B isotopes are considered in hydrogeochemistry as an input to surface waters and groundwater bodies as recharge. In parallel, the isotopic variations of the water molecule, vector of the dissolved B and Li, are also investigated and reported as a contour map for δ18O values based on compiled data including more than 400 δ18O values from throughout France. This δ18O map could be used as a reference for future studies dealing with δ18O recharge signature in relation to the characterization of surface waters and/or groundwater bodies.  相似文献   

2.
An 18 million year record of the Ca isotopic composition (δ44/42Ca) of planktonic foraminiferans from ODP site 925, in the Atlantic, on the Ceara Rise, provides the opportunity for critical analysis of Ca isotope-based reconstructions of the Ca cycle. δ44/42Ca in this record averages +0.37 ± 0.05 (1σ SD) and ranges from +0.21‰ to +0.52‰. The record is a good match to previously published Neogene Ca isotope records based on foraminiferans, but is not similar to the record based on bulk carbonates, which has values that are as much as 0.25‰ lower. Bulk carbonate and planktonic foraminiferans from core tops differ slightly in their δ44/42Ca (i.e., by 0.06 ± 0.06‰ (n = 5)), while the difference between bulk carbonate and foraminiferan values further back in time is markedly larger, leaving open the question of the cause of the difference. Modeling the global Ca cycle from downcore variations in δ44/42Ca by assuming fixed values for the isotopic composition of weathering inputs (δ44/42Caw) and for isotope fractionation associated with the production of carbonate sediments (Δsed) results in unrealistically large variations in the total mass of Ca2+ in the oceans over the Neogene. Alternatively, variations of ±0.05‰ in the Ca isotope composition of weathering inputs or in the extent of fractionation of Ca isotopes during calcareous sediment formation could entirely account for variations in the Ca isotopic composition of marine carbonates. Ca isotope fractionation during continental weathering, such as has been recently observed, could easily result in variations in δ44/42Caw of a few tenths of permil. Likewise a difference in the fractionation factors associated with aragonite versus calcite formation could drive shifts in Δsed of tenths of permil with shifts in the relative output of calcite and aragonite from the ocean. Until better constraints on variations in δ44/42Caw and Δsed have been established, modeling the Ca2+ content of seawater from Ca isotope curves should be approached cautiously.  相似文献   

3.
Here we present Sr, C, and O isotope curves for Ordovician marine calcite based on analyses of 206 calcitic brachiopods from 10 localities worldwide. These are the first Ordovician-wide isotope curves that can be placed within the newly emerging global biostratigraphic framework. A total of 182 brachiopods were selected for C and O isotope analysis, and 122 were selected for Sr isotope analysis. Seawater 87Sr/86Sr decreased from 0.7090 to 0.7078 during the Ordovician, with a major, quite rapid fall around the Middle-Late Ordovician transition, most probably caused by a combination of low continental erosion rates and increased submarine hydrothermal exchange rates. Mean δ18O values increase from −10‰ to −3‰ through the Ordovician with an additional short-lived increase of 2 to 3‰ during the latest Ordovician due to glaciation. Although diagenetic alteration may have lowered δ18O in some samples, particularly those from the Lower Ordovician, maximum δ18O values, which are less likely to be altered, increase by more than 3‰ through the Ordovician in both our data and literature data. We consider that this long-term rise in calcite δ18O records the effect of decreasing tropical seawater temperatures across the Middle-Late Ordovician transition superimposed on seawater δ18O that was steadily increasing from ≤−3‰ standard mean ocean water (SMOW). By contrast, δ13C variation seems to have been relatively modest during most of the Ordovician with the exception of the globally documented, but short-lived, latest Ordovician δ13C excursion up to +7‰. Nevertheless, an underlying trend in mean δ13C can be discerned, changing from moderately negative values in the Early Ordovician to moderately positive values by the latest Ordovician. These new isotopic data confirm a major reorganization of ocean chemistry and the surface environment around 465 to 455 Ma. The juxtaposition of the greatest recorded swings in Phanerozoic seawater 87Sr/86Sr and δ18O at the same time as one of the largest marine transgressions in Phanerozoic Earth history suggests a causal link between tectonic and climatic change, and emphasizes an endogenic control on the O isotope budget during the Early Paleozoic. Better isotopic and biostratigraphic constraints are still required if we are to understand the true significance of these changes. We recommend that future work on Ordovician isotope stratigraphy focus on this outstanding Middle-Late Ordovician event.  相似文献   

