首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The impacts of climate change on river flood risk at the global scale   总被引:6,自引:0,他引:6  
This paper presents an assessment of the implications of climate change for global river flood risk. It is based on the estimation of flood frequency relationships at a grid resolution of 0.5?×?0.5°, using a global hydrological model with climate scenarios derived from 21 climate models, together with projections of future population. Four indicators of the flood hazard are calculated; change in the magnitude and return period of flood peaks, flood-prone population and cropland exposed to substantial change in flood frequency, and a generalised measure of regional flood risk based on combining frequency curves with generic flood damage functions. Under one climate model, emissions and socioeconomic scenario (HadCM3 and SRES A1b), in 2050 the current 100-year flood would occur at least twice as frequently across 40 % of the globe, approximately 450 million flood-prone people and 430 thousand km2 of flood-prone cropland would be exposed to a doubling of flood frequency, and global flood risk would increase by approximately 187 % over the risk in 2050 in the absence of climate change. There is strong regional variability (most adverse impacts would be in Asia), and considerable variability between climate models. In 2050, the range in increased exposure across 21 climate models under SRES A1b is 31–450 million people and 59 to 430 thousand km2 of cropland, and the change in risk varies between ?9 and +376 %. The paper presents impacts by region, and also presents relationships between change in global mean surface temperature and impacts on the global flood hazard. There are a number of caveats with the analysis; it is based on one global hydrological model only, the climate scenarios are constructed using pattern-scaling, and the precise impacts are sensitive to some of the assumptions in the definition and application.  相似文献   

2.
Regional climates are a major factor in determining the distribution of many species. Anthropogenic inputs of greenhouse gases into the atmosphere have been predicted to cause rapid climatic changes in the next 50–100 years. Species such as the Gila trout (Oncorhynchus gilae) that have small ranges, limited dispersal capabilities, and narrow physiological tolerances will become increasingly susceptible to extinction as their climate envelope changes. This study uses a regional climate change simulation (Leung et al., Clim Change 62:75–113, 2004) to determine changes in the climate envelope for Gila trout, which is sensitive to maximum temperature, associated with a plausible scenario for greenhouse gas increases. These regional climate changes are downscaled to derive surface temperature lapse rates using regression models. This procedure indicates that suitable, warm season habitat for Gila trout will be reduced by 70% by decreasing the size of their climate envelope. Warmer temperatures coupled with a decrease in summer precipitation would also tend to increase the intensity and frequency of forest fires that are a major threat to their survival. The climate envelope approach utilized here could be used to assess climate change threats to other rare species with limited ranges and dispersal capabilities.  相似文献   

3.
The ecosystems in the Arctic region are known to be very sensitive to climate changes. The accelerated warming for the past several decades has profoundly influenced the lives of the native populations and ecosystems in the Arctic. Given that the K?ppen-Trewartha (K-T) climate classification is based on reliable variations of land-surface types (especially vegetation), this study used the K-T scheme to evaluate climate changes and their impact on vegetation for the Arctic (north of 50°N) by analyzing observations as well as model simulations for the period 1900–2099. The models include 16 fully coupled global climate models from the Intergovernmental Panel on Climate Change Fourth Assessment. By the end of this century, the annual-mean surface temperature averaged over Arctic land regions is projected to increase by 3.1, 4.6 and 5.3°C under the Special Report on Emissions Scenario (SRES) B1, A1b, and A2 emission scenarios, respectively. Increasing temperature favors a northward expansion of temperate climate (i.e., Dc and Do in the K-T classification) and boreal oceanic climate (i.e., Eo) types into areas previously covered by boreal continental climate (i.e., Ec) and tundra; and tundra into areas occupied by permanent ice. The tundra region is projected to shrink by ?1.86?×?106?km2 (?33.0%) in B1, ?2.4?×?106?km2 (?42.6%) in A1b, and ?2.5?×?106?km2 (?44.2%) in A2 scenarios by the end of this century. The Ec climate type retreats at least 5° poleward of its present location, resulting in ?18.9, ?30.2, and ?37.1% declines in areal coverage under the B1, A1b and A2 scenarios, respectively. The temperate climate types (Dc and Do) advance and take over the area previously covered by Ec. The area covered by Dc climate expands by 4.61?×?106?km2 (84.6%) in B1, 6.88?×?106?km2 (126.4%) in A1b, and 8.16?×?106?km2 (149.6%) in A2 scenarios. The projected redistributions of K-T climate types also differ regionally. In northern Europe and Alaska, the warming may cause more rapid expansion of temperate climate types. Overall, the climate types in 25, 39.1, and 45% of the entire Arctic region are projected to change by the end of this century under the B1, A1b, and A2 scenarios, respectively. Because the K-T climate classification was constructed on the basis of vegetation types, and each K-T climate type is closely associated with certain prevalent vegetation species, the projected large shift in climate types suggests extensive broad-scale redistribution of prevalent ecoregions in the Arctic.  相似文献   

