首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 94 毫秒
1.
Environmental change in grasslands: Assessment using models   总被引:7,自引:0,他引:7  
Modeling studies and observed data suggest that plant production, species distribution, disturbance regimes, grassland biome boundaries and secondary production (i.e., animal productivity) could be affected by potential changes in climate and by changes in land use practices. There are many studies in which computer models have been used to assess the impact of climate changes on grassland ecosystems. A global assessment of climate change impacts suggest that some grassland ecosystems will have higher plant production (humid temperate grasslands) while the production of extreme continental steppes (e.g., more arid regions of the temperate grasslands of North America and Eurasia) could be reduced substantially. All of the grassland systems studied are projected to lose soil carbon, with the greatest losses in the extreme continental grassland systems. There are large differences in the projected changes in plant production for some regions, while alterations in soil C are relatively similar over a range of climate change projections drawn from various General Circulation Models (GCM's). The potential impact of climatic change on cattle weight gains is unclear. The results of modeling studies also suggest that the direct impact of increased atmospheric CO2 on photosynthesis and water use in grasslands must be considered since these direct impacts could be as large as those due to climatic changes. In addition to its direct effects on photosynthesis and water use, elevated CO2 concentrations lower N content and reduce digestibility of the forage.  相似文献   

2.
Forage Yield-Based Carbon Storage in Grasslands of China   总被引:7,自引:0,他引:7  
Jian Ni 《Climatic change》2004,67(2-3):237-246
Forage yield-based carbon storage in 18 grasslands of China was estimated according to the detailed investigation of grassland area and forage yield (standing crop), which were derived from a 10-year national grassland survey. The total forage yield carbon in Chinese grasslands is 134.09 Tg C for ca. 299 × 106 ha of grassland area and 1232 kg/ha of mean forage yield. The carbon storage is different depending on grassland types and climatic regions. Meadow, steppe and tussock occupy 93.3% (125.14 Tg C), and desert and swamp only accounts for 6.7% (8.95 Tg C) of total forage yield carbon. Forage yield carbon is stored largely in temperate (38.4%, 51.54 Tg C) and alpine regions (30.4%, 40.78 Tg C), and to less extent in tropical regions (22.1%, 29.66 Tg C). These three regions take 91% of the forage yield carbon in grasslands of China. The warm-temperate region accounts for only 9% (12.1 Tg C) of forage yields carbon. The forage yield-based carbon in grasslands of China is more accurate than the site biomass-based carbon estimate and the carbon density-based estimate. Although, forage yield carbon storage is small compared with the total carbon storage in China, carbon budgets of grasslands are often a dominant component in many regions and provide an important management opportunity to enhance terrestrial carbon sinks in vast areas of China.  相似文献   

3.
Grassland is one of the most widespread vegetation types worldwide and plays a significant role in regional climate and global carbon cycling. Understanding the sensitivity of Chinese grassland ecosystems to climate change and elevated atmospheric CO2 and the effect of these changes on the grassland ecosystems is a key issue in global carbon cycling. China encompasses vast grassland areas of 354 million ha of 17 major grassland types, according to a national grassland survey. In this study, a process-based terrestrial model the CENTURY model was used to simulate potential changes in net primary productivity (NPP) and soil organic carbon (SOC) of the Leymus chinensis meadow steppe (LCMS) under different scenarios of climatic change and elevated atmospheric CO2. The LCMS sensitivities, its potential responses to climate change, and the change in capacity of carbon stock and sequestration in the future are evaluated. The results showed that the LCMS NPP and SOC are sensitive to climatic change and elevated CO2. In the next 100 years, with doubled CO2 concentration, if temperature increases from 2.7-3.9˚C and precipitation increases by 10% NPP and SOC will increase by 7-21% and 5-6% respectively. However, if temperature increases by 7.5-7.8˚C and precipitation increases by only 10% NPP and SOC would decrease by 24% and 8% respectively. Therefore, changes in the NPP and SOC of the meadow steppe are attributed mainly to the amount of temperature and precipitation change and the atmospheric CO2 concentration in the future.  相似文献   

