首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 372 毫秒
1.
Recent geophysical measurements, including multi-channel seismic reflection, on the Svalbard passive margin have revealed that it has undergone a complex geological history which largely reflects the plate tectonic evolution of the Greenland Sea and the Arctic Ocean. The western margin (75–80°N) is of a sheared-rifted type, along which the rifted margin developed subsequent to a change in the pole of plate rotation about 36 m.y. B.P. The north-trending Hornsund Fault on the central shelf and the eastern escarpment of the Knipovich Ridge naturally divide the margin into three structural units. These main marginal structures strike north, paralleling the regional onshore fault trends. This trend also parallels the direction of Early Tertiary plate motion between Svalbard and Greenland. Thus, the western Svalbard margin was initially a zone of shear, and the shear movements have affected the adjacent continental crust. Although, the nature and location of the continent—ocean crustal transition is somewhat uncertain, it is unlikely to lie east of the Hornsund Fault. The northern margin, including the Yermak marginal plateau, is terminated to the west by the Spitsbergen Fracture Zone system. This margin is of a rifted type and the preliminary analysis indicates that the main part of the investigated area is underlain by continental crust.  相似文献   

2.
Heat flow taken between Svalbard and Greenland reveal three thermal provinces:
1. (1) the Molloy Ridge within the Spitsbergen Transform,
2. (2) the Yermak Plateau
3. (3) the northeastern margin of Svalbard (Nordaustlandet).
The Molloy Ridge is a short spreading segment and the average heat flow is much above the Sclater et al. (1971), cooling curve but agrees with values from the Norwegian-Greenland Sea. An additional zone of intrusion identified by heat flow lies to the northwest of the Molloy Ridge. It straddles both the visible fracture zone and part of the Yermak Plateau. A thermal boundary lies between the warm western segment of the Yermak Plateau and the shelf off Nordaustlandet. If the thermal subsidence of the western Yermak Plateau can be traced to the latest heating episode then it is likely that the crust is similar to oceanic in composition and not older than 13 m.y. (approximately 20 m.y. younger than the northeastern segment of the plateau). Plate rotation shows that there was no room for the western segment of the plateau prior to anomaly 7. We postulate that the original transform is associated with the Hornsund Fault zone. In response to deviatoric stress across the oblique ridge-transform system, the Nansen Ridge propagated southwestward aborting the old transform trace, and shifted to its present position.It is suggested that this propagation and migration of the ridge-transform system across a zone of extensional deviatoric stress allowed the massive intrusion of basalt forming the Western Yermak Plateau. The propagation phenomenon coincides with large-scale Tertiary volcanic activity on Svalbard.Readjustment and migration of the oblique transform is still taking place. As the transform-ridge system is liberated from continental constraints, the migration rate will diminish as orthogonality is approached.  相似文献   

3.
High resolution seafloor studies of the Peru Trench between 10°S and 14°S with the GLORIA long-range side-scan sonar system show that the Nazca plate is broken by numerous normal faults as it bends into the trench. These bending-induced faults strike subparallel to the trench axis and overprint and cut across spreading fabric structures of the plate. They commonly form grabens having widths and spacings of 3–5 km and extend for as much as 100 km along strike. Vertical displacements are generally 200 m or more by the time they reach the trench axis. Turbidite deposits are found in the trench north of 11.5°S. Both turbidite and pelagic sediments are folded and temporarily accreted to the base of the overriding plate along the length of the trench axis. They are apparently subsequently implaced in the grabens by slumping and subducted with the Nazca plate. The Mendaña Fracture Zone, which intersects the trench between 9°40′S and 10°35′S, appears to be the locus of a seaward propagating rift that is forming in response to subduction-induced extensional stresses in the Nazca plate.  相似文献   