4.
We measured Ca stable isotope ratios (δ44/40Ca) in an ancient (2 My), hyperarid soil where the primary source of mobile Ca is atmospheric deposition. Most of the Ca in the upper meter of this soil (3.5 kmol m−2) is present as sulfates (2.5 kmol m−2), and to a lesser extent carbonates (0.4 kmol m−2). In aqueous extracts of variably hydrated calcium sulfate minerals, δ44/40CaE values (vs. bulk Earth) increase with depth (1.4 m) from a minimum of −1.91‰ to a maximum of +0.59‰. The trend in carbonate-δ44/40Ca in the top six horizons resembles that of sulfate-δ44/40Ca, but with values 0.1-0.6‰ higher. The range of observed Ca isotope values in this soil is about half that of δ44/40Ca values observed on Earth. Linear correlation among δ44/40Ca, δ34S and δ18O values indicates either (a) a simultaneous change in atmospheric input values for all three elements over time, or (b) isotopic fractionation of all three elements during downward transport. We present evidence that the latter is the primary cause of the isotopic variation that we observe. Sulfate-δ34S values are positively correlated with sulfate-δ18O values (R2 = 0.78) and negatively correlated with sulfate δ44/40CaE values (R2 = 0.70). If constant fractionation and conservation of mass with downward transport are assumed, these relationships indicate a δ44/40Ca fractionation factor of −0.4‰ in CaSO4. The overall depth trend in Ca isotopes is reproduced by a model of isotopic fractionation during downward Ca transport that considers small and infrequent but regularly recurring rainfall events. Near surface low Ca isotope values are reproduced by a Rayleigh model derived from measured Ca concentrations and the Ca fractionation factor predicted by the relationship with S isotopes. This indicates that the primary mechanism of stable isotope fractionation in CaSO4 is incremental and effectively irreversible removal of an isotopically enriched dissolved phase by downward transport during small rainfall events.  相似文献   

5.
Large, correlated, mass-dependent enrichments in the heavier isotopes of O, Cr, Fe, and Ni are observed in type-I (metal/metal oxide) cosmic spherules collected from the deep sea. Limited intraparticle variability of oxygen isotope abundances, typically <5‰ in δ18O, indicates good mixing of the melts and supports the application of the Rayleigh equation for the calculation of fractional evaporative losses during atmospheric entry. Fractional losses for oxygen evaporation from wüstite, assuming a starting isotopic composition equal to that of air (δ18O = 23.5‰; δ17O = 11.8‰), are in the range 55%-77%, and are systematically smaller than evaporative losses calculated for Fe (69%-85%), Cr (81%-95%), and especially Ni (45%-99%). However, as δ18O values increase, fractional losses for oxygen approach those of Fe, Cr, and Ni indicating a shift in the evaporating species from metallic to oxidized forms as the spherules are progressively oxidized during entry heating. The observed unequal fractional losses of O and Fe can be reconciled by allowing for a kinetic isotope mass-dependent fractionation of atmospheric oxygen during the oxidation process and/or that some metallic Fe may have undergone Rayleigh evaporation before oxidation began.In situ measurements of oxygen isotopic abundances were also performed in 14 type-S (silicate) cosmic spherules, 13 from the Antarctic ice and one from the deep sea. Additional bulk Fe and Cr isotopic abundances were determined for two type-S deep-sea spherules. The isotopic fractionation of Cr isotopes suggest appreciable evaporative loss of Cr, perhaps as a sulfide. The oxygen isotopic compositions for the type-S spherules range from δ18O = −2‰ to + 27‰. The intraspherule isotopic variations are typically small, ∼5% relative, except for the less-heated porphyritic spherules which have preserved large isotopic heterogeneities in at least one case. A plot of δ17O vs. δ18O values for these spherules defines a broad parallelogram bounded at higher values of δ17O by the terrestrial fractionation line, and at lower values of δ17O by a line parallel to it and anchored near the isotopic composition of δ18O = −2.5‰ and δ17O = −5‰. Lack of independent evidence for substantial evaporative losses suggests that much of this variation reflects the starting isotopic composition of the precursor materials, which likely resembled CO, CM, or CI chondrites. However, the enrichments in heavy isotopes indicate that some mixing with atmospheric oxygen was probably involved during atmospheric entry for some of the spherules. Isotopic fractionation due to evaporation of incoming grain is not required to explain most of the oxygen isotopic data for type-S spherules. However spherules with barred olivine textures that are thought to have experienced a more intense heating than the porphyritic ones might have undergone some distillation. Two cosmic spherules, one classified as a radial pyroxene type and the other showing a glassy texture, show unfractionated oxygen isotopic abundances. They are probably chondrule fragments that survived atmospheric entry unmelted.Possible reasons type-I spherules show larger degrees of isotopic fractionation than type-S spherules include: a) the short duration of the heating pulse associated with the high volatile content of the type-S spherule precursors compared to type-I spherules; b) higher evaporation temperatures for at least a refractory portion of the silicates compared to that of iron metal or oxide; c) lower duration of heating of type-S spherules compared to type-I spherules as a consequence of their lower densities.  相似文献   