4.
Increasing concentrations of atmospheric CO2 influence climate, terrestrial biosphere productivity and ecosystem carbon storage through its radiative, physiological and fertilization effects. In this paper, we quantify these effects for a doubling of CO2 using a low resolution configuration of the coupled model NCAR CCSM4. In contrast to previous coupled climate-carbon modeling studies, we focus on the near-equilibrium response of the terrestrial carbon cycle. For a doubling of CO2, the radiative effect on the physical climate system causes global mean surface air temperature to increase by 2.14 K, whereas the physiological and fertilization on the land biosphere effects cause a warming of 0.22 K, suggesting that these later effects increase global warming by about 10 % as found in many recent studies. The CO2-fertilization leads to total ecosystem carbon gain of 371 Gt-C (28 %) while the radiative effect causes a loss of 131 Gt-C (~10 %) indicating that climate warming damps the fertilization-induced carbon uptake over land. Our model-based estimate for the maximum potential terrestrial carbon uptake resulting from a doubling of atmospheric CO2 concentration (285–570 ppm) is only 242 Gt-C. This highlights the limited storage capacity of the terrestrial carbon reservoir. We also find that the terrestrial carbon storage sensitivity to changes in CO2 and temperature have been estimated to be lower in previous transient simulations because of lags in the climate-carbon system. Our model simulations indicate that the time scale of terrestrial carbon cycle response is greater than 500 years for CO2-fertilization and about 200 years for temperature perturbations. We also find that dynamic changes in vegetation amplify the terrestrial carbon storage sensitivity relative to a static vegetation case: because of changes in tree cover, changes in total ecosystem carbon for CO2-direct and climate effects are amplified by 88 and 72 %, respectively, in simulations with dynamic vegetation when compared to static vegetation simulations.  相似文献   

5.
We explore allowable leakage for carbon capture and geological storage to be consistent with maximum global warming targets of 2.5 and 3 °C by 2100. Given plausible fossil fuel use and carbon capture and storage scenarios, and based on modeling of time-dependent leakage of CO2, we employ a climate model to calculate the long-term temperature response of CO2 emissions. We assume that half of the stored CO2 is permanently trapped by fast mechanisms. If 40?% of global CO2 emissions are stored in the second half of this century, the temperature effect of escaped CO2 is too small to compromise a 2.5 °C target. If 80?% of CO2 is captured, escaped CO2 must peak 300?years or later for consistency with this climate target. Due to much more CO2 stored for the 3 than the 2.5 °C target, quality of storage becomes more important. Thus for the 3 °C target escaped CO2 must peak 400?years or later in the 40?% scenario, and 3000?years or later in the 80?% scenario. Consequently CO2 escaped from geological storage can compromise the less stringent 3 °C target in the long-run if most of global CO2 emissions have been stored. If less CO2 is stored only a very high escape scenario can compromise the more stringent 2.5 °C target. For the two remaining combinations of storage scenarios and climate targets, leakage must be high to compromise these climate targets.  相似文献   

6.
Above- and below-ground biomass values for 17 types of grassland communities in China as classified by the Chinese Grasslands Resources Survey were obtained from systematic replicated sampling at 78 sites and from published records from 146 sites. Most of the systematic samples were along a 5,000-km-long transect from Hailar, Inner Mongolia (49°15′N, 119°15′E), to Pulan, Tibet (30°15′N, 81°10′E). Above-ground biomass was separated into stem, leaf, flower and fruit, standing dead matter, and litter. Below-ground biomass was measured in 10-cm soil layers to a depth of 30 cm for herbs and to 50 cm for woody plants. Grassland type mean total biomass carbon densities ranged from 2.400 kg m−2 for swamp to 0.149 kg m−2 for alpine desert grasslands. Ratios of below- to above-ground carbon density varied widely from 0.99 for tropical tussock grassland to 52.28 for alpine meadow. Most below-ground biomass was in the 0–10 cm soil depth layer and there were large differences between grassland types in the proportions of living and dead matter and stem and leaf. Differences between grassland types in the amount and allocation of biomass showed patterns related to environments, especially aridity gradients. Comparisons of our estimates with other studies indicated that above-ground biomass, particularly forage-yield biomass, is a poor predictor of total vegetation carbon density. Our estimate for total carbon storage in the biomass of the grasslands of China was 3.32 Pg C, with 56.4% contained in the grasslands of the Tibet-Qinghai plateau and 17.9% in the northern temperate grasslands. The need for further standardized and systematic measurements of vegetation biomass to validate global carbon cycles is emphasised.  相似文献   

