首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
INTRODUCTIONTheSouthChinaSea (SCS)isauniquesemi encloseddeepoceanbasinlocatednearthewest ernperipheryofthePacificOcean .Spreadingfromtheequatorto 2 0°Nandspanningzonallyabout1 5°N ,theSCSliesbetweentheSouthChinacoastandthemaritimecontinent.TheSCSbottomtopogr…  相似文献   

2.
Monsoon-ocean coupled modes in the South China Sea (SCS) were investigated by a combined singular value decomposition (CSVD) analysis based on sea surface temperature (SST) and sea surface wind stress (SWS) fields from SODA (Simple Ocean Data Assimilation) data spanning the period of 1950-1999. The coupled fields achieved the maximum correlation when the SST lagged SWS by one month, indicating that the SCS coupled system mainly reflected the response of the SST to monsoon forcing. Three significant coupled modes were found in the SCS, accounting for more than 80% of the cumulative squared covariance fraction. The first three SST spatial patterns from CSVD were: (Ⅰ) the monopole pattern along the isobaths in the SCS central basin; (Ⅱ) the north-south dipole pattern; and (Ⅲ) the west-east seesaw pattern. The expansion coefficient of the SST leading mode showed interdecadal and interannual variability and correlation with the Indo-Pacific warm pool (IPWP), suggesting that the SCS belongs to part of the IPWP at interannual and interdecadal time scales. The second mode had a lower correlation coefficient with the warm pool index because its main period was at intra-annual time scales instead of the interannual and interdecadal scales with the warm pools. The third mode had similar periods to those of the leading mode, but lagged the eastern Indian Ocean warm pool (EIWP) and western Pacific warm pool (WPWP) by five months and one year respectively, implying that the SCS response to the warm pool variation occurred from the western Pacific to the eastern Indian Ocean, which might have been related to the variation of Indonesian throughflow. All three modes in the SCS had more significant correlations with the EIWP, which means the SCS SST varied much more coherently with the EIWP than the WPWP, suggesting that the SCS belongs mostly to part of the EIWP. The expansion coefficients of the SCS SST modes all had negative correlations with the Nino3 index, which they lag by several months, indicating a remote response of SCS SST variability to the El Nifio events.  相似文献   

3.
The seasonal and interannual variability of zonal mean Hadley circulation are analyzed, and the important effects of sea surface temperature(SST), especially the tropical Pacific SST, on the meridional circulation are discussed. Following results are obtained: 1) the Hadley circulation presents a single clockwise(anticlockwise) cross-equator circulation in the Northern(Southern) Hemisphere winter,while it is a double-ring-shaped circulation quasi-symmetric about the equator in spring and autumn. The annual mean state just indicates the residual of the Hadley cell in winter and summer. 2) The first mode of interannual anomalies shows a single cell crossing the equator like the climatology in winter and summer but with narrower width. The second mode shows a double ring-shaped cell quasi-symmetric about the equator which is similar to the Hadley cell in spring or autumn. 3) Vertical motion of the Hadley circulation is driven by sea surface temperature(SST) through latent and sensible heat in the tropics, and the interannual anomalies are mainly driven by the SST anomaly(SSTa) in the tropical Pacific. 4) The meridional gradient of SSTa is well consistent with the lower meridional wind of Hadley circulation in the interannual part. For the spatial distribution, the meridional gradient of SSTa in the Pacific plays a major role for the first two modes while the effects of the Indian Ocean and the Atlantic Ocean can be ignored.  相似文献   

4.
1 Introduction TheindicesfortheAsianmonsoonhavebeenstud iedinmanyworks .Recently ,thechoiceofpropermonsoonindiceshasreceivedexceptionalattentionandraisedcontroversy (WebsterandYang ,1 992 ;Goswa mietal.,1 999;Goswami,2 0 0 0 ;Wang ,2 0 0 0 ) .Us ingzona…  相似文献   