6.
Oxygen and hydrogen isotope analyses were made of Jurassic-age chert nodules from the Holy Cross Mountains, SE Poland, along radial transects at high spatial resolution. There is a radial “sigmoidal” periodicity for both isotope ratios, but the two are out of phase, with high δD values corresponding to low δ18O values. Periodicity for a 100- to 120-mm diameter nodule is approximately 16 mm, increasing slightly toward the rim, with amplitudes approaching 20 and 3.0‰ for hydrogen and oxygen, respectively. The combined hydrogen-oxygen isotope data for one nodule fall on a published curve for chert forming in equilibrium with seawater (Knauth and Epstein, 1976); the range of delta values corresponds to temperature variations of ∼10°C. Data for a second chert fall on a subparallel δD-δ18O line with δD values that are almost 50‰ lower. The δD-δ18O patterns for the nodules cannot be explained by periodic mixing of meteoric and ocean water because the hydrogen and oxygen isotope data are out of phase. Two possible explanations for the antiphase periodicity are (a) cyclical temperature variations, perhaps related to an unstable convection system (e.g., Bolton et al., 1999), and (b) self-organizing catalytic precipitation (e.g., Wang and Merino, 1990). The systematic isotopic variations are difficult to explain by diagenesis and strongly suggest that primary isotopic compositions are preserved. The isotopic data provide important information on the thermal history of the sedimentary basin, if temperature variations are the cause of the isotopic periodicity.  相似文献   

7.
Sixteen groundwater samples collected from production wells tapping Lower Cretaceous Nubian Sandstone and fractured basement aquifers in Sinai were analyzed for their stable isotopic compositions, dissolved noble gas concentrations (recharge temperatures), tritium activities, and 14C abundances. Results define two groups of samples: Group I has older ages, lower recharge temperatures, and depleted isotopic compositions (adjusted 14C model age: 24,000–31,000 yr BP; δ18O: − 9.59‰ to − 6.53‰; δ2H: − 72.9‰ to − 42.9‰; < 1 TU; and recharge T: 17.5–22.0°C) compared to Group II (adjusted 14C model age: 700–4700 yr BP; δ18O: − 5.89‰ to − 4.84‰; δ2H: − 34.5‰ to − 24.1‰; < 1 to 2.78 TU; and recharge T: 20.6–26.2°C). Group II samples have isotopic compositions similar to those of average modern rainfall, with larger d-excess values than Group I waters, and locally measurable tritium activity (up to 2.8 TU). These observations are consistent with (1) the Nubian Aquifer being largely recharged prior to and/or during the Last Glacial Maximum (represented by Group I), possibly through the intensification of paleowesterlies; and (2) continued sporadic recharge during the relatively dry and warmer interglacial period (represented by Group II) under conditions similar to those of the present.  相似文献   

8.
We have used correlative analysis between mean December-January-February winter wind velocities, measured at the Xisha Meteorological Observatory (16°50′N, 112°20′E) in the middle of the South China Sea, and mean δ18O data for the corresponding month from Porites lutea coral, collected in Longwan waters (19°20′N, 110°39′E), to obtain a linear equation relating the two datasets. This winter wind velocity for the South China Sea (WMIIscs) can then be correlated to the coral δ18O by the equation WMIIscs = −1.213-1.351 δ18O (‰ PDB), r = −0.60, n = 40, P = 0.01. From this, the calculated WMIIscs-δ18O series from 1944 to 1997 tends to decrease during the 1940s to the 1960s; it increases slightly during the 1970s and then decreases again in the 1980s and 1990s. The calculated decadal mean WMIIscs-δ18O series had a obvious decrease from 5.92 to 4.63 m/s during the period of 1944-1997. The calculated yearly mean WMIIscs-δ18O value is 5.58 m/s from 1944 to 1976 and this decreases to 4.85 m/s from 1977 to 1998. That is the opposite trend to the observed yearly mean SST variation. The yearly mean SST anomaly is −0.27° from 1943 to 1976 and this increases to +0.16° from 1977 to 1998. Spectral analysis used on a 54-year-long calculated WMIIscs-δ18O series produces spectral peaks at 2.4-7 yr, which can be closely correlated with the quasibiennial oscillation band (QBO band, 2-2.4 yr) and the El Ñino southern oscillation band (ENSO band, 3-8 yr). Hence most of the variability of the winter monsoon intensity in the middle of the South China Sea is mainly constrained by changes in the thermal difference between the land and the adjoining sea area, perhaps due to global warming.  相似文献   