4.
为揭示气候变化对云南省小粒咖啡适生区的影响,基于最大熵(MaxEnt)模型,结合小粒咖啡物种分布数据、环境变量数据,构建云南省小粒咖啡适生区评估及预测模型,对当前气候条件下小粒咖啡在云南省的适生区进行评估,并对未来气候条件下,小粒咖啡在云南省的适生区进行预测,再对预测结果进行对比分析。结果显示:(1)构建的最大熵模型能够较精确地用于小粒咖啡在云南省适生区的评估和预测,当前气候条件下,评估模型的训练集与测试集的AUC (Area under ROC Curve)值均为0.941,达到评估结果为极好的标准。(2)影响云南省小粒咖啡种植的主导环境因子依次为11月平均最高气温、7月降雨量、海拔高度、2月平均最低气温、10月降雨量、坡度和最冷月最低气温,共占总贡献率的91.4%。(3)当前气候条件下,小粒咖啡的适生区主要分布在滇西、滇西南以及滇南的保山、德宏、普洱、临沧、西双版纳等地区,总适生区约为116300 km2,占云南省国土面积的29.51%,且总体上,高适生区外围分布中适生区,中适生区外围分布低适生区。RCP4.5、RCP8.5情景下,小粒咖啡总适生区的面积分别约为98300、69700 km2,分别占云南省国土面积的24.95%、17.69%,两种排放情景下小粒咖啡总适生区面积分别减少了18000、46600 km2,国土面积占比分别减少了4.56%、11.82%,且总适生区的质心均由东南向西北方向移动,与RCP4.5情景相比,RCP8.5情景的移动距离更远。(4)未来气候变化将会导致小粒咖啡在云南省的总适生区面积减小,总适生区的质心位置向海拔更高与纬度更高的方向移动,且高碳排放情景下这种变化幅度更大。   相似文献   

5.
Spatial models of present-day mountain permafrost probability were perturbed to examine potential climate change impacts. Mean annual air temperature (MAAT) changes were simulated by adjusting elevation in the models, and cloud cover changes were examined by altering the partitioning of direct beam and diffuse radiation within the calculation for potential incoming solar radiation (PISR). The effects of changes in MAAT on equilibrium permafrost distribution proved to be more important than those due to cloud cover. Under a ?2 K scenario (approximating Little Ice Age conditions), permafrost expanded into an additional 22?C43% of the study areas as zonal boundaries descended by 155?C290 m K???1. Under warming scenarios, permafrost probabilities progressively declined and zonal boundaries rose in elevation. A MAAT change of +5 K, caused two of the areas to become essentially permafrost-free. The absolute values of these predictions were affected up to ±10% when lapse rates were altered by ±1.5 K km???1 but patterns and trends were maintained. A higher proportion of diffuse radiation (greater cloud cover) produced increases in permafrost extent of only 2?C4% while decreases in the diffuse radiation fraction had an equal but opposite effect. Notwithstanding the small change in overall extent, permafrost probabilities on steep south-facing slopes were significantly impacted by the altered partitioning. Combined temperature and PISR partitioning scenarios produced essentially additive results, but the impact of changes in the latter declined as MAAT increased. The modelling illustrated that mountain permafrost in the discontinuous zone is sensitive spatially to long-term climate change and identified those areas where changes may already be underway following recent atmospheric warming.  相似文献   