7.
A coupled general circulation model has been used to perform a set of experiments with high CO2 concentration (2, 4, 16 times the present day mean value). The experiments have been analyzed to study the response of the climate system to strong radiative forcing in terms of the processes involved in the adjustment at the ocean–atmosphere interface. The analysis of the experiments revealed a non-linear response of the mean state of the atmosphere and ocean to the increase in the carbon dioxide concentration. In the 16 × CO2 experiment the equilibrium at the ocean–atmosphere interface is characterized by an atmosphere with a shut off of the convective precipitation in the tropical Pacific sector, associated with air warmer than the ocean below. A cloud feedback mechanism is found to be involved in the increased stability of the troposphere. In this more stable condition the mean total precipitation is mainly due to large-scale moisture flux even in the tropics. In the equatorial Pacific Ocean the zonal temperature gradient of both surface and sub-surface waters is significantly smaller in the 16 × CO2 experiment than in the control experiment. The thermocline slope and the zonal wind stress decrease as well. When the CO2 concentration increases by about two and four times with respect to the control experiment there is an intensification of El Niño. On the other hand, in the experiment with 16 times the present-day value of CO2, the Tropical Pacific variability weakens, suggesting the possibility of the establishment of permanent warm conditions that look like the peak of El Niño.  相似文献   

8.
The eddy covariance technique was used to measure the CO2 flux over four differently grazed Leymus chinensis steppe ecosystems (ungrazed since 1979 (UG79), winter grazed (WG), continuously grazed (CG), and heavily grazed (HG) sites) during four growing seasons (May to September) from 2005 to 2008, to investigate the response of the net ecosystem exchange (NEE) over grassland ecosystems to meteorological factors and grazing intensity. At UG79, the optimal air temperature for the half-hourly NEE occurred between 17 and 20 °C, which was relatively low for semi-arid grasslands. The saturated NEE (NEEsat) and temperature sensitivity coefficient (Q 10) of ecosystem respiration (RE) exhibited clear seasonal and interannual variations, which increased with canopy development and the soil water content (SWC, at 5 cm). The total NEE values for the growing seasons from 2005 to 2008 were ?32.0, ?41.5, ?66.1, and ?89.8 g C m?2, respectively. Both the amounts and distribution of precipitation during the growing season affected the NEE. The effects of grazing on the CO2 flux increased with the grazing intensity. During the peak growth stage, heavy grazing and winter grazing decreased NEEsat and gross primary production (45 % for HG and 34 % for WG) due to leaf area removal. Both RE and Q 10 were clearly reduced by heavy grazing. Heavy grazing changed the ecosystem from a CO2 sink into a CO2 source, and winter grazing reduced the total CO2 uptake by 79 %. In the early growing season, there was no difference in the NEE between CG and UG79. In addition to the grazing intensity, the effects of grazing on the CO2 flux also varied with the vegetation growth stages and SWC.  相似文献   