5.
Wind measurements derived from QuikSCAT data were compared with those measured by anemometer on Yongxing Island in the South China Sea (SCS) for the period from April 2008 to November 2009. The comparison confirms that QuikSCAT estimates of wind speed and direction are generally accurate, except for the extremes of high wind speeds (>13.8m/s) and very low wind speeds (<1.5m/s) where direction is poorly predicted. In-situ observations show that the summer monsoon in the northern SCS starts between May 6 and June 1. From March 13, 2010 to August 31, 2010, comparisons of sea surface temperature (SST) and rainfall from AMSR-E with data from a buoy located at Xisha Islands, as well as wind measurements derived from ASCAT and observations from an automatic weather station show that QuikSCAT, ASCAT and AMSR-E data are good enough for research. It is feasible to optimize the usage of remote-sensing data if validated with in-situ measurements. Remarkable changes were observed in wind, barometric pressure, humidity, outgoing longwave radiation (OLR), air temperature, rainfall and SST during the monsoon onset. The eastward shift of western Pacific subtropical high and the southward movement of continental cold front preceded the monsoon onset in SCS. The starting dates of SCS summer monsoon indicated that the southwest monsoon starts in the Indochinese Peninsula and forms an eastward zonal belt, and then the belt bifurcates in the SCS, with one part moving northeastward into the tropical western North Pacific, and another southward into western Kalimantan. This largely determined the pattern of the SCS summer monsoon. Wavelet analysis of zonal wind and OLR at Xisha showed that intra-seasonal variability played an important role in the summer. This work improves the accuracy of the amplitude of intra-seasonal and synoptic variation obtained from remote-sensed data.  相似文献   

6.
The sensitivity of the global atmospheric and oceanic response to sea surface temperature anomaly (SSTA) throughout the South China Sea (SCS) is investigated using the Fast Ocean-Atmosphere Model (FOAM). Forced by a warming SST, the experiment explicitly demonstrates that the responses of surface air temperature (SAT) and SST exhibit positive anomalous center over SCS and negative anomalous center over the Northern Pacific Ocean (NPO). The atmospheric response to the warm SST anomalies is characterized by a barotropical anomaly in middle-latitude, leading to a weak subtropical high in summer and a weak Aleutian low in winter. Accordingly, Indian monsoon and eastern Asian monsoon strengthen in summer but weaken in winter as a result of wind convergence owing to the warm SST. It is worth noting that the abnormal signals propagate poleward and eastward away in the form of Rossby Waves from the forcing region, which induces high pressure anomaly. Owing to action of the wind-driven circulation, an anomalous anti-cyclonic circulation is induced with a primary southward current in the upper ocean. An obvious cooling appears over the North Pacific, which can be explained by anomalous meridional cold advection and mixing as shown in the analysises of heat budget and other factors that affect SST.  相似文献   

7.
We compared nonlinear principal component analysis (NLPCA) with linear principal component analysis (LPCA) with the data of sea surface wind anomalies (SWA), surface height anomalies (SSHA), and sea surface temperature anomalies (SSTA), taken in the South China Sea (SCS) between 1993 and 2003. The SCS monthly data for SWA, SSHA and SSTA (i.e., the anomalies with climatological seasonal cycle removed) were pre-filtered by LPCA, with only three leading modes retained. The first three modes of SWA, SSHA, and SSTA of LPCA explained 86%, 71%, and 94% of the total variance in the original data, respectively. Thus, the three associated time coefficient functions (TCFs) were used as the input data for NLPCA network. The NLPCA was made based on feed-forward neural network models. Compared with classical linear PCA, the first NLPCA mode could explain more variance than linear PCA for the above data. The nonlinearity of SWA and SSHA were stronger in most areas of the SCS. The first mode of the NLPCA on the SWA and SSHA accounted for 67.26% of the variance versus 54.7%, and 60.24% versus 50.43%, respectively for the first LPCA mode. Conversely, the nonlinear SSTA, localized in the northern SCS and southern continental shelf region, resulted in little improvement in the explanation of the variance for the first NLPCA.  相似文献   

8.
By analyzing the variability of global SST(sea surface temperature) anomalies,we propose a unified Ni o index using the surface thermal centroid anomaly of the region along the Pacific equator embraced by the 0.7°C contour line of the standard deviation of the SST anomalies and try to unify the traditional Ni o regions into a single entity.The unified Ni o region covers almost all of the traditional Ni o regions.The anomaly time series of the averaged SST over this region are closely correlated to historical Ni o indices.The anomaly time series of the zonal and meridional thermal centroid have close correlation with historical TNI(Trans-Ni o index) indices,showing differences among El Ni o(La Ni a) events.The meridional centroid anomaly suggests that areas of maximum temperature anomaly are moving meridionally(although slightly) with synchronous zonal movement.The zonal centroid anomalies of the unified Ni o region are found helpful in the classification of the Eastern Pacific(EP)/Central Pacific(CP) types of El Ni o events.More importantly,the zonal centroid anomaly shows that warm areas might move during a single warming/cooling phase.All the current Ni o indices can be well represented by a simple linear combination of unified Ni o indices,which suggests that the thermal anomaly(SSTA) and thermal centroid location anomaly of the unified Ni o region would yield a more complete image of each El Ni o/ La Ni a event.  相似文献   