4.
The concept of plate tectonics implies that the normal sea floor spreading stage is preceded by a sequence of events associated with the break-up of continental crust. Thus, evidence of the early development of “non-failed” rifts is to be found at passive continental margins. Of special interest is the question of the extent of the continental crust and the structural and compositional changes associated with the change in crustal type. In addressing these topics, we have focused attention on the Norwegian margin between the Jan Mayen and Senja fracture zones (66°–70°N) in an attempt to understand its history of rifting and early sea floor spreading. p ]The southern part of this rifted margin is characterized by a wide shelf and the marginal Vøring Plateau interrupts a gentle slope at a level of about 1500 m. However, the margin becomes progressively narrower towards the north and a typical narrow shelf and steep slope emerge off the Lofo—tenVesterålen Islands (Fig. 1). In a reconstructed pre-opening configuration (Talwani and Eldholm, 1977) the narrowest part of the juxtaposed EastGreenland margin is found in the south and a wide shelf and slope corresponds to the Lofoten-Vesterålen margin.The most prominent structural element is a buried basement high underneath the Vøring Plateau. The high is bounded landward by the Vøring Plateau Escarpment, a major structural boundary which defines typical changes in the geophysical parameters. These are: (1) a sudden increase of depth to acoustic basement; (2) changes in the velocity-depth function; (3) a gravity gradient; and (4) a magnetic edge anomaly separating sea-floor spreading type anomalies from a quiet zone on the landward side (Talwani and Eldholm, 1972). These observations were interpreted in terms of a sharp ocea—ncontinent crustal transition along the escarpment with sea-floor spreading commencing between anomaly 24 and 25 time (56–58 m.y. B.P.). Alternatively, the concept of ancient oceanic crust landward of this escarpment and the possible existence of continental crust under the outer basement high have been argued and we refer to Eldholm et al. (1979) for a detailed discussion.  相似文献   

5.
Five lineaments on the volcanic Vøring Margin, NE Atlantic, have been identified in crustal scale models derived from Ocean Bottom Seismograph (OBS) data. It is suggested that the Vøring Basin can be divided in four compartments bounded by the Jan Mayen Fracture Zone/Lineament, a new lineament defined from this study, the Gleipne Lineament, the Surt Lineament and the Bivrost Lineament. The NW–SE trending Jan Mayen-, Gleipne- and Bivrost lineaments probably represent old zones of weakness controlling the onset of the early Eocene seafloor spreading, whereas the Surt- and New lineaments, rotated ca. 30° symmetrically from the azimuth of the Gleipne Lineament, may represent adjustment features related to the early Cretaceous/early Tertiary rifting. The longest landward extent of a lower crustal high-velocity body, assumed to represent intrusions related to the last phase of rifting, is found between the New Lineament and the Gleipne Lineament, where the body extends across the Helland Hansen Arch. Northeastwards in the Vøring Basin, the landward limit of the body steps gradually seawards, closely related to the interpreted lineaments. Northeast of the Gleipne Lineament, the body terminates close to the Fles Fault Complex, north of the Surt Lineament, it extends across the Nyk High, and northeast of the Bivrost Lineament the intrusions terminate around the Vøring Escarpment. Evidence for an interplay between active and passive rifting components is found on regional and local scales on the margin. The active component is evident through the decrease in magmatism with increased distance from the Icelandic plume, and the passive component is documented through the fact that all found crustal lineaments to a certain degree acted as barriers to magma emplacement. The increased thickness of the continental crust on the seaward side of the Vøring Escarpment, the upwarping of Moho and thinning of the lower crustal high-velocity layer in the western part of the Vøring Basin, as well as a strong shallowing of the Moho observed in parts of the area between the Jan Mayen Fracture Zone/Lineament and the New Lineament, can be explained by lithospheric delamination models.  相似文献   

