首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于GIS的贵州省冰雹分布与地形因子关系分析   总被引:8,自引:2,他引:6       下载免费PDF全文
使用贵州省1961—2004年84个气象台站44年历史冰雹记录及1:1000000全国数字高程模型(DEM)资料, 采用基于GIS的数字地形分析、分区统计和图像分类方法, 研究了冰雹分布与地形高程、坡向、坡度及地形切割深度的关系。研究表明:地形高程是影响贵州省降雹分布的最主要地形影响因子; 微观地形因子如坡向和坡度对降雹日数的变异并没有显著性影响, 但大范围的地势抬升及暖湿空气的迎风坡有利于降雹; 地形切割深度并不是年平均降雹日数差异的显著影响因子; 纬度位置的不同, 使其受暖湿空气影响程度不同, 热力条件也存在差异, 也是影响平均降雹日数差异的因子之一; 根据3个影响因子建模获得的方程及贵州省冰雹风险分区图, 经统计检验和与历史乡镇降雹资料比较, 具有较好的一致性。  相似文献   

2.
该文采用CFD软件Meteodyn WT,对贵州中部某分散式风电场进行模拟,模拟时段为2013年1-12月,水平分辨率100 m,垂直分辨率10 m,通过对比实测资料与模拟数据,研究基于CFD的数值模拟方法对复杂地形风能资源数值模拟的适用性,探索其服务于分散式风电开发发展规划制定的可行性.研究结果表明该方法应用于贵州复杂地形是可行的,在没有测风塔观测或者测风塔资料较少的情况下,可得到高分辨率的区域风能资源分布,为分散式风电发展规划的制定和风电场前期建设的选址提供科学依据.  相似文献   

3.
郑飒飒  杨佑洪  刘志  刘晓璐 《气象科技》2018,46(6):1280-1286
利用四川省数字高程模型(DEM)和1970—2014年四川省143个气象站点45年冰雹资料,使用相关分析、逐步回归、数字地形分析和分区统计等方法,研究了四川省冰雹分布与地形高程、坡度、坡向、经纬度、地形起伏度及地形切割深度的关系。研究结果表明:四川省冰雹分布有明显的地理分布特征,地形高程、经度、地形起伏度及西北偏西坡向等地形因子是四川省冰雹分布的主要影响因子。建立冰雹与主要地形影响因子的回归方程,模拟四川省冰雹空间分布,结果显示模拟值与实际值分布趋势一致,但模拟数据整体偏小。  相似文献   

4.
数字高程模型(Digital Elevation Model,DEM)是基础数据,数据本身不可避免地存在不确定性.不确定性会随着传播而累积,从而影响DEM应用结果的可靠性.从DEM不确定性传播的角度,利用蒙特卡罗模拟技术研究了DEM不确定性传播对坡度、上坡集水面积、地形指数和TOPMODEL模型的影响,发现DEM不确定性传播对坡度、上坡集水面积和地形指数有一定的影响,对上坡集水面积影响最大,对地形指数影响最小;但DEM不确定性传播对TOPMODEL模型影响甚微.  相似文献   

5.
由于坡度、坡向和地形之间相互遮蔽等局地地形因子的影响,确定实际复杂地形下太阳散射辐射是比较困难的.本文在前人研究的基础上,对以前的模型进行了一些改进,考虑了坡度、坡向和地形相互遮蔽作用对复杂地形下天文辐射的影响,基于数字高程模型(DEM)数据,研制了以复杂地形下天文辐射为起始数据的复杂地形下太阳散射辐射的分布式模型,在模型中还考虑了散射辐射的各向异性.以地形复杂的贵州高原为例,应用100 m×100 m分辨率的DEM数据及气象站常规观测气象资料,计算了贵州高原复杂地形下各月及年的太阳散射辐射精细空间分布.结果表明:(1)局地地形因子(如坡度、坡向和地形遮蔽)对贵州高原复杂地形下太阳散射辐射的空间分布影响较大,随着地形的起伏变化,太阳散射辐射的空间分布明显不同,纬向分布特征不明显.(2)对于太阳散射辐射而言,地形对其的影响仍然很大,在太阳散射辐射计算时也是不容忽视的.  相似文献   