6.
Simulating the impacts of climate change on cotton production in India   总被引:1,自引:0,他引:1  
General circulation models (GCMs) project increases in the earth’s surface air temperatures and other climate changes by the mid or late 21st century, and therefore crops such as cotton (Gossypium spp L.) will be grown in a much different environment than today. To understand the implications of climate change on cotton production in India, cotton production to the different scenarios (A2, B2 and A1B) of future climate was simulated using the simulation model Infocrop-cotton. The GCM projections showed a nearly 3.95, 3.20 and 1.85 °C rise in mean temperature of cotton growing regions of India for the A2, B2 and A1B scenarios, respectively. Simulation results using the Infocrop-cotton model indicated that seed cotton yield declined by 477 kg?ha?1 for the A2 scenario and by 268 kg?ha?1 for the B2 scenario; while it was non-significant for the A1B scenario. However, it became non-significant under elevated [CO2] levels across all the scenarios. The yield decline was higher in the northern zone over the southern zone. The impact of climate change on rainfed cotton which covers more than 60 % of the country’s total cotton production area (mostly in the central zone) and is dependent on the monsoons is likely to be minimum, possibly on account of marginal increase in rainfall levels. Results of this assessment suggest that productivity in northern India may marginally decline; while in central and southern India, productivity may either remain the same or increase. At the national level, therefore, cotton production is unlikely to change with climate change. Adaptive measures such as changes in planting time and more responsive cultivars may further boost cotton production in India.  相似文献   

7.
Lake expansion since the middle of the 1990s is one of the most outstanding environmental change events in the Tibetan Plateau (TP). This expansion has mainly occurred in the Inner TP, a vast endorheic basin with an area of about 708,000 km2 and containing about 780 lakes larger than 1 km2. The total lake area of the Inner TP has increased from 24,930 km2 in 1995 to 33,741 km2 in 2015. The variability of the lake area in the coming decades is crucial for infrastructure planning and ecology policy for this remote region. In this study, a lake mass balance model was developed to describe the lake area response to climate change. First, the model was used to inversely estimate the change in precipitation from the change in lake volume. The result shows that precipitation has increased by about 21?±?7% since the middle of the 1990s, as seen in GPCC global data set. Then, the lake size in the coming two decades was predicted by the model driven with either current climate or a projected future climate, showing the lake area would expand continuously, but at a lower rate than before. Both predictions yield a total lake area of 36150?±?500 km2 in 2025 and a rise of average lake level by about 6.6?±?0.3 m from 1995 to 2025. However, the two predictions become disparate in the second decade (2026–2035), as the future climate is more warming and wetting than the current climate. It is noted that the prediction of lake expansion is robust for the entire inner TP lake system but not always applicable to individual subregions or specific lakes due to their spatiotemporal heterogeneity.  相似文献   

8.
Spatially precise forecasts of the impacts of climate change on the distribution of major vegetation types are essential for the implementation of effective conservation and land use policy. However, existing studies frequently omit major sources of climate variability that can significantly increase the uncertainty of projections. In this study we demonstrate how different predictions for sea surface temperature (SST) for the first half of the twenty-first century increase the uncertainty associated with forecasts of the future distribution of major ecosystems in South America. This is demonstrated through a numerical experiment using a coupled climate–vegetation model (CCM3-IBIS) for IPCC emission scenario A2 that incorporates the SST data from ten different models. The study reveals an increasing uncertainty in the ability to forecast future vegetation patterns, such that by 2050 the simulation is unable to robustly forecast the vegetation cover in an area equivalent to 28 % in South America (5?×?106 km2). The future of the central and northeastern regions of Brazil is especially uncertain, with outcomes, ranging from savanna, and open shrubland to grassland. Recognizing and managing such uncertainty should be a priority for decision makers.  相似文献   