6.
Oblique-shear margins are divergent continental terrains whose breakup and early drift evolution are characterized by significant obliquity in the plate divergence vector relative to the strike of the margin. We focus on the Rio Muni margin, equatorial West Africa, where the ca. 70-km-wide Ascension Fracture Zone (AFZ) exhibits oblique–slip faulting and synrift half-graben formation that accommodated oblique extension during the period leading up to and immediately following whole lithosphere failure and continental breakup (ca. 117 Ma). Oblique extension is recorded also by strike–slip and oblique–slip fault geometry within the AFZ, and buckling of Aptian synrift rocks in response to block rotation and local transpression. Rio Muni shares basic characteristics of both rifted and transform margins, the end members of a spectrum of continental margin kinematics. At transform margins, continental breakup and the onset of oceanic spreading (drifting) are separate episodes recorded by discrete breakup and drift unconformities. Oceanic opening will proceed immediately following breakup on a rifted margin, whereas transform and oblique-shear margins may experience several tens of millennia between breakup and drift. Noncoeval breakup and drift have important consequences for the fit of the equatorial South American and African margins because, in reconstructing the configuration of conjugate continental margins at the time of their breakup, it cannot be assumed that highly segmented margins like the South Atlantic will match each other at their ocean–continent boundaries (OCBs). Well known ‘misfits’ in reconstructions of South Atlantic continental margins may be accounted for by differential timing of breakup and drifting between oblique-shear margins and their adjacent rifted segments.  相似文献   

7.
Based on new multi-channel seismic data, swath bathymetry, and sediment echosounder data we present a model for the interaction between strike-slip faulting and forearc basin evolution off north-western Sumatra between 2°N and 7°N. We examined seismic sequences and sea floor morphology of the Simeulue- and Aceh forearc basins and the adjacent outer arc high. We found that strike-slip faulting has controlled the forearc basin evolution since the Late Miocene. The Mentawai Fault Zone extends up to the north of Simeulue Island and was most probably connected farther northwards to the Sumatran Fault Zone until the end of the Miocene. Since then, this northern branch jumped westwards, initiating the West Andaman Fault in the Aceh area. The connection to the Mentawai Fault Zone is a left-hand step-over. In this transpressional setting the Tuba Ridge developed. We found a right-lateral strike-slip fault running from the conjunction of the West Andaman Fault and the Tuba Ridge in SSW-direction crossing the outer arc high. As a result, extrusion formed a marginal basin north of Simeulue Island which is tilted eastwards by uplift along a thrust fault in the west. The shift of strike-slip movement in the Aceh segment is accompanied by a relocation of the depocenter of the Aceh Basin to the northwest, forming one major Neogene unconformity. The Simeulue Basin bears two major Neogene unconformities, documenting that differences in subsidence evolution along the northern Sumatran margin are linked to both forearc-evolution related to subduction processes and to deformation along major strike-slip faults.  相似文献   

8.
敦密断裂带白垩纪两期重要的变形事件   总被引:1,自引:1,他引:0  
本文报道了敦密断裂带糜棱岩中黑云母~(40)Ar/~(39)Ar定年结果和大规模走滑-逆冲断裂的几何学、运动学特征及其形成时代,以便揭示断裂带两期变形事件的构造属性。黑龙江省密山市花岗质糜棱岩中黑云母~(40)Ar/~(39)Ar加权平均年龄为132.2±1.2Ma,它是敦密断裂带经历伸展事件的冷却年龄,也是东北亚大陆边缘在早白垩世Hauterivian期-Albian期发生强烈区域伸展作用的产物。密山市至辽宁省清原县系列大型走滑-逆冲断层和断层相关褶皱揭示出在晚白垩世晚期-末期发生右旋走滑-逆冲事件,该事件规模大,影响范围广,导致整个断裂带遭受到强烈改造,形成对冲式断裂系统。将研究区走滑-逆冲断裂与山东省郯庐断裂带中段挤压构造对比,认为郯庐断裂带北段和中段在晚白垩世末期都发生了强烈的走滑-逆冲事件,它们具有相同的构造特征和构造属性。  相似文献   

