首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Remotely-sensed satellite data of Landsat 5 (TM) and IRS-1A (LISS II) covering parts of central portion of Chotanagapur plateau have been analysed visually to delineate some prominent lineaments in Ranchi district and its adjoining area. One of the most prominent lineament “Ranchi mega lineament? has been analysed in this paper. This lineament is a potential site for base metal mineralisation at some places, and it acts as good groundwater conduit in the region. No earlier attempt to map this entire structural unit as a separate entity is known. Geophysical bouguer gravity anomaly map, lithological and structural maps have some remarkable correlation with this lineament. In the present paper authors have tried to analyse the lineament with respect to its tectonic, mineralisation and groundwater prospects. Resistivity survey carried in close proximity of this lineament at selected sites, indicate that rocks are well fractured at depth. Available lithological and structural map support this lineament as a shear near Purulia (W.B.) and also having base-metal mineralisation potential in this area. Authors opine that existing gravity anomaly map may be further augmented in the light of present study.  相似文献   

2.
Synoptivity and the exemplified fracture systems exhibited by the space borne imagery data has helped in solving many of the geological enigma in various parts of the world. The study conducted, using such remotly sensed data, in Jhalawar anticline, part of Proterozoic Cratonic Vindhyan Basin, Rajasthan, India, led to infer the history of tectonic evolution of peribasinal deformation which has been a matter of controversy for a century and more. In Landsat MSS data the Jhalawar region displays a panorama of lineaments and their analysis through azimuthal frequency diagrams, isofracture, lineament incidence and lineament intersection incidence density maps shows that the mean orientation of the lineaments fall in NW-SE and NE-SW and the shape of the various lineament density contours also show NE-SW and NW-SE orientations. In aerial photographs the area exhibits four sets of lineaments in NE-SW, NW-SE, N-S and E-W directions. Amongst these the former two sets are expressed as wide open master fracture systems with prolific vegetation fills along them and the latter two sets are characteristically observed as thin vegetation linears with frequent strike slip faulting along them. The further analysis of these fracture/lineament systems derived from multi-level remote sensing data shows that the Jhalawar anticline, which followed the pattern of flexural slip fold mechanism, was evolved by horizontally disposed σ1 (greatest principal stress) and 3σ (least principal stress) with the former oriented in NE-SW and the latter aligned in NW-SE directions with vertically disposed 2σ. The inference of such palaeostress environment of the Jhalawar region lead in the identification of a buried rigid basement high southwest of Jhalawar anticline, beneath the Deccan pile and loci of ground water, silica sand and probable igneous plug.  相似文献   

3.
The Precambrian metamorphites of Northeastern Rajasthan belonging to Pre-Aravalli, Aravalli and Delhi Supergroups exhibit a mature topography where the physiography has faithfully depicted the major structures of area. Few important megalineaments demarcated on the imagery either represent major fault zones or the zones of intense granitic activity. Some of these are oblique to the regional strike of rocks and support drainage running in diagonally opposite direction within the same lineament, indicating thereby upheavels subsequent to the lineament formation. The lineaments fall broadly in two sets which are correlatable to the two major phases of Delhi orogeny. The lineaments of the first set trend NE-SW and are more prominent: than the NW-SE and WNW-ESE running lineaments. The major lineaments such as Sabi-Sota, Mendha and Kakor-Lalsot lineament together with other regional lineaments depict appreciable geomorphological expressions and significant geological evidences.  相似文献   

4.
The study area comprises Bundelkhand Granite of Archaean age in the east, unconformably overlain by Upper Vindhyan sequence, ranging from Upper Kaimur Sandstone to Lower Bhander Sandstone Groups, in the west. Geomorphologically, the area has been divided into three geomorphic provinces viz. (1) Bundelkhand inselberg — pediplain, (2) Vindhyan structural plateau, consisting of two major sub-levels of Upper and Lower Bhander Sandstone Groups and two minor sub-levels of Upper and Lower Rewa Sandstone Groups, separated by escarpment and/or valleys, and (3) Chambal alluvial plain. Photo-interpretation and field studies indicate that there are three sets of lineament trends in the area out of which the NNW-SSE trend comes out very strongly on imagery and is correlatable with basement fracture trend of Bundelkhand massif. The synoptic view through imagery also gives the impression that the course of Chambal river towards north and west is controlled by a major lineament, possibly a regional fault trending NE-SW. The NNW-SSE lineament trend mentioned above then probably reflects tension release aspect of the faulting. The field check has brought out some very broad, gentle warps also with NNE-SSW trend in the area. The paper presents the salient observations on geological, structural and geomorphological studies for Shivpuri area based on remote-sensing techniques and their utility for such regional investigations.  相似文献   