9.
The impact of climate-induced discharge change on fish habitats, based on 1951–2008 time series, was investigated within the crystalline catchment of the Grosse Mühl River in Northern Austria. A significant trend change of air temperature, based on Mann–Whitney statistical testing, was recorded for spring 1989 (P?=?98.9 %) and summer 1990 (P?=?99.9 %). This led to a pronounced increase in summer low flow periods. Hydrodynamic-numerical (one-dimensional/two-dimensional) modelling was applied to simulate the changing habitat characteristics due to decreasing discharge in relation to various morphological patterns (riffle-pool/plane-bed reaches). Using bathymetric data, which were sampled on cross sectional measurements, we clearly determined that plane-bed reaches (featureless bed forms) are sensitive to climate-related, reduced discharge, whereas riffle-pool reaches continued to exhibit suitable physical fish habitats even under extreme low-flow conditions. The impact of the decreased summer discharge on instream habitats was strong for subadult and adult grayling which have been used as target fish species. In situ measurements in microhabitats (velocity/depth) revealed habitat suitabilities. These values were taken as biotic input for habitat evaluation on the micro scale. The findings clearly show that river morphology is a decisive parameter in terms of habitat preservation and restoration in the context of the future impacts of climate change (decreased discharge).  相似文献   

10.
The nuclear energy response for mitigating global climate change across 18 participating models of the EMF27 study is investigated. Diverse perspectives on the future role of nuclear power in the global energy system are evident in the broad range of nuclear power contributions from participating models of the study. In the Baseline scenario without climate policy, nuclear electricity generation and shares span 0–66 EJ/year and 0–25 % in 2100 for all models, with a median nuclear electricity generation of 39 EJ/year (1,389 GWe at 90 % capacity factor) and median share of 9 %. The role of nuclear energy increased under the climate policy scenarios. The median of nuclear energy use across all models doubled in the 450 ppm CO2e scenario with a nuclear electricity generation of 67 EJ/year (2,352 GWe at 90 % capacity factor) and share of 17 % in 2100. The broad range of nuclear electricity generation (11–214 EJ/year) and shares (2–38 %) in 2100 of the 450 ppm CO2e scenario reflect differences in the technology choice behavior, technology assumptions and competitiveness of low carbon technologies. Greater clarification of nuclear fuel cycle issues and risk factors associated with nuclear energy use are necessary for understanding the nuclear deployment constraints imposed in models and for improving the assessment of the nuclear energy potential in addressing climate change.  相似文献   

11.
The aim of this work was to study the forest fire potential and frequency of forest fires under the projected climate change in Finland (N 60°–N 70°). Forest fire index, generally utilized in Finland, was used as an indicator for forest fire potential due to climatological parameters. Climatic scenarios were based on the A2 emission scenario. According to the results, the forest fire potential will have increased by the end of this century; as a result of increased evaporative demand, which will increase more than the rise in precipitation and especially in southern Finland. The annual number of forest fire alarm days is expected to increase in southern Finland to 96–160 days by the end of this century, compared to the current 60–100 days. In the north, the corresponding increase was from 30 to 36 days. The expected increase in the annual frequency of forest fires over the whole country was about 20% by the end of this century compared to the present day. The greatest increase in the frequency of fires, per 1,000 km2, was in the southernmost part of the country, with six to nine fires expected annually per 1,000 km2 at the end of this century, meaning a 24–29% increase compared to the present day frequencies.  相似文献   

