首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The electron cyclotron waves that originate at low altitudes (<0.5 RE) and observed by ground facilities have been studied in the presence of a weak parallel electric field in auroral magnetoplasma consisting of trapped energetic auroral electrons and cold background electrons of ionospheric origin. The model distribution for auroral trapped electrons is taken as Maxwellian ring distribution. An expression for the growth rate has been obtained in the presence of parallel electric field assuming that the real frequency in the whistler mode is not affected by the presence of the electric field. The results show that waves grow (or damp) in amplitude for a parallel (or antiparallel) electric field. The influence of the electric field is more pronounced at a shorter wavelength spectrum. An increase in population of energetic electrons increases the growth rate and thus, plays a significant role in the wave excitation process in the auroral regions.  相似文献   

2.
We have modeled the effect of a direct current (DC) electric field on the propagation of seismic waves by the pseudospectral time domain (PSTD) method, based on a set of governing equations for the poroelastic media. This study belongs to the more general term of the seismoelectric coupling effect. The set of physical equations consists of the poroelastodynamic equations for the seismic waves and the Maxwell's equations for the electromagnetic waves; the magnitude of the seismoelectric coupling effect is characterized by the charge density, the electric conductivity, the Onsager coefficient, a function of the dielectric permittivity, the fluid viscosity, and the zeta potential. The poroelastodynamic vibration of a solid matrix generates an electric oscillation with the form of streaming current via the fluctuation of pore pressure. Meanwhile, fluctuating pore pressure also causes oscillatory variation of the electric resistivity of the solid matrix. The simulated poroelastic wave propagation and electric field variation with an existing background DC electric field are compared with the results of a physical experiment carried out in an oilfield. The results show that the DC electric field can significantly affect the propagating elastic energy through the seismoelectric coupling in a wide range of the seismic frequency band.  相似文献   

3.
The electron component of intensive electric currents flowing along the geomagnetic field lines excites turbulence in the thermal magnetospheric plasma. The protons are then scattered by the excited electromagnetic waves, and as a result the plasma is stable. As the electron and ion temperatures of the background plasma are approximately equal each other, here electrostatic ion-cyclotron (EIC) turbulence is considered. In the nonisothermal plasma the ion-acoustic turbulence may occur additionally. The anomalous resistivity of the plasma causes large-scale differences of the electrostatic potential along the magnetic field lines. The presence of these differences provides heating and acceleration of the thermal and energetic auroral plasma. The investigation of the energy and momentum balance of the plasma and waves in the turbulent region is performed numerically, taking the magnetospheric convection and thermal conductivity of the plasma into account. As shown for the quasi-steady state, EIC turbulence may provide differences of the electric potential of δ V ≈ 1–10 kV at altitudes of 500 < h < 10 000 km above the Earth’s surface. In the turbulent region, the temperatures of the electrons and protons increase only a few times in comparison with the background values.  相似文献   

4.
Abstract

We study the nonlinear stability of MHD waves propagating in a two-dimensional, compressible, highly magnetized, viscous plasma. These waves are driven by a weak, shear body force which could be imposed by large scale internal fluctuations present in the solar atmosphere.

The effects of anisotropic viscosity (leading to a cubic damping) and of the nonlinear coupling of the Alfven and the magnetoacoustic waves are analysed using Galerkin and multiple-scale analysis: the MHD equations are reduced to a set of nonlinear ordinary differential equations which is then suitably truncated to give a model dynamical system, representing the interaction of two complex Galerkin modes.

For propagation oblique to the background magnetic field, analytical integration shows that the low-wavenumber mode is physically unstable. For propagation parallel to the background magnetic field the high-wavenumber wave can undergo saddlenode bifurcations, in way that is similar to the van der Pol oscillator; these bifurcations lead to the appearance of a hysteresis cycle.