9.
Forty-nine aragonitic and calcitic shells from 14 species of marine tropical molluscs (Bivalvia, Gastropoda, Polyplacophora) and ambient waters from Martinique have been analyzed for their carbon and oxygen isotope compositions. Mineralogy of shells was systematically determined by Raman spectroscopy that reveals composite shell structures and early processes of diagenetic alteration. In mangrove, brackish waters result from the mixing between 89±1% of seawater and 11±1% of freshwater, a hydrological budget quantified by both oxygen isotope and salinity mass balance calculations. Mollusc shells from the mangrove environment (S=31‰; δ18O=0.5‰) are characterized by mean δ13C values (−1.2‰) lower than those (+2.6‰) living in the open sea (S=35‰; δ18O=1‰). These low carbon isotope compositions result from the oxidation of organic matter into bicarbonate ions used in the building of mollusc shells. The oxygen isotope compositions of the studied mollusc species are mainly controlled by the temperature and composition of seawater whereas the role of the so-called “vital effects” is negligible. Contrasting with carbon isotopes, variability in the δ18O values among and within species of mollusc shells is very low (1σ=0.15) for a given littoral environment. Using ambient temperatures of seawater (28-30 °C), oxygen isotope fractionations between all studied living species and environmental waters match those extrapolated from the fractionation equation established for molluscs by Grossman and Ku [Chem. Geol., Isot. Geosci. Sect. 59 (1986) 59] in the range 3-20 °C. By analyzing calcite and aragonite layers from the same shell or by comparing shells from different species living in the same environment, there is no evidence that oxygen isotope fractionation between aragonite and water differs from that between calcite and water. On the basis of these results, we conclude that the oxygen isotope compositions of shells from most fossil mollusc species are suitable to estimate past seawater temperatures at any paleolatitude.  相似文献   

10.
We present the results of a regional study of oxygen and Sr-Nd-Pb isotopes of Pleistocene to Recent arc volcanism in the Kamchatka Peninsula and the Kuriles, with emphasis on the largest caldera-forming centers. The δ18O values of phenocrysts, in combination with numerical crystallization modeling (MELTS) and experimental fractionation factors, are used to derive best estimates of primary values for δ18O(magma). Magmatic δ18O values span 3.5‰ and are correlated with whole-rock Sr-Nd-Pb isotopes and major elements. Our data show that Kamchatka is a region of isotopic diversity with high-δ18O basaltic magmas (sampling mantle to lower crustal high-δ18O sources), and low-δ18O silicic volcanism (sampling low-δ18O upper crust). Among one hundred Holocene and Late Pleistocene eruptive units from 23 volcanic centers, one half represents low-δ18O magmas (+4 to 5‰). Most low-δ18O magmas are voluminous silicic ignimbrites related to large >10 km3 caldera-forming eruptions and subsequent intracaldera lavas and domes: Holocene multi-caldera Ksudach volcano, Karymsky and Kurile Lake-Iliinsky calderas, and Late Pleistocene Maly Semyachik, Akademy Nauk, and Uzon calderas. Low-δ18O magmas are not found among the less voluminous products of stratovolcano eruptions and these volcanoes do not show drastic changes in δ18O during their evolution. Additionally, high-δ18O(magma) of +6.0 to 7.5‰ are found among basalts and basaltic andesites of Bezymianny, Shiveluch, Avachinsky, and Koryaksky volcanoes, and dacites and rhyolites of Opala and Khangar volcanoes (7.1-8.0‰). Phenocrysts in volcanic rocks from the adjacent Kurile Islands (ignimbrites and lavas) define normal-δ18O magmas. The widespread and volumetric abundance of low-δ18O magmas in the large landmass of Kamchatka is possibly related to a combination of near-surface volcanic processes, the effects of the last glaciation on high-latitude meteoric waters, and extensive geyser and hydrothermal systems that are matched only by Iceland. Sr and Pb isotopic compositions of normal and low-δ18O, predominantly silicic, volcanic rocks show negative correlation with δ18O, similar to the trend in Iceland. This indicates that low-δ18O volcanic rocks are largely produced by remelting of older, more radiogenic, hydrothermally altered crust that suffered δ18O-depletion during >2 My-long Pleistocene glaciation. The regionally-distributed high-δ18O values for basic volcanism (ca. + 6 to +7.5‰) in Kamchatka cannot be solely explained by high-δ18O slab fluid or melt (± sediment) addition in the mantle, or local subduction of hydrated OIB-type crust of the Hawaii-Emperor chain. Overall, Nd-Pb isotope systematics are MORB-like. Voluminous basic volcanism (in the Central Kamchatka Depression in particular) requires regional, though perhaps patchy, remobilization of thick (30-45 km) Mesozoic-Miocene arc roots, possibly resulting from interaction with hot (ca. 1300°C), wedge-derived normal-δ18O, low-87Sr/86Sr basalts and from dehydration melting of lower crustal metabasalts, variably high in δ18O and 87Sr/86Sr.  相似文献   