9.
Surveys since 1959 showed that the dynamic basis of the East China Sea sectional circulation is the nearshore seawater horizontal divergence caused by wind on the surface compensated by Kuroshio subsurface water convergence caused by meridional current in the lower layer. Fish always tend to migrate along certain routes or stay in certain areas favorable for development of eggs, survival of larvae and living of adults. The movement of water masses supplies a very important driving force for marine animals migrating long distance. The lower part of the sectional circulation formed by the subsurface water of Kuroshio is not suitable for the aggregation of fish because of its lack of oxygen, and has therefore a driving influence on demersal fishes. This study of the sectional circulation influence on the distributions of some commercially important species in the East China Sea reveals a close relationship between the circulation and the movement of fish schools. The principal factors influencing zonal vertical circulation are the meridional vector of the Kuroshio lower layer and atmospheric circulation, referning here mainly to the subtropical high pressure in the Asia-Pacific area that causes surface divergence and lifts subsurface water from the bottom to the surface at the nearshore area. Some simple methods for estimating the intensity of the sectional circulation are, introduced for fishery forecasts and operations.  相似文献   

10.
An ENSO-like oscillation system   总被引:4,自引:0,他引:4  
INTRODUCTIONElNi no SouthernOscillation (ENSO)istheinterannualinteractionofocean atmosphereinthetropical (especiallyequatorial)Pacific,andisconsideredtobethedominantmechanismoftheearth’sinterannualclimatechange.ThereareseveralparadigmsproposedforinterpretingENSO .Bjerknes’ (1 966,1 969)pio neeringworkvisualizedacloseassociationbetweenoceanandatmosphereandexplainedhowthedis turbancecoulddevelopthroughtheocean atmosphereinteraction .Heproposedapositivefeedbackmechanism .ButENSOisan…  相似文献   

11.
A two and a half layer oceanic model of wind-driven, thermodynamical general circulation is appliedto study the interannual oscillation of sea surface temperature (SST) in the South China Sea (SCS). Themodel consists of two active layers: the upper mixed layer (UML) and the seasonal thermocline, with themotionless abyss beneath them. The governing equations which include momentum, continuity and sea.temperature for each active layer, can describe the physics of Boussinseq approximation, reduced gravityand equatorial β-plane. The formulas for the heat flux at the surface and at the interface between twoactive layers are designed on the Haney scheme. The entrainment and detrainment at the bottom of theUML induces vertical transport of mass,momentum and heat, and couples of dynamic andthermodynamic effect.Using leap-frog integrating scheme and the Arakawa-C grid the model is forced bya time-dependent wind anomaly stress pattern obtained from category analysis of COADS. The numerical results indicate that t  相似文献   

12.
Effects of extratropical solar penetration on the North Atlantic Ocean circulation and climate are investigated using a coupled ocean-atmosphere model.In this model,solar penetration generates basinwide cooling and warming in summer and winter,respectively.Associated with SST changes,annual mean surface wind stress is intensified in both the subtropical and subpolar North Atlantic,which leads to acceleration of both subtropical and subpolar gyres.Owing to warming in the subtropics and significant saltiness in the subpolar region,potential density decreases(increases) in the subtropical(subpolar)North Atlantic.The north-south meridional density gradient is thereby enlarged,accelerating the Atlantic meridional overturning circulation(AMOC).In addition,solar penetration reduces stratification in the upper ocean and favors stronger vertical convection,which also contributes to acceleration of the AMOC.  相似文献   