9.
We describe and compare the two transform zones that connect the Icelandic rift segments and the mid-Atlantic Ridge close to the Icelandic hot spot, in terms of geometry of faulting and stress fields. The E–W trending South Iceland Seismic Zone is a diffuse shear zone with a Riedel fault pattern including N0°–N20°E trending right-lateral and N60°–N70°E trending left-lateral faults. The dominant stress field in this zone is characterised by NW–SE extension, in general agreement with left-lateral transform motion. The Tjörnes Fracture Zone includes three major lineaments at different stages of development. The most developed, the Húsavík–Flatey Fault, presents a relatively simple geometry with a major fault that trends ESE–WNW. The stress pattern is however complex, with two dominant directions of extension, E–W and NE–SW on average. Both these extensions are compatible with the right-lateral transform motion and reveal different behaviours in terms of coupling. Transform motion has unambiguous fault expression along a mature zone, a situation close to that of the Tjörnes Fracture Zone. In contrast, transform motion along the immature South Iceland Seismic Zone is expressed through a more complicate structural pattern. At the early stage of the transform process, relatively simple stress patterns prevail, with a single dominant stress field, whereas, when the transform zone is mature, moderate and low coupling situations may alternate, as a function of volcanic–tectonic crises and induce changes in stress orientation.  相似文献   

10.
The Ericiyes Basin is a trans‐tensional basin situated 20 km north of the regional Ecemi? Fault Zone. Recently it has been hypothesized that faulting within the Erciyes Basin links with the Ecemi? Fault Zone further south as part of a regional Central Anatolian Fault Zone. New 40Ar/39Ar dating of volcanic and volcaniclastic rocks adjacent to faults, both along the margins and in the centre of the Erciyes Basin, constrains the timing of basin inception and later faulting. Extensional faulting occurred along the eastern and western margins of the basin during the Early Messinian (latest Miocene). Sinistral and minor normal faulting were active along the axis of the basin during the early Pleistocene. These fault timings are similar to those inferred for the Ecemi? Fault Zone further south, and support the hypothesis that faulting within the Erciyes Basin and the Ecemi? Fault Zone are indeed linked.  相似文献   

11.
The Tuva-Mongolia Massif is a composite Precambrian terrane incorporated into the Palaeozoic Sayany-Baikalian belt. Its Neoproterozoic amalgamation history involves early (800 Ma) and late Baikalian (600–550 Ma) orogenic phases. Two palaeogeographic elements are identified in the early Baikalian stage — the Gargan microcontinent and the Dunzhugur oceanic arc. They are represented by the Gargan Glyba (Block) and the island-arc ophiolites overthrusting it. The Gargan Glyba is a two-layer platform comprising an Early Precambrian crystalline basement and a Neoproterozoic passive-margin sedimentary cover. The upper part comprises olistostromes deposited in a foreland basin during the early Baikalian orogeny. The Dunzhugur arc ophiolite form klippen fringing the Gargan Glyba, and show a comprehensive oceanic-arc ophiolite succession. The Dunzhugur arc faced the microcontinent, as shown by the occurrence of forearc complexes. The arc–continent collision followed a pattern similar to Phanerozoic collisions. When the marginal basin lithosphere had been completely subducted, the microcontinental edge partially underthrust the arc, and the forearc ophiolite overrode it. Continued convergence caused a break of the arc lithosphere resulting in the uplift of the submerged microcontinental margin with the overthrust forearc ophiolites sliding into the foreland basin. Owing to the lithospheric break, a new subduction zone, inclined beneath the Gargan microcontinent, emerged. Initial melts of the newly-formed continental arc are represented by tonalites intruded into the Gargan microcontinent basement and its cover, and into the ophiolite nappe. The tonalite Rb–Sr mineral isochron age is 812±18 Ma, which is similar to a U–Pb zircon age of 785±11 Ma. A period of tonalite magmatism in Meso–Cenozoic orogenic belts is recognized some 1–10 m.y. after the collision. Accordingly, the Dunzhugur island arc–Gargan microcontinent collision is conventionally dated at around 800 Ma. It is highly probable that in the early Neoproterozoic, the Gargan continental block was part of the southern (in modern coordinates) margin of the Siberia craton. It is suggested that a chain of Precambrian massifs represents an elongate block separated from Siberia in the late Neoproterozoic. The Tuva-Mongolia Massif is situated in the northwest part of this chain. These events occurred on the NE Neoproterozoic margin of Rodinia, facing the World Ocean.  相似文献   