12.
In this paper we assess the impact of climate change, at a micro-scale for a selection of four sites in New Zealand and Australia. These sites are representative of the key destination ski regions. In contrast to previous work, our work will for the first time, allow for a direct comparison between these two countries and enable both an estimate of the absolute impacts at a given site, as well as the relative impacts between the two countries. This direct comparison is possible because we have used exactly the same snow model, the same 3 global climate models (GCMs) and the same techniques to calibrate the model for all locations. We consider the changes in natural snow at these locations for the 2030–2049 and 2080–2099 time periods, for one mid-range emissions scenario (A1B). This future scenario is compared to simulations of current, 1980–1999, snow at these locations. We did not consider the snowmaking or economic components of the ski industry vulnerability, only the modelled changes in the natural snow component. At our New Zealand sites, our model indicates that by the 2040s there will be on average between 90 % and 102 % of the current maximum snow depth (on 31 August) and by the 2090s this will be on average reduced to between 46 % and 74 %. In Australia, our models estimates that by the 2040s there will be on average between 57 % and 78 % of the current maximum snow depth and by the 2090s this will be on average further reduced to between 21 % and 29 %. In terms of days with snowdepths equal to or exceeding a ski industry useable levels of 0.30 m, at our lowest elevation, and most sensitive sites, we observe a change from 125 days (current) to 99–126 (2040s) and 52–110 (2090s) in New Zealand. In Australia, a reduction from 94 to 155 days (current) to 81–114 (2040s) and 0–75 (2090s) is observed. In each case the changes are highly depended on the GCM used to drive the climate change scenario. While the absolute changes will have direct impacts at each location, so too will the relative changes with respect to future potential Australia–New Zealand tourism flows, and beyond. Our study provides an approach by which other regions or countries with climate sensitive tourism enterprises could assess the relative impacts and therefore the potential wider ranging ramifications with respect to destination attractiveness.  相似文献   

13.
We made projections of relative sea-level rise, horizontal inundation, and the associated impacts on people and infrastructure in the coastal portion of the Mid- and Upper-Atlantic Region (MUAR) of the United States. The output of five global climate models (GCMs) run under two greenhouse gas scenarios was used in combination with tide gauge observations to project sea-level increases ranging from 200 to 900 mm by 2100, depending on location, GCM and scenario. The range mainly reflects equal contributions of spatial variability (due to subsidence) and GCM uncertainty, with a smaller fraction of the range due to scenario uncertainty. We evaluated 30-m Digital Elevation Models (DEMs) using 10-m DEMs and LIDAR data at five locations in the MUAR. We found average RMS differences of 0.3 m with the 10-m DEMs and 1.2 m with the LIDAR data, much lower than the reported mean RMS errors of 7 m for the 30-m DEMs. Using the 30-m DEMs, the GCM- and scenario-means of projected sea-level rise, and local subsidence estimates, we estimated a total inundation of 2,600 km2 for the MUAR by 2100. Inundation area increases to 3,800 km2 at high tide if we incorporate local tidal ranges in the analysis. About 510,000 people and 1,000 km of road lie within this area. Inundation area per length of coastline generally increases to south, where relative sea-level rise is greater and relief is smaller. More economically developed states, such as New York and New Jersey, have the largest number of people and infrastructure exposed to risk of inundation due to sea-level rise.  相似文献   

14.
Since the 1970s, the crested porcupine Hystrix cristata has shown a marked range expansion in Italy. A web page has been created to collect occurrences of this species to monitor its distribution redefinition. Thus, aims of this work were (i) to identify the main predictors promoting the distribution of this large rodent in Italy and (ii) to predict its potential expansion under future climate change scenarios. A total of 1674 locations were used for this analysis, i.e., all those collected through the web page, with the exception of recently introduced populations (Sardinia, Western Liguria and Province of Varese). The current distribution of the crested porcupine covers a total of 135,177 km2, as estimated through ensemble predictions. Future climate change scenarios for 2050 and 2070 show that a further range expansion by this species would occur up to 225,576 km2, mainly towards areas where the species was historically absent. The increase of isothermality (i.e., the ratio between the mean diurnal and the annual temperature range) and the mean temperature of the driest months would help crested porcupines to reach high altitudes, e.g., in the Alps. In mountain habitats, the ongoing global warming is shifting the distribution of European forests to high elevations, thus potentially providing porcupines with suitable habitats. A reduction in snow cover and the snow period at ground level would remove an important barrier to the range expansion of the crested porcupine in Italy, and thus facilitate digging and food search by this large rodent. Despite being protected at national and international levels, the crested porcupine is reported to be an introduced species to Italy and, therefore, monitoring its range expansion is required. Furthermore, there are complaints about crop damage in agriculture ecosystems, and the species is still widely poached, thus additional management practices are required. Thus, given the conservation interest of this large rodent, an integrated and constantly updated monitoring system that sustains an addressed set of decision-making tools is recommended.  相似文献   