5.
Geological interpretation of the area northwes tof Poona was carried out with the help of Multiband LANDSAT-1 imagery. An area of about 2800 sq. km which is exclusively covered by the Deccan Trap basalts was selected to study the lineament pattern. The interpretation was mainly carried out on a scale of 1:270,000. It has been observed that N50°E and mean N-S are the most prominent linear directions in the area. Field evidences have shown that these directions represent the fracture zones which have controlled linear valleys, elongated ridges and linearly arranged truncated spurs. The mean N-S trend observed in the area can be interpreted as a trend parallel to the basement (Dharwar) trend while the N50°E trend can be explained as a manifestation of Satpura trend.  相似文献   

6.
A detailed accuracy assessment of the geopotential model Jgm3 is made based on independent single- and dual-satellite sea-height differences at crossovers from altimetry with Jgm3-based orbits. These differences, averaged over long time spans and in latitude bands, are converted to spectra (latitude-lumped coefficients) by least-squares estimation. The observed error spectra so obtained are then compared directly to error projections for them from the Jgm3 variance–covariance matrix. It is found from these comparisons that Jgm3 is generally well calibrated with respect to the crossover altimetry of and between Geosat, TOPEX/Poseidon (T/P), and Ers 1. Some significant discrepancies at a few lower orders (namely m=1 and 3) indicate a need for further improvement of Jgm3. A companion calibration (by order) of the geopotential model Jgm2 shows its variance–covariance matrix also to be generally well calibrated for the same single- and dual-satellite altimeter data sets (but based on Jgm2 orbits), except that the error projections for Geosat are too pessimistic. The analysis of the dual-satellite crossovers reveals possible relative coordinate system offsets (particularly for Geosat with respect to T/P) which have been discussed previously. The long-term detailed seasonally averaged Geosat sea level with respect to T/P (covering 1985–1996) should be useful in gauging the relative change in sea level between different parts of the ocean over the single 4-year gap between these missions (1988–1992). Received: 16 February 1998 / Accepted: 25 November 1998  相似文献   

7.
The study area is one of the watersheds of North Pennar basin, covering an area of 570 km2 in Pavagada taluk of Tumkur district. The watershed has been subdivided into nine sub-watersheds namely Dalavayihalli, Maddalenahalli, Talamaradahalli, Puluvalli tank, Nagalamadike, Gowdatimmanahalli, Naliganahalli, Devadabetta and Byadanur. These nine sub-watersheds have been evaluated to delineate groundwater potential zones based on the characteristics of geomorphic units together with slope, geology, lineaments, borewell data using Remote Sensing and Geographic Information System (GIS) techniques. Slope varies from nearly level (0–1%) to very steep (>35%). The different geomorphic units in each sub-watershed consist of denudational hills, residual hills, inselbergs, pediment inselberg complex, pediments, shallow weathered pediplains, moderately weathered pediplains and valley fills. The lineament map for each sub-watershed has been prepared and the trends were analysed with rose diagrams. The analysis of borewell locations and their yield data in association with lineaments at subwatersheds level reveals that the lineaments are acting as a pathway for groundwater movement. The integrated map comprising groundwater potential zones prepared by “Union” function using GIS indicate that valley fills and moderately weathered pediplains are very good to good, shallow weathered pediplains are good to moderate, pediment inselberg complex and pediments are moderate to poor and denudational hills, residual hills and inselbergs are poor to very poor groundwater prospect zones.  相似文献   

8.
Karst formation geometry can be controlled by fractures and faults, and by other lithologies. Here we show the organization of kastic collapse features related to structures and to extensive basaltic lava flows in the Middle Atlas of Morocco. A lineament map of major faults and fractures has been created for the Middle Atlas using Landsat 7 ETM+ satellite images. This shows a dominant NE–SW regional direction and less prominent NNW–SSE and ENE–WSE directions. All these directions coincide with the alignments of karstic depressions that have formed in the Liassic limestones. The basaltic flows covering these formations on the Middle Atlas limestone plateau, have allowed the generation of cryptokarst, geometrically organized a long these major lineament directions. Karst landforms probabaly existed before the eruption of the lavas, but there were partly invaded by intrusions and volcanism. The extensive basaltic flows allowed for increased infiltration, and subsurface water flow, increasing the rate of kast formation after eruptions. Some basins show evidence of increased subsidence after lava emplacement (Aguelmam Sidi Ali Lake) and some maar-like craters also have subsided after eruption, by karts formation. We lay out the structural and lithological controls on Karstic formation in an intraplate volcanic field based on limestones and evaporites.  相似文献   