9.
Jian Ni 《Climatic change》2002,55(1-2):61-75
The BIOME3 model was used to simulate the distribution patterns and carbon storage of the horizontal, zonal boreal forests in northeast and northwest China using a mapping system for vegetation patterns combined with carbon density estimates from vegetation and soils. The BIOME3 prediction is in reasonable good agreement with the potential distribution of Chinese boreal forests. The effects of changing atmospheric CO2 concentration had a nonlinear effect on boreal forest distribution, with 3.5–10.8% reduced areas for both increasing and decreasing CO2. In contrast, the increased climate together with and without changing CO2 concentration showed dramatic changes in geographic patterns, with 70% reduction in area and disappearance of almost boreal forests in northeast China. The baseline carbon storage in boreal forests of China is 4.60 PgC (median estimate) based on the vegetation area of actual boreal forest distribution. If taking the large area of agricultural crops into account, the median value of potential carbon storage is 6.92 PgC. The increasing (340–500 ppmv) and decreasing CO2 concentration (340–200 ppmv) led to decrease of carbon storage, 0.33 PgC and 1.01 PgC respectively compared to BIOME3 potential prediction under present climate and CO2 conditions. Both climate change alone and climate change with CO2 enrichment (340–500 ppmv) reduced largely the carbon stored in vegetation and soils by ca. 6.5 PgC. The effect of climate change is more significant than the direct physiological effect of CO2 concentration on the boreal forests of China, showing a large reduction in both distribution area and carbon storage.  相似文献   

10.
We use a coupled climate–carbon cycle model of intermediate complexity to investigate scenarios of stratospheric sulfur injections as a measure to compensate for CO2-induced global warming. The baseline scenario includes the burning of 5,000 GtC of fossil fuels. A full compensation of CO2-induced warming requires a load of about 13 MtS in the stratosphere at the peak of atmospheric CO2 concentration. Keeping global warming below 2°C reduces this load to 9 MtS. Compensation of CO2 forcing by stratospheric aerosols leads to a global reduction in precipitation, warmer winters in the high northern latitudes and cooler summers over northern hemisphere landmasses. The average surface ocean pH decreases by 0.7, reducing the calcifying ability of marine organisms. Because of the millennial persistence of the fossil fuel CO2 in the atmosphere, high levels of stratospheric aerosol loading would have to continue for thousands of years until CO2 was removed from the atmosphere. A termination of stratospheric aerosol loading results in abrupt global warming of up to 5°C within several decades, a vulnerability of the Earth system to technological failure.  相似文献   

11.
Terrestrial carbon fluxes are an important factor in regulating concentrations of atmospheric carbon dioxide (CO2). In this study, we use a coupled climate model with interactive biogeochemistry to benchmark the simulation of net primary productivity (NPP) and its response to elevated atmospheric CO2. Short-term field experiments such as Free-Air Carbon Dioxide Enrichment (FACE) studies have examined this phenomenon but it is difficult to infer trends from only a few years of field data. Here, we employ the University of Victoria's Earth System Climate Model (UVic ESCM) version 2.8 to compare simulated changes in NPP due to an elevated atmospheric CO2 concentration of 550 ppm to observed increases in NPP of 23% ±2% from four temperate forest FACE studies between 1997 and 2002. We further compare two scenarios: elevated CO2 with climate change, and elevated CO2 without climate change, the latter being consistent with FACE methodology. In the climate change scenario global terrestrial and forest-only NPP increased by 24.5% and 27.9%, respectively, while these increases were 21.0% and 17.2%, respectively, in the latitude band most representative of the location of the FACE studies. In the scenario without climate change, terrestrial and forest-only NPP increased instead by 28.3% and 30.6%, respectively, while these increases were 24.3% and 14.4%, respectively, in the FACE latitudes. This suggests that the model may underestimate temperate forest NPP increases when compared to results from temperate forest FACE studies and highlights the need for both increased experimental study of other forest biomes and further model development.  相似文献   