15.
The influence of changes in winds over the Amundsen Sea has been shown to be a potentially key mechanism in explaining rapid loss of ice from major glaciers in West Antarctica, which is having a significant impact on global sea level. Here, Coupled Model Intercomparison Project Phase 5 (CMIP5) climate model data are used to assess twenty-first century projections in westerly winds over the Amundsen Sea (U AS ). The importance of model uncertainty and internal climate variability in RCP4.5 and RCP8.5 scenario projections are quantified and potential sources of model uncertainty are considered. For the decade 2090–2099 the CMIP5 models show an ensemble mean twenty-first century response in annual mean U AS of 0.3 and 0.7 m s?1 following the RCP4.5 and RCP8.5 scenarios respectively. However, as a consequence of large internal climate variability over the Amundsen Sea, it takes until around 2030 (2065) for the RCP8.5 response to exceed one (two) standard deviation(s) of decadal internal variability. In all scenarios and seasons the model uncertainty is large. However the present-day climatological zonal wind bias over the whole South Pacific, which is important for tropical teleconnections, is strongly related to inter-model differences in projected change in U AS (more skilful models show larger U AS increases). This relationship is significant in winter (r = ?0.56) and spring (r = ?0.65), when the influence of the tropics on the Amundsen Sea region is known to be important. Horizontal grid spacing and present day sea ice extent are not significant sources of inter-model spread.  相似文献   

16.
Stakeholders within the Yakima River Basin expressed concern over impacts of climate change on mid-Columbia River steelhead (Oncorhynchus mykiss), listed under the Endangered Species Act. We used a bioenergetics model to assess the impacts of changing stream temperatures—resulting from different climate change scenarios—on growth of juvenile steelhead in the Yakima River Basin. We used diet and fish size data from fieldwork in a bioenergetics model and integrated baseline and projected stream temperatures from down-scaled air temperature climate modeling into our analysis. The stream temperature models predicted that daily mean temperatures of salmonid-rearing streams in the basin could increase by 1–2 °C and our bioenergetics simulations indicated that such increases could enhance the growth of steelhead in the spring, but reduce it during the summer. However, differences in growth rates of fish living under different climate change scenarios were minor, ranging from about 1–5 %. Because our analysis focused mostly on the growth responses of steelhead to changes in stream temperatures, further work is needed to fully understand the potential impacts of climate change. Studies should include evaluating changing stream flows on fish activity and energy budgets, responses of aquatic insects to climate change, and integration of bioenergetics, population dynamics, and habitat responses to climate change.  相似文献   

17.
The large uncertainty in future global glacier volume projections partly results from a substantial range in future climate conditions projected by global climate models. This study addresses the effect of global and regional differences in climate input data on the projected twenty-first century glacier contribution to sea-level rise. Glacier volume changes are calculated with a surface mass balance model combined with volume-area scaling, applied to 89 glaciers in different climatic regions. The mass balance model is based on a simplified energy balance approach, with separated contributions by net solar radiation and the combined other fluxes. Future mass balance is calculated from anomalies in air temperature, precipitation and atmospheric transmissivity, taken from eight global climate models forced with the A1B emission scenario. Regional and global sea-level contributions are obtained by scaling the volume changes at the modelled glaciers to all glaciers larger than 0.1 km2 outside the Greenland and Antarctic ice sheets. This results in a global value of 0.102 ± 0.028 m (multi-model mean and standard deviation) relative sea-level equivalent for the period 2012–2099, corresponding to 18 ± 5 % of the estimated total volume of glaciers. Glaciers in the Antarctic, Alaska, Central Asia and Greenland together account for 65 ± 4 % of the total multi-model mean projected sea-level rise. The projected sea-level contribution is 35 ± 17 % larger when only anomalies in air temperature are taken into account, demonstrating an important compensating effect by increased precipitation and possibly reduced atmospheric transmissivity. The variability in projected precipitation and atmospheric transmissivity changes is especially large in the Arctic regions, making the sea-level contribution for these regions particularly sensitive to the climate model used. Including additional uncertainties in the modelling procedure and the input data, the total uncertainty estimate for the future projections becomes ±0.063 m.  相似文献   