12.
Eastern Indonesia is the zone of interaction between three converging megaplates: Eurasia, the Pacific and Indo-Australia. The geological basis for interpretations of the Tertiary tectonic evolution of Eastern Indonesia is reviewed, and a series of plate tectonic reconstructions for this region at 5 million year intervals covering the last 35 million years is presented.The oldest reconstruction predates the onset of regional collisional deformation. At this time a simple plate configuration is interpreted, consisting of the northward-moving Australian continent approaching an approximately E–W oriented, southward-facing subduction zone extending from the southern margin of the Eurasian continent eastwards into the Pacific oceanic domain. Beginning at about 30 Ma the Australian continental margin commenced collision with the subduction zone along its entire palinspastically-restored northern margin, from Sulawesi in the west to Papua New Guinea in the east. From this time until ca 24 Ma, the Australian continent indented the former arc trend, with the northward convergence of Australia absorbed at the palaeo-northern boundary of the Philippine Sea Plate (the present-day Palau-Kyushu Ridge).At ca 24 Ma the present-day pattern of oblique convergence between the northern margin of Australia and the Philippine Sea Plate began to develop. At about this time a large portion of the Palaeogene colliding volcanic arc (the future eastern Philippines) began to detach from the northern continental margin by left-lateral strike slip. From ca 18 Ma oblique southward-directed subduction commenced at the Maramuni Arc in northern New Guinea. At ca 12 Ma the Sorong Fault Zone strike-slip system developed, effectively separating the Philippines from the Indonesian tectonic domain. The Sorong Fault Zone became inactive at ca 6 Ma, since which time the tectonics of eastern Indonesia has been dominated by the anticlockwise rotation of the Bird’s Head structural block by some 30–40°.Contemporaneously with post-18 Ma tectonism, the Banda Arc subduction–collision system developed off the northwestern margin of the Australian continent. Convergence between Indo-Australia and Eurasia was accommodated initially by northward subduction of the Indian Ocean, and subsequently, since ca 8 Ma, by the development of a second phase of arc-continent collision around the former passive continental margin of NW Australia.  相似文献   

13.
The junction angle between the western Charlie-Gibbs transform fault and the spreading axis of the Mid-Atlantic Ridge diverges by 40° from the orthogonal intersection assumed in many studies of plate boundaries. This has been established by a surface-ship reconnaissance and by mapping fault trends in a transponder-navigated deep-tow survey of the fracture valley 25 km from the intersection. One set of normal faults trends 325–330°, parallel to the obliquely spreading ridge axis, and another set trends 275°, parellel to the direction of relative plate motion. Although the near-bottom survey was in the theoretically inactive part of the fracture zone, beyond the transform fault section, there is evidence for recent motion on faults that cut the thick sediment fill of the fracture valley.Oblique spreading of a ridge axis near a transform fault may result from distortion of the regional stress field by a strike-slip couple. Tension parallel to the long axis of the strike-slip strain ellipse, which is responsible for oblique normal faulting in transform valleys, causes oblique dike injection and oblique faulting in the axial rift valley. These effects extend further from transfrom fault intersections on slow-spreading ridges than on fast-spreading rises.  相似文献   

14.
南海地质构造与油气资源   总被引:12,自引:0,他引:12       下载免费PDF全文
文章对南海海盆的边缘构造、盆内的断裂构造以及岛弧与弧后盆地的构造特征进行了论述。指出南海海盆喜马拉雅期构造层、基底及盖层特点。根据陆缘扩张观点将珠江口盆地的沉积盖层在扩张型陆缘演化阶段划分为第1扩张旋回(K2-E13)、第2扩张旋回(E23-N11)和第3扩张旋回(N21),上述3个旋回控制着生、储.盖的分布。东沙断隆亦是如此。南沙断块区的礼乐断块盆地以及曾母地堑带的曾母地堑盆地和万安地堑盆地均具有含油气远景。  相似文献   