9.
The present work aims to identify, isolate, map and analyse the lineament patterns associated with the Great Boundary Fault (GBF) using remote sensing techniques and to draw some significant conclusions regarding its tectonogenesis therefrom. The locus of the line separating the two distinct patterns of structural trend lines observed on a structural trend map, prepared from the Landsat images, represents the ground disposition of the GBF. The rose diagram plotted for the lineament orientations of different sectors indicates that the whole area was subjected to a similar stress pattern, yet the intensity of stress in each sector was significantly different from the other. The lineament intersection density map clearly demarcates the areas of folding and faulting associated with the GBF. Tectonic anomalies plotted for the area through lineament analysis represent the signatures of prominent surface and sub-surface tectonic elements. The work presents an example for the study of a Precambrian fault system using remote sensing techniques.  相似文献   

10.
Meghalaya is a landlocked state where the progress of industrialization is very slow. Majority of the population (rural) depends on agriculture. Agriculture in the state is carried on in primitive ways with Jhumming prevailing in many parts. This practice is considered destructive as vast forest areas are cleared and burnt. Such areas are used for cultivation and left out. After a gap of few years (2–3 years as of now and 15–20 years in past) the area is revisited for cultivation without allowing to rejuvenate. The present work provides a status and trend of Land use land cover dynamics in parts (at watershed level) of Meghalaya. The geospatial tools have been used to assess (a) the changes in land use land cover since 1970s to 2005; (b) patch dynamics for understanding the degree of fragmentation; (c) changes along the terrain topography. Umngot watershed of Meghalaya is taken as experimental area, which is a representative of mid-altitudinal watershed particularly in the Jaintia hills district of Meghalaya.  相似文献   

11.
Spectral indices as an indicator of physiological traits affecting safflower yield in relation to soil variability were evaluated in a two year experiment (1997–1999). Reflectance, biometric and phonological data were collected. Two indices namely normalized differential vegetation index (NDVI) and ratio of spectral reflectance in infrared region to red region (1R/R) were derived from radiometric observation. Yield data indicated significant difference in different soils. Temporal NDVI behaviour as a function of soil type was not prominent especially in early stages of crop growth. However NDVI at 75 days after sowing (DAS) was found to be relatively better indicator of plant status and yield. IR/R was relatively less effective in indicating the differential response of crop to soil types. Effect of soil and crop interaction on spectral indices was significant at 75 and 90 DAS, which was attributed to attainment of maximum leaf area and leaf area at these stages of growth. Regression analysis showed strong positive relationship between NDVI and leaf area, dry matter and yield. IR/R and leaf area had the strongest and consistent relationship (r = 0.96). A single regression equation accounted for yield variability in the dataset. Thus possible transformation of NDVI maps (satellite data) to LAI units and consequently applications like yield forecasting was indicated. Utility of spectra-temporal data as a pointer of plant development status and yield was also demonstrated.  相似文献   

12.
The geological studies of the eastern parts of Harda-Barwah basin covering about 3000 sq. km area on 1∶50,000 scale have been carried out using satellite imagery of IRS (FCC), supplemented by Landsat TM/MSS scences and air photos. The present studies with the aid of satellite imagery and remote sensing techniques have brought out the regional stratigraphy and structure of the area and helped in deciphering the interrelationship of various rock groups in the Narmada lineament zone. The area comprises Archaean/Proterozoic gneisses, the Mahakoshal volcano sedimentary suite, the Harda granitoids, the Bijawar Group and the rocks of Vindhyan Supergroup, Deccan Trap and Quaternary sediments. The Archaean/Proterozoic rocks comprising gneisses and schist form basement. The Mahakoshal Group of rocks occur along the ENE-WSW to E-W trending Narmada lineament zone and comprise foliated quartzite, actinolite-chlorite-sericite phyllite and metabasics. The Harda granitoids showing intrusive relationship with earlier rocks, comprise coarse-grained crudely foliated grey to pink granites, fine to medium grained homogeneous granites and porphyritic granites. The Bijawar Group comprises quarzite, chert breccia and dolomite in the order of younging and shows unconformable relationship with the Mahakoshal and the Harda granitoids. The Bijawar rocks show doubly plunging major synformal structure and numerous sympathetic minor folds along ENE-WSW to E-W axis and cross folds along NW-SW axis. The Bijawar rocks are unconformably overlain by a sequence of sandstone and shales belonging to the Rewa Group of the Vindhyan Supergroup. The Deccan Trap lava flows represent the last igneous activity in the area. The Quaternary deposits comprising a cyclic sequence of sand, silt, clay and rock gravels of the Narmada river represent the youngest formation of the area.  相似文献   