6.
利用1971-2010年大连地区64个乡镇的冰雹观测资料和1:50 000数字高程模型,选择和设计对冰雹空间分布可能有影响的地形因子,如海拔高度、坡度、坡向、地形起伏度、地形切割深度等,采用数字地形分析、不规则窗口统计等方法研究冰雹分布与地形因子间的相关关系。结果表明:地形高程、西北偏西坡向和地形切割深度是影响大连地区冰雹分布的最主要地形因子。地形高程抬升下的强对流天气系统有利于降雹;西北偏西坡向有利于冰雹的形成;地形起伏显著的区域更有利于冰雹的形成和降落。建立了冰雹与地形因子间的回归方程,模拟了大连地区的冰雹空间分布,结果显示大连地区冰雹最严重区域位于瓦房店和普兰店北部地区,沿海及南部地区较少。  相似文献   

7.
基于数字高程模型(DEM)数据,在充分考虑了地形因子对太阳直接辐射和散射辐射的影响后,实际计算了起伏地形下黑河流域的太阳辐射。在忽略地表和大气之间的多次反射后,地表太阳总辐射计为三项:按起伏坡面上实际入射角考虑的太阳直接辐射、经过下垫面天空视角因子订正的坡面天空散射辐射和考虑周围地形反射效应的附加辐射。计算结果表明:局地地形起伏对太阳直接辐射、总辐射空间分布的影响非常强烈,使得复杂地形下不同坡向间总辐射和直接辐射平均计算差额十分显著,且太阳天顶角从较小增大至中等大小时,这两种平均计算差额均加大一倍多;在较小和中等大小太阳天顶角下,不同坡向间总辐射平均计算差额,均较相同条件下直接辐射平均计算差额为小,这是因为总辐射还包括了天空漫射和邻近地形反射辐射因子,这两个因子和坡面上太阳入射方位的变化共同影响地表入射太阳辐射;起伏地形主要使得太阳辐射在局地区域内背阴、向阳坡向间发生显著的重新分配。因此,在复杂地形地区进行太阳辐射计算时必须考虑地形的影响。  相似文献   

8.
姜创业  孙娴  王娟敏  王式功 《高原气象》2010,29(5):1230-1237
基于1∶25×104数字高程模型数据,依据起伏地形下天文辐射分布式模型算法,研究了陕西山地天文辐射空间分布规律,详细分析了地形因子对天文辐射的影响规律;同时,从不同的DEM分辨率和不同地貌类型两个方面探讨了天文辐射的空间尺度效应。结果表明:陕西天文辐射总量随着纬度的升高呈由南向北降低的趋势;局地地形因子对天文辐射的影响随季节、纬度、坡度及坡向等因素而变;同时山地天文辐射的空间尺度效应在地势起伏较大的山区和高原地区表现尤为明显。  相似文献   

9.
以考虑地形遮蔽作用的实际起伏地形下可照时间分布式计算模型为基础,采用1:25万高分辨率数字高程模型(DEM)数据,计算了100m×100m分辨率的重庆市月可照时间以及年可照时间的空间分布,并分析了起伏地形下重庆市可照时间的逐月变化规律。结果表明:重庆市可照时间以6、7月份最高,2月份最低,全市年可照时间为2830h;地形因子对起伏地形下重庆市可照时间的影响程度具有随季节变化的特性;局地地形对可照时间的影响程度随季节而变,在冬半年,太阳高度角较低的季节,局地地形的影响较为显著。  相似文献   

10.
利用DEM资料,获取四川省地面气象台站的海拔高度并进行精度验证,在此基础上,进一步提取台站所处的坡度、坡向、地形粗糙度特征进行分析.结果表明:DEM数据能较为精确地反映四川气象台站的地形高度,具有较高的适用性.通过分析国家站、区域考核站和非考核站的台站地形特征发现,3种站网类型均主要分布在低海拔地区,且在500 m左右...  相似文献   

11.
基于GIS的面雨量估算方法和基于模式输出的雨量产品都无法解决分辨率过低的问题,并且都不同程度地忽略了中小尺度地形对降水的影响.回顾了各种统计学降尺度方法,使用NCEP/NCAR提供的2011年4—9月的6 h一次的再分析资料,以及江苏省气象台提供的全省20多个常规站降水实况观测资料,结合高分辨率DEM数据,利用偏最小二乘法(PLS)设计了一套考虑地形因子动力作用的面雨量降尺度方案.通过合理选择和构造大尺度预报因子,地形因子动力作用参数化,回归分析与空间插值相结合的面雨量降尺度方案,成功还原了研究区域内代表站的实况降水序列,并绘制出研究区域内高分辨率的面雨量空间分布图.  相似文献   