12.
Using a coupled climate?Ccarbon cycle model, fossil fuel carbon dioxide (CO2) emissions are derived through a reverse approach of prescribing atmospheric CO2 concentrations according to observations and future projections, respectively. In the second half of the twentieth century, the implied fossil fuel emissions, and also the carbon uptake by land and ocean, are within the range of observational estimates. Larger discrepancies exist in the earlier period (1860?C1960), with small fossil fuel emissions and uncertain emissions from anthropogenic land cover change. In the IPCC SRES A1B scenario, the simulated fossil fuel emissions more than double until 2050 (17 GtC/year) and then decrease to 12 GtC/year by 2100. In addition to A1B, an aggressive mitigation scenario was employed, developed within the European ENSEMBLES project, that peaks at 530 ppm CO2(equiv) around 2050 and then decreases to approach 450 ppm during the twenty-second century. Consistent with the prescribed pathway of atmospheric CO2 in E1, the implied fossil fuel emissions increase from currently 8 GtC/year to about 10 by 2015 and decrease thereafter. In the 2050s (2090s) the emissions decrease to 3.4 (0.5) GtC/year, respectively. As in previous studies, our model simulates a positive climate?Ccarbon cycle feedback which tends to reduce the implied emissions by roughly 1 GtC/year per degree global warming. Further, our results suggest that the 450 ppm stabilization scenario may not be sufficient to fulfill the European Union climate policy goal of limiting the global temperature increase to a maximum of 2°C compared to pre-industrial levels.  相似文献   

13.
Vegetation is a major component of the climate system because of its controls on the energy and water balance over land. This functioning changes because of the physiological response of leaves to increased CO2. A climate model is used to compare these changes with the climate changes from radiative forcing by greenhouse gases. For this purpose, we use the Community Earth System Model coupled to a slab ocean. Ensemble integrations are done for current and doubled CO2. The consequent reduction of transpiration and net increase of surface radiative heating from reduction in cloudiness increases the temperature over land by a significant fraction of that directly from the radiative warming by CO2. Large-scale atmospheric circulation adjustments result. In particular, over the tropics, a low-level westerly wind anomaly develops associated with reduced geopotential height over land, enhancing moisture transport and convergence, and precipitation increases over the western Amazon, the Congo basin, South Africa, and Indonesia, while over mid-latitudes, land precipitation decreases from reduced evapotranspiration. On average, land precipitation is enhanced by 0.03 mm day?1 (about 19 % of the CO2 radiative forcing induced increase). This increase of land precipitation with decreased ET is an apparent negative feedback, i.e., less ET makes more precipitation. Global precipitation is slightly reduced. Runoff increases associated with both the increased land precipitation and reduced evapotranspiration. Examining the consistency of the variations among ensemble members shows that vegetation feedbacks on precipitation are more robust over the tropics and in mid to high latitudes than over the subtropics where vegetation is sparse and the internal climate variability has a larger influence.  相似文献   

14.
A simulation study was carried out to assess the potential sensitivity of wheat growth and water balance components to likely climate change scenarios at Wagga Wagga, NSW, Australia. Specific processes considered include crop development, growth rate, grain yield, water use efficiency, evapotranspiration, runoff and deep drainage. Individual impacts of changes in temperature, rainfall and CO2 concentration ([CO2]) and the combined impacts of these three variables were analysed for 2050 ([CO2] = 570 ppm, T +2.3°C, P ?7%) and 2070 ([CO2] = 720 ppm, T +3.8°C, P ?10%) conditions. Two different rainfall change scenarios (changes in rainfall intensity or rainfall frequency) were used to modify historical rainfall data. The Agricultural Production Systems Simulator (APSIM) was used to simulate the growth and water balance processes for a 117 year period of baseline, 2050 and 2070 climatic conditions. The results showed that wheat yield reduction caused by 1°C increase in temperature and 10% decrease in rainfall could be compensated by a 266 ppm increase in [CO2] assuming no interactions between the individual effects. Temperature increase had little impact on long-term average water balance, while [CO2] increase reduced evapotranspiration and increased deep drainage. Length of the growing season of wheat decreased 22 days in 2050 and 35 days in 2070 conditions as a consequence of 2.3°C and 3.8°C increase in temperature respectively. Yield in 2050 was approximately 1% higher than the simulated baseline yield of 4,462 kg ha???1, but it was 6% lower in 2070. An early maturing cultivar (Hartog) was more sensitive in terms of yield response to temperature increase, while a mid-maturing cultivar (Janz) was more sensitive to rainfall reduction. Janz could benefit more from increase in CO2 concentration. Rainfall reduction across all rainfall events would have a greater negative impact on wheat yield and WUE than if only smaller rainfall events reduced in magnitude, even given the same total decrease in annual rainfall. The greater the reduction in rainfall, the larger was the difference. The increase in temperature increased the difference of impact between the two rainfall change scenarios while increase in [CO2] reduced the difference.  相似文献   