15.
The timing of Svalbard's assembly in relation to the mid‐Paleozoic Caledonian collision between Baltica and Laurentia remains contentious. The Svalbard archipelago consists of three basement provinces bounded by N–S‐trending strike–slip faults whose displacement histories are poorly understood. Here, we report microstructural and mineral chemistry data integrated with 40Ar/39Ar muscovite geochronology from the sinistral Vimsodden‐Kosibapasset Shear Zone (VKSZ, southwest Svalbard) and explore its relationship to adjacent structures and regional deformation within the circum‐Arctic. Our results indicate that strike–slip displacement along the VKSZ occurred in late Silurian–Early Devonian and was contemporaneous with the beginning of the main phase of continental collision in Greenland and Scandinavia and the onset of syn‐orogenic sedimentation in Silurian–Devonian fault‐controlled basins in northern Svalbard. These new‐age constraints highlight possible links between escape tectonics in the Caledonian orogen and mid‐Paleozoic terrane transfer across the northern margin of Laurentia.  相似文献   

16.
Magnetic anomaly and seismological data define segments of active seafloor spreading and associated magnetic lineations trending ENE in the Woodlark Basin. The total opening rate has been approximately 6 cm/yr for the last 1 m.y. Spreading rates diminish by over 10% from east to west along the Woodlark spreading system implying a pole of current opening 15°–20° to the west. Commencement of seafloor spreading in the basin has apparently been time-transgressive, beginning prior to 3.5 m.y. in the east, and at successively later times to the west. Earthquake focal mechanisms and geological evidence suggest that the land areas bounding the western end of the Woodlark Basin are undergoing tensional deformation. We believe that eventually the Woodlark Basin plate boundary will propagate westward through the d'Entrecasteaux Islands into the Papuan peninsula. Hitherto unreported shallow seismicity associated with the northern margin of the NE-trending section of the Woodlark Rise probably reflects partial decoupling of the Woodlark and Solomon basins, possibly due to mechanical difficulties in subducting the young Woodlark lithosphere.Analysis of the relative motions between the Solomon, Indo-Australian, and Pacific plates shows that the Woodlark spreading system has been subducted at high rates (> 10 cm/yr) beneath the Solomon Islands during the opening of the Woodlark Basin. Several tectonic and geological features limited to the region of interaction of the Woodlark Basin with the Solomon Trench and arc may be symptomatic of ridge subduction. These features include high heat flow in the Solomon Trench, which shoals to 4 km; low levels of seismicity and only shallow hypocenters; and voluminous eruptions of high olivine basalts and basaltic andesites extremely close to the trench axis. This close association in space and time of an unusual volcanic suite with ridge subduction implies a strong dependence of the petrogenesis on the tectonic regime.A combination of this study of the Woodlark Basin and the previous study of the Bismarck Basin (Taylor, 1979) provides a reconstruction of the positions of the continents, ocean basins, and island chains in northern Melanesia for mid-Pliocene time. In accepting the existence of a Solomon plate, we can explain the trench-like structure off the Trobriand margin of New Guinea, the occurrence of Late Cenozoic calc-alkaline volcanism along the Papuan peninsula, and the presence of intermediate depth seismicity beneath the north Papuan peninsula. The rapid changes in relative motions along or across the New Ireland-Solomons chain over the past 3.5 m.y. may explain the spatial and temporal changes in igneous activity observed on these islands.  相似文献   