13.
The study compared forest cover maps derived using coarse resolution vegetation continuous fields (MODIS VCF; 500m resolution) with the maps derived from medium resolution (24m; IRS LISS-III) data. The comparison of VCF, per cent tree cover product, for the years 2000 to 2004 with LISS III forest density class maps of 2001 and 2003 was carried out for two sites representing hilly (Uttarakhand) and undulating terrains (Madhya Pradesh). Slicing VCF to corresponding forest crown cover, i.e., 0–10%, 10–40%, 40–70% and >70% produced considerable difference in forest area estimates when compared to original LISS III derived crown cover area. The corresponding value range in VCF for 0–10% of actual forest cover were 0–31% and 0–25% in 2 sites respectively, and the respective limit was consistent at 1–20% when VCF range were sliced with respect to upscaled LISS III at 500m resolution. Similarly, all other class limits were also found through iterative process. These limits were similar, within a site, across five years. Spatial Kappa match between these two data indicated higher match in 40–70% class, and also in undulating site. When compared at same resolution, similar forest area cover estimated with weighted area upscaling gave closest match. The study is useful in knowing the usability and limits of VCF product, and utility of spatial Kappa.  相似文献   

14.
 On the basis of the data series of the length of day (LOD), the atmospheric angular momentum (AAM) and the Southern Oscillation Index (SOI) for January 1970–June 1999, the relationship among Interannual LOD, AAM, and the EL Ni?o/Southern Oscillation (ENSO) is analyzed by the wavelet transform method. The results suggest that they have similar time-varying spectral structures. The signals of 1997–98 El Ni?o and 1998–99 La Ni?a events can be detected from the LOD or AAM data. Received: 25 January 2000 / Accepted: 9 January 2001  相似文献   

15.
Groundwater being a valuable resource in today’s world needs proper evaluation and management for overall development within the region for its judicious use. The Baghmundi Block of Purulia district, West Bengal is within the hard rock terrain of Ayodhya hills and Matha Protected forest. The groundwater in this region is confined within the fracture zones and weathered residuum. Hydrogeomorphologically, the entire area is classified into following categories such as - i) Very shallow weathered pediment, ii) Moderately weathered pediment, iii) Valley fills, iv) Erosional gullies, v) Lateritic Upland and vi) Accumulation gullies. The hydrogeomorphic map of the area prepared by Department of Science and Technology, Govt. of West Bengal has been digitized for the present study. The lineament map has been prepared from the satellite imagery. The lineament map has also been digitized for the present study. From this the lineament density contour map has been prepared. An integrated remote sensing and Geographic Information System (GIS) based methodology has been used for the delineating Groundwater potential zones in the study area. Here the Geomorphology and Lineament density maps are overlaid following the Weighted Index Overlay Method, which delineates groundwater potential zones.  相似文献   

16.
Eddies and planetary waves are identified as one of the important factors that control the dynamics of the Arabian Sea. During 10–14 January 1990, Ignat, Paulyuchenkov (USSR ship) conducted an experiment in the central Arabian Sea and of late TOPEX/POSEIDON satellites collected data on sea surface height (SSH) anomalies of the Arabian Sea. These data sets give an opportunity to understand the characteristic of eddies and planetary waves in this region during winter. The geostrophic flow revealed three anticyclonic and two cyclonic eddies of diameters ranging from 75 to more than 150 km from surface to subsurface levels. Current speeds around different eddies were maximum at surface and varied from 9 cm/s to 25 cm/s (at the middle point between the center and periphery). The occurrence of eddies were further investigated with the TOPEX/POSEIDON altimetry for the years 1993–97. The analysis revealed multiple eddies of diameter 100 to 550 km occur every year with maximum number of eddies during 1997 and minimum during 1995. The calculated speed varied between 8–30 cm/s around various eddies. Longitude-Time plots showed annual Rossby waves generating at the eastern Arabian Sea and propagating westwards with a phase speed of ~ 10 cm/s along 16° N. Further, it was observed that these waves arrived in the study area by January. In addition, another positive anomaly of SSH was found generating at the western Arabian Sea simultaneously and extended up to the study region by April–June. Time series of SSH at selected locations along 16°N revealed many small-scale oscillations and their spatial variability. These oscillations were delineated using the FFT analysis. Other than the Rossby wave, the major components at the study region were 40–60 and 26–32 day oscillations. The implications of these long period waves associated with eddies are discussed.  相似文献   