15.
Jian Ni 《Climatic change》2013,119(3-4):905-917
China is an important region for the global study of carbon because of its vast territory with various climate regimes, diverse ecosystems, and long-term human disturbances and land-use history. Carbon storage in ecosystems in China has been estimated using inventory and modeling methods in the past two decades. However, different methods may result in varied magnitudes and forms of carbon storage. In this study, the current status of carbon storage in terrestrial ecosystems in China, including the impacts of land use, is summarized in the national, regional, and biome scales. Significant differences in data have existed among studies. Such differences are mainly attributed to variations in estimation methods, data availability, and periods. According to available national-scale information on Chinese terrestrial ecosystems, vegetation carbon in China is 6.1 Pg C to 76.2 Pg C (mean 36.98 Pg C) and soil carbon is 43.6 Pg C to 185.7 Pg C (mean 100.75 Pg C). The forest sector has vegetation carbon of 3.26 Pg C to 9.11 Pg C (mean 5.49 Pg C), whereas the grassland sector has 0.13 Pg C to 3.06 Pg C (mean 1.41 Pg C). Soil carbon in the forest and grassland sectors exhibits more significant regional variations. Further studies need a comprehensive methodology, which combines national inventory, field measurement, eddy covariance technique, remote sensing, and model simulation in a single framework, as well as all available data at different temporal and spatial scales, to fully account for the carbon budget in China.  相似文献   

16.
17.
基于2006—2012年主要生长季(5—9月)MODIS旬最大值合成NDVI数据,结合同期气温、降水插值栅格资料,采用均值法、线性回归法、相关系数法分析了伊犁河谷地区七大不同草地类型NDVI的时空变化规律及其对气象因子响应的敏感性及滞后性。结果表明:(1)伊犁河谷草地植被NDVI整体呈微弱增加趋势,其中,温性荒漠类草地的增加趋势略高于其他几种类型。(2)温性草甸草原、温性草原、温性荒漠草原、高寒草原、低平地草甸的NDVI主要受降水影响,即NDVI与生长季平均降水量呈极显著正相关,且平均降水量每增加1 mm,其NDVI分别增加0.005、0.006、0.007、0.004、0.003。(3)不同草地类型与气温、降水存在不同的滞后响应,多数草地类型5月气温、降水与7月NDVI表现出显著相关性。其中,温性草甸草原、温性草原、温性荒漠草原NDVI受气温和降水共同影响,气温每升高1℃,NDVI分别减少0.020、0.028、0.027,降水每增加1 mm,NDVI分别增加0.002、0.003、0.003;高寒草原主要受降水影响,降水每增加1 mm,NDVI增加0.003;低平地草甸主要受气温影响,气温每升高1℃,NDVI减少0.016;温性荒漠、沼泽与气温、降水没有明显相关性。不同草地类型对水热因子的需求不同,是产生这种结果的主要原因。  相似文献   