18.
In this paper we study an isolated high-mountain (Sierra Nevada, SE Iberian Peninsula) to identify the potential trends in the habitat-suitability of five key species (i.e. species that domain a given vegetation type and drive the conditions for appearance of many other species) corresponding to four vegetation types occupying different altitudinal belts, that might result from a sudden climatic shift. We used topographical variables and downscaled climate warming simulations to build a high-resolution spatial database (10 m) according to four different climate warming scenarios for the twenty-first century. The spatial changes in the suitable habitat were simulated using a species distribution model, in order to analyze altitudinal shifts and potential habitat loss of the key species. Thus, the advance and receding fronts of known occurrence locations were computed by introducing a new concept named differential suitability, and potential patterns of substitution among the key species were established. The average mean temperature trend show an increase of 4.8°C, which will induce the vertical shift of the suitable habitat for all the five key species considered at an average rate of 11.57 m/year. According to the simulations, the suitable habitat for the key species inhabiting the summit area, where most of the endemic and/or rare species are located, may disappear before the middle of the century. The other key species considered show moderate to drastic suitable habitat loss depending on the considered scenario. Climate warming should provoke a strong substitution dynamics between species, increasing spatial competition between both of them. In this study, we introduce the application of differential suitability concept into the analysis of potential impact of climate change, forest management and environmental monitoring, and discuss the limitations and uncertainties of these simulations.  相似文献   

19.
A shift in climatic conditions may directly modify critical organismal traits (such as reproductive output and offspring phenotypes), and experimental studies to document such direct effects thus may clarify the impacts of climate change on the species involved. The endangered Blue Mountains Water Skink (Eulamprus leuraensis) exhibits several traits predicted to imperil it under climate change: ectothermy, low reproductive output, specialisation to a restricted habitat type, montane endemicity, and a small geographic range. Congeneric species exhibit temperature-dependent sex determination, increasing potential sensitivity to climate change. We maintained wild-caught female lizards throughout pregnancy under thermal conditions simulating a shift in basking-time availability (3 vs 7 h/day) as might occur under climate change. Females with longer basking opportunities per day gave birth 2 weeks earlier, to slightly smaller offspring, that grew much faster in the first few weeks of life. Importantly, offspring sex ratios were not affected by maternal thermal regimes. Hence, some traits (e.g., offspring size, growth rates, dates of birth) are sensitive to ambient thermal conditions whereas other traits (e.g., offspring sex ratio and sprint speed) are not. On balance, the greatest threat to population persistence for E. leuraensis under climate change is likely to involve indirect effects mediated via habitat degradation (especially, drying-out of the hanging swamps) rather than direct thermal effects on lizard reproductive output or offspring phenotypes.  相似文献   

20.
An integrated process involving participatory and modelling approaches for prioritizing and evaluating climate change adaptation options for the Kangsabati reservoir catchment is presented here. We assess the potential effects of climate change on water resources and evaluate the ability of stakeholder prioritized adaptation options to address adaptation requirements using the Water Evaluation And Planning (WEAP) model. Two adaptation options, check dams and increasing forest cover, are prioritized using pair-wise comparison and scenario analysis. Future streamflow projections are generated for the mid-21st century period (2021–2050) using four high resolution (~25 km) Regional Climate Models and their ensemble mean for SRES A1B scenario. WEAP simulations indicate that, compared to a base scenario without adaptation, both adaptation options reduce streamflow. In comparison to check dams, increasing forest cover shows greater ability to address adaptation requirements as demonstrated by the temporal pattern and magnitude of streamflow reduction. Additionally, over the 30 year period, effectiveness of check dams in reducing streamflow decreases by up to 40 %, while that of forest cover increases by up to 47 %. Our study highlights the merits of a comparative assessment of adaptation options and we conclude that a combined approach involving stakeholders, scenario analysis, modelling techniques and multi-model projections may support climate change adaptation decision-making in the face of uncertainty.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号