17.
Deformational, metamorphic, monazite age and fabric data from Rengali Province, eastern India converge towards a multi-scale transpressional deformational episode at ca. 498–521 Ma which is linked with the latest phase of tectonic processes operative at proto-India-Antarctica join. Detailed sector wise study on mutual overprinting relationships of macro-to microstructural elements suggest that deformation was regionally partitioned into fold-thrust dominated shortening zones alternating with zones of dominant transcurrent deformation bounded between the thrust sense Barkot Shear Zone in the north and the dextral Kerajang Fault Zone in the south. The strain partitioned zones are further restricted between two regional transverse shear zones, the sinistral Riamol Shear Zone in the west and the dextral Akul Fault Zone in the east which are interpreted as synthetic R and antithetic R' Riedel shear plane, respectively. The overall structural disposition has been interpreted as a positive flower structure bounded between the longitudinal and transverse faults with vertical extrusion and symmetric juxtaposition of mid-crustal amphibolite grade basement gneisses over low-grade upper crustal rocks emanating from the central axis of the transpressional belt.  相似文献   

18.
In response to at least one change in the direction of sea-floor spreading, the Juan de Fuca Ridge and Gorda Rise have rotated approximately 20° clockwise with respect to geographic North during the last 10 million years. The rotation histories of these ridge segments have been determined from the ages and azimuths of linear magnetic anomalies within the corresponding “zed” patterns. In each case the rotations were systematic and occurred between about 9 and 3 Ma B.P. Significantly, the rotations occurred in a number of discrete stages during each of which the rates of rotation were approximately constant; rotation rates range from 1.3 to 8.6°/Ma.Though the rotation histories of these spreading centers are generally similar, some changes in the rotation rates are not synchronous, and until 3 Ma B.P., the Juan de Fuca Ridge had a 5–10° more easterly trend than the Gorda Rise. For the last 3 million years both ridge segments have had stable trends near 19°E of North.On a time scale of millions of years, ridge reorientation may be regarded as a continuous process wherein the rotation of the spreading center results from asymmetric spreading. Discontinuous changes in the degree of asymmetric spreading are required to account for observed changes in rotation rate. If the orthogonal arrangement of spreading centers and transform faults represents a least-work condition in which the resistance to plate motions is minimized by minimizing the lengths of ridge segments, as suggested previously, and if the rate at which the system seeks to reduce the total resistance after a change in spreading direction is maximum, it follows that the degree of asymmetric spreading, and hence the rate of rotation, are inversely proportional to the resistance to motion on transform faults. Thus, the various stages of rotation of the Juan de Fuca Ridge and Gorda Rise probably reflect different stress conditions on the Blanco Fracture Zone.It is difficult to account for the different trends of the Juan de Fuca Ridge and Gorda Rise largely because the Gorda Block is not behaving as a rigid plate and because the Mendocino Fracture Zone is not a transform fault. However, the fact that the Gorda Rise has had a stable trend for 3 million years, in spite of the deformation of an adjacent plate, suggests that the motion of the Gorda Block is not controlled by the motions of the vast Pacific and North American Plates, and that the Driving mechanism is “felt” directly at the ridge.  相似文献   

19.
Zircon fission track (ZFT), apatite fission track (AFT) and (U–Th)/He thermochronometric data are used to reconstruct the Cenozoic exhumation history of the South China continental margin. A south to north sample transect from coast to continental interior yielded ZFT ages between 116.6 ± 4.7 Ma and 87.3 ± 4.0, indicating that by the Late Cretaceous samples were at depths of 5–6 km in the upper crust. Apatite FT ages range between 60.9 ± 3.6 and 37.3 ± 2.3 Ma with mean track lengths between 13.26 ± 0.16 µm and 13.95 ± 0.19 µm whilst AHe ages are marginally younger 47.5 ± 1.9–15.3 ± 0.5 Ma. These results show the sampled rocks resided in the top 1–1.5 km of the crust for most of the Cenozoic. Thermal history modeling of the combined FT and (U–Th)/He datasets reveal a common three stage cooling history which differed systematically in timing inland away from the rifted margin. 1) Initial phase of rapid cooling that youngs to the north, 2) a period of relative (but not perfect) thermal stasis at ~ 70–60 °C which increases in duration from the south to the north; 3) final-stage cooling to surface temperatures that initiated in all samples between 15 and 10 Ma. The timing and pattern of rock uplift and erosion does not fit with conventional passive margin landscape models that require youngest exhumation ages to be concentrated at or close to the rifted margin. The history of South China margin is more complex aided by weakened crust from the active margin period that immediately preceded rifting and opening of the South China Sea. This rheological inheritance created a transition zone of steeply thinned crust that served as a flexural filter disconnecting the northern margin of the South China block and site of active rifting to the south. Consequently whilst the South China margin displays many features of a rifted continental margin its exhumation history does not conform to conventional images of a passive margin.  相似文献   