12.
起伏地形下浙江省散射辐射时空分异规律模拟   总被引:2,自引:0,他引:2  
结合影响起伏地形下太阳散射辐射的天空因素与地面因素,通过基于数字高程模型(DEM)数据的起伏地形下天文辐射模型和地形开阔度模型,综合考虑地面因素对散射辐射的影响;基于常规地面气象站观测资料建立的水平面散射辐射模型,考虑天空因素对散射辐射的影响;建立了起伏地形下浙江省散射辐射分布式估算模型;逐月计算了浙江省散射辐射(100m×100m)的空间分布。结果表明:散射分量分布与地理地形因子、季风影响、大气透明程度有关,由高纬向低纬逐渐增加;季节分布特点为,夏季〉春季〉秋季〉冬季;坡度、坡向对散射辐射的分布影响小,但辐射值与开阔度呈正相关,各季辐射最大值分布在开阔度大处,最小值在开阔度最小处,不同季节有所伸缩。计算结果可以为气候变化和环境资源研究提供基础数据。  相似文献   

13.
起伏地形下我国太阳直接辐射的分布式模拟   总被引:2,自引:1,他引:2  
运用数据集群技术,建立了我国不同时空尺度直接透射率的估算模式,对比分析了不同模式的拟合精度。基于1km×1km分辨率的数字高程模型(DEM)数据,全面考虑了地形因子对太阳直接辐射的影响,实现了实际起伏地形下我国太阳直接辐射的分布式模拟,计算了我国范围内1km×1km分辨率1—12月气候平均太阳直接辐射的空间分布。结果表明:局地地形对太阳直接辐射空间分布的影响非常强烈,尤其是在太阳高度角较低的冬季和秋季;模拟结果可靠,可进行大数据量处理,适用于遥感图像处理、地理信息系统等数据处理平台。  相似文献   

14.
起伏地形下我国太阳散射辐射分布式模拟   总被引:6,自引:0,他引:6  
基于1km×1km分辨率的数字高程模型(DEM)数据,考虑了地形因子对太阳散射辐射的影响,改进了开阔度的计算模型,确定了我国气候平均情况下月散射系数的空间分布,实现了实际起伏地形下我国太阳散射辐射的分布式模拟,计算了我国范围内1km×1km分辨率1-12月气候平均太阳散射辐射的空间分布.结果表明:局地地形对太阳散射辐射空间分布的影响比较明显;模拟结果可靠,可进行大数据量处理,适用于遥感图像处理、地理信息系统等数据处理平台.  相似文献   

15.
贵州高原起伏地形下日照时间的时空分布   总被引:1,自引:0,他引:1       下载免费PDF全文
由于坡度、坡向和地形之间相互遮蔽等局地地形因子的影响, 实际起伏地形下的日照时间与水平面上的日照时间有一定差异。该文建立了一种基于数字高程模型 (DEM) 的起伏地形下日照时间的模拟方法, 计算了起伏地形下贵州高原100 m×100 m分辨率日照时间的时空分布。结果表明:坡度、坡向、地形遮蔽对日照时间的影响较大, 实际起伏地形下日照时间的空间分布具有明显地域特征。1月太阳高度角较低, 坡度、坡向的作用非常明显, 地形遮蔽面积较大, 日照时间的空间差异较多, 日照时间为16~142 h, 最大值约为最小值9倍; 7月太阳高度角较高, 地形遮蔽面积相对较小, 日照时间的空间差异相对较少, 日照时间为133~210 h, 最大值为最小值1.6倍, 但由于7月日照时间相对较多, 局地地形对日照时间影响仍明显。4月、10月日照时间及其变化幅度介于1月和7月之间。  相似文献   