11.
The isotopic compositions of commercially available herbicides were analyzed to determine their respective 15N, 13C and 37Cl signatures for the purposes of developing a discrete tool for tracing and identifying non-point source contaminants in agricultural watersheds. Findings demonstrate that of the agrochemicals evaluated, chlorine stable isotopes signatures range between δ37Cl = −4.55‰ and +3.40‰, whereas most naturally occurring chlorine stable isotopes signatures, including those of road salt, sewage sludge and fertilizers, vary in a narrow range about the Standard Mean Ocean Chloride (SMOC) between −2.00‰ and +1.00‰. Nitrogen stable isotope values varied widely from δ15N = −10.86‰ to +1.44‰ and carbon stable isotope analysis gave an observed range between δ13C = −37.13‰ and −21.35‰ for the entire suite of agro-chemicals analyzed. When nitrogen, carbon and chlorine stable isotope analyses were compared in a cross-correlation analysis, statistically independent isotopic signatures exist suggesting a new potential tracer tool for identifying herbicides in the environment.  相似文献   

12.
Variations in the oxygen isotope composition (δ18O) of five cherts from the 1.9 Ga Gunflint iron formation (Canada) were studied at the micrometer scale by ion microprobe to try to better understand the processes that control δ18O values in cherts and to improve seawater paleotemperature reconstructions. Gunflint cherts show clearly different δ18O values for different types of silica with for instance a difference of ≈15‰ between detrital quartz and microquartz. Microquartz in the five samples is characterized by large intra sample variations in δ18O values, (δ18O of quartz varies from 4.6‰ to 6.6‰ at the 20 μm scale and from ≈12‰ to 14‰ at 2 μm scale). Isotopic profiles in microquartz adjacent to hydrothermal quartz veins demonstrate that microquartz more than ≈200 μm away from the veins has preserved its original δ18O value.At the micrometer spatial resolution of the ion probe, data reveal that microquartz has preserved a considerable δ18O heterogeneity that must be regarded as a signature inherited from its diagenetic history. Modelling of the δ18O variations produced during the diagenetic transformation of sedimentary amorphous silica precursors into microquartz allows us to calculate seawater temperature (Tsw at which the amorphous silica precipitated) and diagenesis temperature (Tdiagenesis at which microquartz formed) that reproduce the δ18O distributions (mean, range and shape) measured at micrometer scale in microquartz. The two critical parameters in this modelling are the δ18O value and the mass fraction of the diagenetic fluid. Under these assumptions, the most likely ranges for Tsw and Tdiagenesis are from 37 to 52 °C and from 130 to 170 °C, respectively.  相似文献   

13.
Li isotope fractionation in peridotites and mafic melts   总被引:4,自引:0,他引:4  
We have measured the Li isotope ratios of a range of co-existing phases from peridotites and mafic magmas to investigate high-temperature fractionations of 7Li/6Li. The Li isotopic compositions of seven mantle peridotites, reconstructed from analyses of mineral separates, show little variation (δ7Li 3.2-4.9‰) despite a wide range in fertility and radiogenic isotopic compositions. The most fertile samples yield a best estimate of δ7Li ∼ 3.5‰ for the upper mantle. Bulk analyses of olivine separates from the xenoliths are typically ∼1.5‰ isotopically lighter than co-existing orthopyroxenes, suggestive of a small, high-temperature equilibrium isotope fractionation. On the other hand, bulk analyses of olivine phenocrysts and their host melts are isotopically indistinguishable. Given these observations, equilibrium mantle melting should generate melts with δ7Li little different from their sources (<0.5‰ lighter). In contrast to olivine and orthopyroxene, that dominate peridotite Li budgets, bulk clinopyroxene analyses are highly variable (δ7Li = 6.6‰ to −8.1‰). Phlogopite separated from a modally metasomatised xenolith yielded an extreme δ7Li of −18.9‰. Such large Li isotope variability is indicative of isotopic disequilibrium. This inference is strongly reinforced by in situ, secondary ion mass-spectrometry analyses which show Li isotope zonation in peridotite minerals. The simplest zoning patterns show isotopically light rims. This style of zoning is also observed in the phenocrysts of holocrystalline Hawaiian lavas. More dramatically, a single orthopyroxene crystal from a San Carlos xenolith shows a W-shaped Li isotope profile with a 40‰ range in δ7Li, close to the isotope variability seen in all terrestrial whole rock analyses. We attribute Li isotope zonation in mineral phases to diffusive fractionation of Li isotopes, within mineral phases and along melt pathways that pervade xenoliths. Given the high diffusivity of Li, the Li isotope profiles we observe can persist, at most, only a few years at magmatic temperatures. Our results thus highlight the potential of Li isotopes as a high-resolution geospeedometer of the final phases of magmatic activity and cooling.  相似文献   