17.
Optical and microwave remote sensing data are used in conjunction with a digital elevation model to map lineaments in the central parts of the Aravalli region, Rajasthan, western India. Lineament maps interpreted from each data-set are subsequently combined to derive a composite lineament map of the area. Rose plots are used to identify the prominent trends of the lineaments and compared with published structural map of the study area. Three major trends are identified, namely, the NE–SW, NNE–SSW and EW, which are interpreted to be, related to the DF1, DF2 and DF4 deformation phases identified by the previous workers through field studies. The lineaments are classified as fold axes or faults, and a total of 10-fold axes and 30 faults mapped in the area.  相似文献   

18.
The 2001 Bhuj earthquake (Mw 7.7), one of the most severe earthquakes in the recent history of India, reactivated various existing active faults. It is manifested in the form of coseismic ground fissures/cracks and upheaval of land in the form of bumps. Identification and reactivation of Loriya Fault is established by 1—Geomorphic changes with the help of digital imagery (LISS III images). 2—Coseismic changes through ground checks and 3—Geophysical signatures through magnetic and gravity survey. A lineament cutting the north-western part of the Pur River alluvial fan has been revealed by satellite imagery. The streams flowing along the lineament add to the evidences of a weak plane, while the occurrence of coseismic ground fissures confirms the existence of an active fault. No dip slip movement is recorded in the trenches made across the Loriya active fault while the en-echelon pattern of ground fissures suggest strike slip movement along the fault due to 2001 earthquake.  相似文献   

19.
Recently, four global geopotential models (GGMs) were computed and released based on the first 2 months of data collected by the Gravity field and steady-state Ocean Circulation Explorer (GOCE) dedicated satellite gravity field mission. Given that GOCE is a technologically complex mission and different processing strategies were applied to real space-collected GOCE data for the first time, evaluation of the new models is an important aspect. As a first assessment strategy, we use terrestrial gravity data over Switzerland and Australia and astrogeodetic vertical deflections over Europe and Australia as ground-truth data sets for GOCE model evaluation. We apply a spectral enhancement method (SEM) to the truncated GOCE GGMs to make their spectral content more comparable with the terrestrial data. The SEM utilises the high-degree bands of EGM2008 and residual terrain model data as a data source to widely bridge the spectral gap between the satellite and terrestrial data. Analysis of root mean square (RMS) errors is carried out as a function of (i) the GOCE GGM expansion degree and (ii) the four different GOCE GGMs. The RMS curves are also compared against those from EGM2008 and GRACE-based GGMs. As a second assessment strategy, we compare global grids of GOCE GGM and EGM2008 quasigeoid heights. In connection with EGM2008 error estimates, this allows location of regions where GOCE is likely to deliver improved knowledge on the Earth’s gravity field. Our ground truth data sets, together with the EGM2008 quasigeoid comparisons, signal clear improvements in the spectral band ~160–165 to ~180–185 in terms of spherical harmonic degrees for the GOCE-based GGMs, fairly independently of the individual GOCE model used. The results from both assessments together provide strong evidence that the first 2 months of GOCE observations improve the knowledge of the Earth’s static gravity field at spatial scales between ~125 and ~110 km, particularly over parts of Asia, Africa, South America and Antarctica, in comparison with the pre-GOCE-era.  相似文献   

20.
At the beginning of the twenty-first century, a technological change took place in geodetic astronomy by the development of Digital Zenith Camera Systems (DZCS). Such instruments provide vertical deflection data at an angular accuracy level of 0.̋1 and better. Recently, DZCS have been employed for the collection of dense sets of astrogeodetic vertical deflection data in several test areas in Germany with high-resolution digital terrain model (DTM) data (10–50 m resolution) available. These considerable advancements motivate a new analysis of the method of astronomical-topographic levelling, which uses DTM data for the interpolation between the astrogeodetic stations. We present and analyse a least-squares collocation technique that uses DTM data for the accurate interpolation of vertical deflection data. The combination of both data sets allows a precise determination of the gravity field along profiles, even in regions with a rugged topography. The accuracy of the method is studied with particular attention on the density of astrogeodetic stations. The error propagation rule of astronomical levelling is empirically derived. It accounts for the signal omission that increases with the station spacing. In a test area located in the German Alps, the method was successfully applied to the determination of a quasigeoid profile of 23 km length. For a station spacing from a few 100 m to about 2 km, the accuracy of the quasigeoid was found to be about 1–2 mm, which corresponds to a relative accuracy of about 0.05−0.1 ppm. Application examples are given, such as the local and regional validation of gravity field models computed from gravimetric data and the economic gravity field determination in geodetically less covered regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号