13.
By using a new heat budget equation that is closely related to the sea surface temperature (SST) and a dataset from an ocean general circulation model (MOM2) with 10-a integration (1987-1996), the relative importance of various processes determining SST variations in two regions of the Indian Ocean is compared. These regions are defined by the Indian Ocean Dipole Index and will be referred to hereafter as the eastern (0^*-10^*S, 90^*-110^*E) and western regions (10^*S- 10^*N, 50^*-70^*E), respectively. It is shown that in each region there is a falling of SST in boreal summer and a rising in most months of other seasons, but the phases are quite different. In the eastern region, maximum cooling rate occurs in July, whereas in the western region it occurs in June with much larger magnitude. Maximum heating rate occurs in November in the eastern region, but in March in the western one. The western region exhibits another peak of increasing rate of SST in October, indicating a typical half-year period. Net surface heat flux and entrainment show roughly the same phases as the time-varying term, but the former has much larger contribution in most of a year, whereas the latter is important in the boreal summer. Horizontal advection, however, shows completely different seasonal variations as compared with any other terms in the heat budget equation. In the eastern region, it has a maximum in June/November and a minimum in March/ September, manifesting a half-year period; in the western region, it reaches the maximum in August and the minimum in November. Further investigation of the horizontal advection indicates that the zonal advection has almost the opposite sign to the meridional advection. In the eastern region, the zonal advection is negative with a peak in August, whereas the meridional one is positive with two peaks in June and October. In the western region, the zonal advection is negative from March to November with two peaks in June and November, whereas the meridional one is positive with one peak in July. Different phases can be clearly seen between the two regions for each component of the horizontal advection. A detailed analysis of the data of 1994, a year identified when the Indian Ocean dipole event happened, indicates that the horizontal advection plays a dominant role in the remarkable cooling of the eastern region, in which zonal and meridional advections have the same sign of anomaly. However, in the western region in 1994 no any specialty was shown as compared with other years, for the SST anomaly is not positive in large part of this region. All these imply that the eastern and western regions may be related in a quite complex way and have many differences in dynamics. Further study is needed.  相似文献   

14.
We studied the driving force of the Kuroshio intrusion into the South China Sea (SCS) during the winter monsoon, using satellite-tracked drifters entering the Luzon Strait (LS) through the Balintany and Babuyan Channels from the Philippine Sea. Most drifters passing through the Babuyan Channel in winter entered the interior SCS without a significant change in velocity. However, half of the drifters passing through the Balintany Channel entered the SCS at ~30 cm/s, which was faster than when they entered the LS. The other half continued moving northwestward into the Kuroshio and returned to the North Pacific. Quantitative analyses, using surface climatological wind and sea surface height anomaly (SSHa) data explained both the difference in velocity of drifters between the two channels and their acceleration through the Balintany Channel. The results suggest that the positive meridional gradient of sea surface height in the Luzon Strait, caused by the pileup of seawater driven by the Northeast monsoon, as well as Ekman flow, contribute to the Kuroshio intrusion into the SCS through the Babuyan and Balintany Channels. The former may be the main driving force.  相似文献   

15.
The standard deviation of the central Pacific sea surface temperature anomaly (SSTA) during the period from October to February shows that the central Pacific SSTA variation is primarily due to the occurrence of the Central Pacific El Nio (CP-El Nio) and has a connection with the subtropical air-sea interaction in the northeastern Pacific. After removing the influence of the Eastern Pacific El Nio, an S-EOF analysis is conducted and the leading mode shows a clear seasonal SSTA evolving from the subtropical northeastern Pacific to the tropical central Pacific with a quasi-biennial period. The initial subtropical SSTA is generated by the wind speed decrease and surface heat flux increase due to a north Pacific anomalous cyclone. Such subtropical SSTA can further influence the establishment of the SSTA in the tropical central Pacific via the wind-evaporation-SST (WES) feedback. After established, the central equatorial Pacific SSTA can be strengthened by the zonal advective feedback and thermocline feedback, and develop into CP-El Nio. However, as the thermocline feedback increases the SSTA cooling after the mature phase, the heat flux loss and the re-versed zonal advective feedback can cause the phase transition of CP-El Nio. Along with the wind stress variability, the recharge (discharge) process occurs in the central (eastern) equatorial Pacific and such a process causes the phase consistency between the thermocline depth and SST anomalies, which presents a contrast to the original recharge/discharge theory.  相似文献   