14.
We have developed a quantitative model of CO2 and H2O isotopic mixing between magmatic and hydrothermal gases for the fumarolic emissions of the La Fossa crater (Vulcano Island, Italy). On the basis of isotope balance equations, the model takes into account the isotope equilibrium between H2O and CO2 and extends the recent model of chemical and energy two-end-member mixing by Nuccio et al. (1999). As a result, the H2O and CO2 content and the δD, δ18O, and δ13C isotope compositions for both magmatic and hydrothermal end-members have been assessed. Low contributions of meteoric steam, added at a shallow depth, have been also recognized and quantified in the fumaroles throughout the period from 1988 to 1998. Nonequilibrium oxygen isotope exchange also seems to be occurring between ascending gases and wall rocks along some fumarolic conduits.The δ13CCO2 of the magmatic gases varies around −3 to 1‰ vs. Peedee belemnite (PDB), following a perfect synchronism with the variations of the CO2 concentration in the magmatic gases. This suggests a process of isotope fractionation because of vapor exsolution caused by magma depressurization. The hydrogen isotopes in the magmatic gases (−1 to −‰ vs. standard mean ocean water [SMOW]), as well as the above δ13CCO2 value, are coherent with a convergent tectonic setting of magma generation, where the local mantle is widely contaminated by fluids released from the subducted slab. Magma contamination in the crust probably amplifies this effect.The computed isotope composition of carbon and hydrogen in the hydrothermal vapors has been used to calculate the δD and δ13C of the entire hydrothermal system, including mixed H2O-CO2 vapor, liquid water, and dissolved carbon. We have computed values of about 10‰ vs. SMOW for water and −2 to −6.5‰ vs. PDB for CO2. On these grounds, we think that Mediterranean marine water (δDH2O ≈ 10‰) feeds the hydrothermal system. It infiltrates at depth throughout the local rocks, reaching oxygen isotope equilibrium at high temperatures. Interaction processes between magmatic gases and the evolving seawater also seem to occur, causing the dissolution of isotopically fractionated aqueous CO2 and providing the source for hydrothermal carbon. These results have important implications concerning fluid circulation beneath Vulcano and address the more convenient routine of geochemical surveillance.  相似文献   

15.
At Lucky Strike near the Azores Triple Junction, the seafloor setting of the hydrothermal field in a caldera system with abundant low-permeability layers of cemented breccia, provides a unique opportunity to study the influence of subsurface geological conditions on the hydrothermal fluid evolution. Coupled analyses of S isotopes performed in conjunction with Se and Fe isotopes have been applied for the first time to the study of seafloor hydrothermal systems. These data provide a tool for resolving the different abiotic and potential biotic near-surface hydrothermal reactions. The δ34S (between 1.5‰ and 4.6‰) and Se values (between 213 and 1640 ppm) of chalcopyrite suggest a high temperature end-member hydrothermal fluid with a dual source of sulfur: sulfur that was leached from basaltic rocks, and sulfur derived from the reduction of seawater sulfate. In contrast, pyrite and marcasite generally have lower δ34S within the range of magmatic values (0 ± 1‰) and are characterized by low concentrations of Se (<50 ppm). For 82Se/76Se ratios, the δ82Se values range from basaltic values of near −1.5‰ to −7‰. The large range and highly negative values of hydrothermal deposits observed cannot be explained by simple mixing between Se leached from igneous rock and Se derived from seawater. We interpret the Se isotope signature to be a result of leaching and mixing of a fractionated Se source located beneath hydrothermal chimneys in the hydrothermal fluid. At Lucky Strike we consider two sources for S and Se: (1) the “end-member” hydrothermal fluid with basaltic Se isotopic values (−1.5‰) and typical S isotope hydrothermal values of 1.5‰; (2) a fractionated source hosted in subsurface environment with negative δ34S values, probably from bacterial reduction of seawater sulfate and negative δ82Se values possibly derived from inorganic reduction of Se oxyanions. Fluid trapped in the subsurface environment is conductively cooled and has restricted mixing and provide favorable conditions for subsurface microbial activity which is potentially recorded by S isotopes. Fe isotope systematic reveals that Se-rich high temperature samples have δ57Fe values close to basaltic values (∼0‰) whereas Se-depleted samples precipitated at medium to low temperature are systematically lighter (δ57Fe values between −1 to −3‰). An important implication of our finding is that light Fe isotope composition down to −3.2‰ may be explained entirely by abiotic fractionation, in which a reservoir effect during sulfide precipitation was able to produce highly fractionated compositions.  相似文献   