20.
New geological, geochronological and isotopic data reveal a previously unknown arc system that evolved south of the Kyrgyz Middle Tianshan (MTS) microcontinent during the Middle and Late Ordovician, 467–444 Ma ago. The two fragments of this magmatic arc are located within the Bozbutau Mountains and the northern Atbashi Range, and a marginal part of the arc, with mixed volcanic and sedimentary rocks, extends north to the Semizsai metamorphic unit of the southern Chatkal Range. A continental basement of the arc, indicated by predominantly felsic volcanic rocks in Bozbutau and Atbashi, is supported by whole-rock Nd- and Hf-in-zircon isotopic data. εNd(t) of + 0.9 to − 2.6 and εHf(t) of + 1.8 to − 6.0 imply melting of Neo- to Mesoproterozoic continental sources with Nd model ages of ca. 0.9 to 1.2 Ga and Hf crustal model ages of ca. 1.2 to 1.7 Ga. In the north, the arc was separated from the MTS microcontinent by an oceanic back-arc basin, represented by the Karaterek ophiolite belt. Our inference of a long-lived Early Palaeozoic arc in the southwestern MTS suggests an oceanic domain between the MTS microcontinent and the Tarim craton in the Middle Ordovician.The time of arc-continent collision is constrained as Late Ordovician at ca. 450 Ma, based on cessation of sedimentation on the MTS microcontinent, the age of an angular unconformity within the Karaterek suture zone, and the age of syncollisional metamorphism and magmatism in the Kassan Metamorphic Complex of the southern Chatkal Range. High-grade amphibolite-facies metamorphism and associated crustal melting in the Kassan Metamorphic Complex restricts the main tectonic activity in the collisional belt to ca. 450 Ma. This interpretation is based on the age of a synkinematic amphibolite-facies granite, intruded into paragneiss during peak metamorphism. A second episode of greenschist- to kyanite–staurolite-facies metamorphism is dated between 450 and 420 Ma, based on the ages of granitoid rocks, subsequently affected or not affected by this metamorphism. The latest episode is recorded by greenschist-facies metamorphism in Silurian sandstones and granodiorites and by retrogression of the older, higher-grade rocks. This may have occurred at the Silurian to Devonian transition and reflects reorganization of a Middle Palaeozoic convergent margin.Late Ordovician collision was followed by initiation of a new continental arc in the southern MTS. This arc was active in the Early Silurian, latest Silurian to Middle Devonian, and Late Carboniferous, whereas during the Givetian through Mississippian (ca. 385–325 Ma) this area was a passive continental margin. These arcs, previously well constrained west of the Talas-Ferghana Fault, continued eastwards into the Naryn and Atbashi areas and probably extended into the Chinese Central Tianshan. The disappearance of a major crustal block with transitional facies on the continental margin and too short a distance between the arc and accretionary complex suggest that plate convergence in the Atbashi sector of the MTS was accompanied by subduction erosion in the Devonian or Early Pennsylvanian. This led to a minimum of 50–70 km of crustal loss and removal of the Ordovician arc as well as the Silurian and Devonian forearcs in the areas east of the Talas-Ferghana Fault.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号