18.
CO2 fluxes were measured continuously for three years (2003?C2005) using the eddy covariance technique for the canopy layer with a height of 27 m above the ground in a dominant subtropical evergreen forest in Dinghushan, South China. By applying gapfilling methods, we quantified the different components of the carbon fluxes (net ecosystem exchange (NEE)), gross primary production (GPP) and ecosystem respiration (Reco) in order to assess the effects of meteorological variables on these fluxes and the atmospherecanopy interactions on the forest carbon cycle. Our results showed that monthly average daily maximum net CO2 exchange of the whole ecosystem varied from ?3.79 to ?14.24 ??mol m?2 s?1 and was linearly related to photosynthetic active radiation. The Dinghushan forest acted as a net carbon sink of ?488 g C m?2 y?1, with a GPP of 1448 g Cm?2 y?1, and a Reco of 961 g C m?2 y?1. Using a carboxylase-based model, we compared the predicted fluxes of CO2 with measurements. GPP was modelled as 1443 g C m?2 y?1, and the model inversion results helped to explain ca. 90% of temporal variability of the measured ecosystem fluxes. Contribution of CO2 fluxes in the subtropical forest in the dry season (October-March) was 62.2% of the annual total from the whole forest ecosystem. On average, 43.3% of the net annual carbon sink occurred between October and December, indicating that this time period is an important stage for uptake of CO2 by the forest ecosystem from the atmosphere. Carbon uptake in the evergreen forest ecosystem is an indicator of the interaction of between the atmosphere and the canopy, especially in terms of driving climate factors such as temperature and rainfall events. We found that the Dinghushan evergreen forest is acting as a carbon sink almost year-round. The study can improve the evaluation of the net carbon uptake of tropical monsoon evergreen forest ecosystem in south China region under climate change conditions.  相似文献   

19.
This paper analyzes the impact of climate, crop production technology, and atmospheric carbon dioxide (CO2) on current and future crop yields. The analysis of crop yields endeavors to advance the literature by estimating the effect of atmospheric CO2 on observed crop yields. This is done using an econometric model estimated over pooled historical data for 1950–2009 and data from the free air CO2 enrichment experiments. The main econometric findings are: 1) Yields of C3 crops (soybeans, cotton, and wheat) directly respond to the elevated CO2, while yields of C4 crops (corn and sorghum) do not, but they are found to indirectly benefit from elevated CO2 in times and places of drought stress; 2) The effect of technological progress on mean yields is non-linear; 3) Ignoring atmospheric CO2 in an econometric model of crop yield likely leads to overestimates of the pure effects of technological progress on crop yields of about 51, 15, 17, 9, and 1 % of observed yield gain for cotton, soybeans, wheat, corn and sorghum, respectively; 4) Average climate conditions and climate variability contribute in a statistically significant way to average crop yields and their variability; and 5) The effect of CO2 fertilization generally outweighs the effect of climate change on mean crop yields in many regions resulting in an increase of 7–22, 4–47, 5–26, 65–96, and 3–35 % for yields of corn, sorghum, soybeans, cotton, and wheat, respectively.  相似文献   

20.
Correctly estimating the effect of elevated CO2 (eCO2) on biomass production is paramount for accurately projecting agricultural productivity, global carbon balances and climate changes. Plant physiology suggests that eCO2 should result in a strongly positive CO2 fertilisation effect (CFE) via positive effects on photosynthesis and water use efficiency. However, the CFE in CO2 experiments is often constrained because of other factors of which rainfall pattern is particularly important. Here, we apply a generally applicable, empirically derived relationship between the CFE and an index of seasonal rainfall balance (SRB), to identify how historical and projected future rainfall patterns modify the CFE using 25 native grassland sites in south-eastern (SE) Australia as a test case. We found that historical and projected rainfall produced SRBs that varied widely from year-to-year resulting in a CFE that was only positive in about 40% of years, with no or even negative biomass responses in the remainder of years; a finding that is in marked contrast to other studies that have not taken account of relationships between rainfall seasonality and plant responses to CO2. The dependence of the CFE on SRB also means that using the CFE from a specific eCO2 experiment can be misleading as the result will be heavily influenced by the SRB during the period of experimentation but this problem can be avoided by using a robust general relationship of the kind used in this study. Generalisations of grassland biomass responses to the rising CO2 concentration are contextual in terms of the variability in precipitation seasonality; as such, this provides a new lens by which to view aboveground responses to the rising CO2 concentration and fosters a novel approach for cross-site comparisons among experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号