16.
The oxygen and hydrogen isotopic composition of Eocene and Miocene freshwater cherts in the western United States records regional climatic variation in the Cenozoic. Here, we present isotopic measurements of 47 freshwater cherts of Eocene and Miocene age from the Great Basin of the western United States at two different sites and interpret them in light of regional climatic and tectonic history. The large range of δ18O of terrestrial cherts measured in this study, from 11.2‰ to 31.2‰ (SMOW: Standard Mean Ocean), is shown to be primarily the result of variations in δ18O of surface water. The following trends and patterns are recognized within this range of δ18O values. First, in Cenozoic rocks of northern Nevada, chert δ18O records the same shift observed in authigenic calcite between the Eocene and Miocene that has been attributed to regional surface uplift. The consistent covariation of proxies suggests that chert reliably records and retains a signal of ancient meteoric water isotopic composition, even though our analyses show that chert formed from warmer waters (40°C) than coexisting calcite (20°C). Second, there is a strong positive correlation between δ18O and δD in Eocene age chert from Elko, Nevada and Salina, Utah that suggests large changes in lake water isotopic composition due to evaporation. Evaporative effects on lake water isotopic composition, rather than surface temperature, exert the primary control on the isotopic composition of chert, accounting for 10‰ of the 16‰ range in δ18O measured in Eocene cherts. From authigenic mineral data, we calculate a range in isotopic composition of Eocene precipitation in the north-central Great Basin of −10 to −14‰ for δ18O and −70 to −100‰ for δD, which is in agreement with previous estimates for Eocene basins of the western United States. Due to its resistance to alteration and record of variations in both δ18O and δD of water, chert has the potential to corroborate and constrain the cause of variations in isotope stratigraphies.  相似文献   

17.
The isotopic composition of U in nature is generally assumed to be invariant. Here, we report variations of the 238U/235U isotope ratio in natural samples (basalts, granites, seawater, corals, black shales, suboxic sediments, ferromanganese crusts/nodules and BIFs) of ∼1.3‰, exceeding by far the analytical precision of our method (≈0.06‰, 2SD). U isotopes were analyzed with MC-ICP-MS using a mixed 236U-233U isotopic tracer (double spike) to correct for isotope fractionation during sample purification and instrumental mass bias. The largest isotope variations found in our survey are between oxidized and reduced depositional environments, with seawater and suboxic sediments falling in between. Light U isotope compositions (relative to SRM-950a) were observed for manganese crusts from the Atlantic and Pacific oceans, which display δ238U of −0.54‰ to −0.62‰ and for three of four analyzed Banded Iron Formations, which have δ238U of −0.89‰, −0.72‰ and −0.70‰, respectively. High δ238U values are observed for black shales from the Black Sea (unit-I and unit-II) and three Kupferschiefer samples (Germany), which display δ238U of −0.06‰ to +0.43‰. Also, suboxic sediments have slightly elevated δ238U (−0.41‰ to −0.16‰) compared to seawater, which has δ238U of −0.41 ± 0.03‰. Granites define a range of δ238U between −0.20‰ and −0.46‰, but all analyzed basalts are identical within uncertainties and slightly lighter than seawater (δ238U = −0.29‰).Our findings imply that U isotope fractionation occurs in both oxic (manganese crusts) and suboxic to euxinic environments with opposite directions. In the first case, we hypothesize that this fractionation results from adsorption of U to ferromanganese oxides, as is the case for Mo and possibly Tl isotopes. In the second case, reduction of soluble UVI to insoluble UIV probably results in fractionation toward heavy U isotope compositions relative to seawater. These findings imply that variable ocean redox conditions through geological time should result in variations of the seawater U isotope compositions, which may be recorded in sediments or fossils. Thus, U isotopes might be a promising novel geochemical tracer for paleo-redox conditions and the redox evolution on Earth. The discovery that 238U/235U varies in nature also has implications for the precision and accuracy of U-Pb dating. The total observed range in U isotope compositions would produce variations in 207Pb/206Pb ages of young U-bearing minerals of up to 3 Ma, and up to 2 Ma for minerals that are 3 billion years old.  相似文献   

18.
The relationship between molluscan shell growth rate and skeletal δ18O and δ13C was investigated in a detailed field study for the scallop, Pecten maximus. Seasonal variation in shell growth rate was found to be a governing factor influencing shell δ18O and δ13C. At low shell growth rates, shell δ18O were more positive (of the order +0.4‰) and δ13C more negative (up to −2‰) as compared with predicted values for precipitation of inorganic calcite in isotopic equilibrium with seawater. The deviations in δ18O were hypothesized as reflecting possible differences in solution carbonate chemistry at the site of mineralization in the extrapallial fluid as compared with that of the external seawater medium. The deviations in shell δ13C were consistent with incorporation of isotopically depleted respiratory 13C (i.e., a metabolic effect). A trend toward more depleted shell δ18O and δ13C values occurred at higher shell growth rates, with negative δ18O values as compared with predicted equilibrium at shell growth rates above 0.13 mm per day. These simultaneous negative deviations in skeletal δ18O and δ13C were interpreted as resulting from a kinetic effect. The implications for environmental reconstruction from molluscan isotopic records are discussed in light of a model of isotopic behavior based on the findings of the study.  相似文献   