16.
The interannual variability of the sea surface temperature (SST) in the South China Sea (SCS) is investigated according to its relationship with El Nio/La Nia (EN/LN) using monthly products from ICOADS. The SCS SST bears two peaks associated with EN/LN and shows the asymmetric features. Coinciding with the mature phase of EN/LN, the first SST warming/cooling peaks in December(0)-February(1) (DJF(1)) and centers in the southern part. The major difference is in the amplitude associated with the strength of EN/LN. However, the SCS SST anomaly shows distinct difference after the mature phase of EN/LN. The EN SST warm-ing develops a mid-summer peak in June-August(1) (JJA(1)) and persists up to September-October(1), with the same amplitude of the first warming peak. Whereas the LN SST cooling peaks in May(1), it decays slowly until the end of the year, with amplitude much weaker. Comparing with SST and atmospheric circulations, the weak response and early termination of the second cooling is due to the failure of the cyclonic wind anomalies to develop in the northwest Pacific during JJA(1).  相似文献   

17.
By using monthly historical sea surface temperature (SST) data for the years from 1950 to 2000, the Western Pacific Warm Pool (WPWP) climatology and anomalies are studied in this paper. The analysis of WPWP centroid (WPWPC) movement anomalies and the Nino-3 region SST anomalies( SSTA) seems to reveal a close, linear relation between the zonal WPWPC and Nino-3 region SSTA, which suggests that a 9' anomaly of the zonal displacement from the climatological position of the WPWPC corresponds to about a 1 ℃ anomaly in the Nino-3 region area-mean SST. This study connects the WPWPC zonal displacement with the Nino-3 SSTA, and it may be helpful in better understanding the fact that the WPWP eastward extension is conducive to the Nino-3 region SST increase during an El Nino-Southern Oscillation (ENSO) event.  相似文献   

18.
The thermal condition anomaly of the western Pacific warm pool and its zonal displacement have very important influences on climate change in East Asia and even the whole world. However, the impact of the zonal wind anomaly over the Pacific Ocean on zonal displacement of the warm pool has not yet been analyzed based on long-term record. Therefore, it is important to study the zonal displacement of the warm pool and its response to the zonal wind anomaly over the equatorial Pacific Ocean. Based on the NCDC monthly averaged SST (sea surface temperature) data in 2°×2° grid in the Pacific Ocean from 1950 to 2000, and the NCEP/NCAR global monthly averaged 850 hPa zonal wind data from 1949 to 2000, the relationships between zonal displacements of the western Pacific warm pool and zonal wind anomalies over the tropical Pacific Ocean are analyzed in this paper. The results show that the zonal displacements are closely related to the zonal wind anomalies over the western, central and eastern equatorial Pacific Ocean. Composite analysis indicates that during ENSO events, the warm pool displacement was trigged by the zonal wind anomalies over the western equatorial Pacific Ocean in early stage and the process proceeded under the zonal wind anomalies over the central and eastern equatorial Pacific Ocean unless the wind direction changes. Therefore, in addition to the zonal wind anomaly over the western Pacific, the zonal wind anomalies over the central and eastern Pacific Ocean should be considered also in investigation the dynamical mechanisms of the zonal displacement of the warm pool.  相似文献   

19.
By using monthly historical sea surface temperature (SST) data for the years from 1950 to 2000, the Western Pacific Warm Pool (WPWP) climatology and anomalies are studied in this paper. The analysis of WPWP centroid (WPWPC) movement anomalies and the Niño-3 region SST anomalies(SSTA) seems to reveal a close, linear relation between the zonal WPWPC and Niño-3 region SSTA, which suggests that a 9° anomaly of the zonal displacement from the climatological position of the WPWPC corresponds to about a l°C anomaly in the Niño-3 region area-mean SST. This study connects the WPWPC zonal displacement with the Niño-3 SSTA, and it may be helpful in better understanding the fact that the WPWP eastward extension is conducive to the Niño-3 region SST increase during an El Niño-Southern Oscillation (ENSO) event.  相似文献   

20.
The characteristics of the response of equatorial Pacific upper ocean current to westerly wind bursts(WWB)were analyzed in the frequency domain by using wind and ADCP data collected by the Shiyan3 during TOGA-COARE IOP,1992-1993.The preliminary results showed that the response consistedof an eastward surface jet at shallower than 60m depth,a westward counter current centering near100m and a shear layer between them,with the variations of all three being nonlinear and nearlysynchronous.The oceanic responses in the frequency domain were characterized by occurrences of a remotely forced mixed Rossby-gravity wave with period of 8-10 days in the surface jet andcountercurrent at shallower than 110 m depth,and two locally forced waves with periods of 24 daysand 4-5 days limited in shallower than 70m depth.These fluctuations of the responses depended much more on zonal wind than meridional wind.The results also revealed that the oceanic response toWWB resulted from momentum transport and energy propagation assoc  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号