16.
武文辉  袁淑杰  邱新法 《贵州气象》2007,31(2):F0003-F0003
该文建立一种基于数字高程模型(DEM)的起伏地形下可照时间模拟方法;在此基础上得到起伏地形下贵州高原100m×100m分辨率的可照时间的时空分布。结果表明:地形遮蔽对可照时间的影响较大,要大于纬度的影响。由于坡度坡向等局地地形因子的影响,使起伏地形下的可照时间空间差异明显。贵州高原起伏地形下1月可照时间为155.0~320.3h,1月太阳高度角较低,地形遮蔽面积较大,可照时间的空间分布具有明显的地域分布特征。7月可照时间为337.7~423.7h,7月太阳高度角较高,地形遮蔽面积较小,地域差异比1月小得多,呈明显的纬向分布。贵州高原起伏地形下年可照时间为2692.7~4367.5h,最大值是最小值的1.6倍,且纬向分布并不明显。  相似文献   

17.
复杂地形对计算地表太阳短波辐射的影响   总被引:18,自引:2,他引:16  
首先利用数字高程数据(DEM)、大气辐射传输模式6S以及野外观测资料计算了复杂地形(青藏高原)上地表入射太阳辐射,然后计算不考虑地形产生的地表辐射的计算误差,对误差进行归一化后得到相对辐射误差.结果显示,相对辐射误差的标准差(即相对地表辐射计算误差绝对值的统计平均值) Se随太阳天顶角的增加呈指数增长,随高度标准差的增加几乎呈线性增长,随数字高程数据的分辨率(或卫星资料的分辨率)降低而降低.利用分步拟合方法拟合了Se随太阳天顶角、高度标准差和数字高程分辨率的变化.利用拟合方程可以计算任意地形条件下,不同分辨率的卫星(或数字高程)资料在不同太阳天顶角情况下,不考虑地形复杂性产生的平均地表入射太阳辐射的计算误差,结果表明,使用中分辨率的卫星(如MODIS)资料计算地表太阳净辐射时,需要考虑地形复杂性.  相似文献   

18.
地形对于气流运动影响的数值研究   总被引:7,自引:3,他引:7  
建立了二维、非静力平衡的数值模式,研究地形对上游气流的阻挡以及大振幅背风波谷与下坡风的形成。结果表明:地形的阻挡效应受地形高度、大气层结及地形非对称性等因子的影响。数值试验与理论分析都证明地形越高、层结越稳定时阻挡作用越强;同样条件下,迎风坡坡度大的地形容易对气流形成阻挡。此外,分析了地形高度、大气层结、地形非对称性以及基本入流大小对背风波谷及下坡风强度影响的规律,并通过一次实际观测对数值模拟结果进行了检验。  相似文献   

19.
在前人研究的基础上,对以前计算平均日最低气温的模型进行了一些改进,考虑了坡度、坡向和地形相互遮蔽作用对复杂地形下太阳总辐射的影响,基于数字高程模型(DEM)数据,研制了复杂地形下海拔高度、太阳总辐射、日照百分率为参数的月平均日最低气温的分布式模型。应用100 m×100m分辨率的DEM数据、1960—2000年贵州省及周边102个气象站常规气象要素观测资料以及NOAA-AVHRR观测资料、10个气象站的太阳辐射量资料,计算了贵州高原复杂地形下各月及年平均日最低气温空间分布。结果表明:(1)局地地形因子对贵州地区月平均日最低气温的影响较大,月平均日最低气温纬向分布不明显。贵州高原复杂地形下年平均日最低气温大部分地区介于7.5~12.4℃之间,1月平均日最低气温大部分介于-0.6~4.1℃之间,7月平均日最低气温大部分介于15.6~21.3℃之间。(2)月平均日最低气温随海拔高度的增加而降低。南坡随坡度的增大而升高;北坡随坡度的增大而降低。在坡向影响上,1~5月、10~12月偏北坡月平均日最低气温偏低,偏南坡月平均日最低气温偏高;7~8月因太阳高度较高,因此出现相反的情况,北坡高于南坡。  相似文献   

20.
提出了一种利用SRTM资料构建海岛CFD计算模型的技术方法,并以珠江口的东澳岛为对象,进行了模型构建试验及边界层风场的数值模拟试验.实验结果表明,SRTM资料作为开源的资料,可有效地解析空间尺度在1 km以内数量级的海岛地形,并可以此为基础构建用于CFD模拟的计算模型,真实地刻画出岛屿的地形.利用计算模型进行的模拟试验表明,岛屿地形对风场的影响明显,且这种影响可以被计算模型有效地描述.所提出的技术未来在海岛风资源评估、风电场选址、污染扩散等领域有望发挥作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号