19.
Sulfur isotope compositions of pumice and adsorbed volatiles on ash from the first historical eruption of Anatahan volcano (Mariana arc) are presented in order to constrain the sources of sulfur erupted during the period 10-21 May, 2003. The isotopic composition of S extracted from erupted pumice has a narrow range, from δ34SV-CDT +2.6‰ to +3.2‰, while the composition of sulfur adsorbed onto ash has a larger range (+2.8‰ to +5.3‰). Fractionation modeling for closed and open system scenarios suggests that degassing of SO2 raised the δ34SV-CDT value of S dissolved in the melt from an initial composition of between +1.6‰ and +2.6‰ for closed-system degassing, or between −0.5‰ and +1.5‰ for open-system degassing, however closed-system degassing is the preferred model. The calculated values for the initial composition of the magma represent a MORB-like (δ34SV-CDT ∼ 0‰) mantle source with limited contamination by subducted seawater sulfate (δ34SV-CDT +21‰). Modeling also suggests that the δ34SV-CDT value of SO2 gas in closed-system equilibrium with the degassed magma was between +0.9‰ and +2.5‰. The δ34SV-CDT value of sulfate adsorbed onto ash in the eruption plume (+2.8‰ to +5.1‰) is consistent with sulfate formation by oxidation of magmatic SO2 in the eruption column. The sulfur isotope composition of sulfate adsorbed to ash changes from lower δ34S values for ash erupted early in the eruption to higher δ34S values for ash erupted later in the eruption. We interpret the temporal/stratigraphic change in sulfate isotopic composition to primarily reflect a change in the isotopic composition of magmatic SO2 released from the progressively degassing magma and is attributed to the expulsion of an accumulated gas phase at the beginning of the eruption. More efficient oxidation of magmatic SO2 gas to sulfate in the early water-rich eruption plume probably contributed to the change in S isotope compositions observed in the ash leachates.  相似文献   

20.
Sulfide mineralization in the Voisey’s Bay Intrusion, Labrador, Canada, is closely associated with country rock xenoliths that have extensively reacted with basaltic magma. In order to better understand the processes that control the assimilation of country rocks by mafic magma, a detailed study of oxygen isotope systematics related to magma-country rock interaction in the Voisey’s Bay area was undertaken. Protracted interaction of the xenoliths with magma produced refractory mineral assemblages in the xenoliths (2-10 cm in diameter) composed of Ca-rich plagioclase, corundum, hercynite, and minor magnetite. Overgrowth rims of plagioclase and biotite that surround most xenoliths separate the restites from the enclosing igneous matrix. The δ18O values of minerals from regionally metamorphosed pelitic and quartzofeldspathic protoliths are: plagioclase (8.7-12.3‰), orthoclase (9.5-9.8‰), biotite (5.2-8.7‰), garnet (8.3-10.8‰), pyroxene (8.0-10.1‰), and quartz (9.6-14.0). The δ18O values of minerals from the hornfels in the contact aureole of the intrusion are consistent with modeling which indicates that as a result of essentially closed system contact metamorphism oxygen isotope values should differ only slightly from those of the protoliths. Hercynite, plagioclase, and corundum separates from the xenoliths have δ18O values that vary from 2.9‰ to 10.5‰, 5.6‰ to 10.9‰, and 2.0‰ to 6.8‰, respectively. Although a siliceous 18O-enriched melt has been lost from the xenoliths, corundum, and feldspar δ18O values are significantly lower than expected through melt loss alone. The relatively low δ18O values of minerals from the xenoliths may be a function of incomplete isotopic exchange with surrounding mafic magma which had a δ18O value of ∼5.5‰ to 6.0‰. The high-18O melt that was released from the xenoliths is partially recorded in the plagioclase overgrowth on the margin of the xenoliths (δ18O values from 6.2‰ to 10.7‰), and in hercynite that replaced corundum. However, mass balance calculations indicate that a portion of the partial melt must have been transferred to magma that was moving through the conduit system. δ18O and δD values of biotite surrounding the plagioclase overgrowth range from 5.0‰ to 6.2‰ and −58‰ to −80‰, respectively. These data suggest that the outermost rim associated with many xenoliths has closely approached isotopic equilibrium with uncontaminated mafic magma. The current gabbroic to troctolitic matrix of the xenoliths shows no evidence for contamination by the high-18O partial melt from the xenoliths. The feldspar and biotite overgrowths on the xenoliths that formed after the motion of the xenoliths relative to the magma had stopped prevented further isotopic exchange between the xenoliths and final magma. The minerals within the xenoliths are not in oxygen isotopic equilibrium with each other, due in part to rapid thermal equilibration, partial melting, and partial exchange with flow through magma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号