A numerical integration of the dynamical system shows that a sequence of Hopf bifurcations takes place as the Reynolds number is increased, up to the onset of nonperiodic behaviour. It also shows that energy can be transferred from the low- wavenumber to the high-wavenumber mode.  相似文献   

5.
— To understand geomagnetic effects on systems with long conductors it is necessary to know the electric field those systems experience. For surface conductors such as power systems and pipelines this can easily be calculated from the magnetic field variations at the surface using the surface impedance of the earth. However, for calculating the electric fields in pipelines and submarine cables at the seafloor it is necessary to take account of the attenuating effect of the conducting seawater. Assuming that the fields are vertically propagating plane waves, we derive the transfer functions between the electric and magnetic fields at the seafloor and the magnetic field variations at the sea surface. These transfer functions are then used, with surface magnetic field data, to determine the power spectra of the seafloor magnetic and electric fields in a shallow sea (depth 100 m) and in the deep ocean (depth 5 km) for different values of the Kp magnetic activity index. For the period range considered (2 min to 3 hrs) the spectral characteristics of the seafloor magnetic and electric fields for a 100 m deep sea are very similar to those of the surface fields. For the deep ocean the seafloor spectra show a faster decrease in spectral density with increasing frequency compared to the surface fields. The results obtained are shown to be consistent with seafloor observations. Assessment of the seafloor electric fields produced by different levels of geomagnetic activity can be useful in the design of the power feed equipment for submarine cables and cathodic protection for undersea pipelines.  相似文献   

6.
A 54.95-MHz coherent backscatter radar, an ionosonde and the magnetometer located at Trivandrum in India (8.5○N, 77○E, 0.5○N dip angle) recorded large-amplitude ionospheric fluctuations and magnetic field fluctuations associated with a Pc5 micropulsation event, which occurred during an intense magnetic storm on 24 March 1991 (Ap=161). Simultaneous 100-nT-level fluctuations are also observed in the H-component at Brorfelde, Denmark (55.6○N gm) and at Narsarsuaq, Greenland (70.6○N gm). Our study of the above observations shows that the E-W electric field fluctuations in the E- and F-regions and the magnetic field fluctuations at Thumba are dominated by a near-sinusoidal oscillation of 10 min during 1730–1900 IST (1200-1330 UT), the amplitude of the electric field oscillation in the equatorial electrojet (EEJ) is 0.1-0.25 mV m−1 and it increases with height, while it is about 1.0 mV m−1 in the F-region, the ground-level H-component oscillation can be accounted for by the ionospheric current oscillation generated by the observed electric field oscillation in the EEJ and the H-component oscillations at Trivandrum and Brorfelde are in phase with each other. The observations are interpreted in terms of a compressional cavity mode resonance in the inner magnetosphere and the associated ionospheric electric field penetrating from high latitudes to the magnetic equator.  相似文献   

7.
实际海面受风浪的影响是个随机起伏的复杂曲面.一个随机起伏的自由表面对地震波形成相当复杂的散射,进而影响波场在靶区的二次照明与成像结果;此外,起伏海面具有小尺度随机起伏的特性,难以用贴体网格等处理大尺度起伏地表的常规方法和技术对其进行逼近和处理.鉴于此,利用不等距有限差分法实现小尺度起伏海面的波场自由表面边界条件,以此进行正演、波场照明分析;利用逆时偏移(Reverse Time Migration,RTM)进行起伏海面下的成像并对成像结果进行分析.不同模型的试算结果表明:起伏海面引起的复杂散射使靶区地下照明不均匀、成像界面发生弯曲和畸变,从而降低成像结果的分辨率和信噪比.  相似文献   

8.
Compressible fluctuations in solar wind plasma are analyzed on the basis of the 1995–2010 WIND and Advanced Composition Explorer (ACE) spacecraft data. In the low-speed solar wind (V 0 < 430 km/s), correlations between fluctuations in the magnetic field direction and plasma density, as well as between velocity fluctuations and plasma density, are found. The covariance functions of these parameters calculated as functions of the local magnetic field direction are axially symmetric relative to the axis, which is oriented nearly along the regular magnetic field of the heliosphere (the Parker spiral). Fluctuations in the magnetic field and velocity are polarized in the plane that is orthogonal to the axis of symmetry. Plasma oscillations of these properties can be caused by fast magnetosonic waves propagating from the Sun along the Parker spiral.  相似文献   

9.
Fluctuations of short period in the atmospheric electric field were studied through the measurements of electric field and space charge density on the Mid-Pacific Ocean. The amplitude of fluctuation is about one third of the mean electric field, and the period mainly ranges from 2 to 5 min. The fluctuations are considered to be under the influence of spatial and temporal variation of space charge layer that possibly originates from the electrode effect above the sea surface. The unit of electrical irregularities in the atmosphere above the ocean has horizontal scale of the order of 1.5 km and indicates a tendency to become large as the wind speed increases. The vertical scale of space charge layer is estimated at several tens meters.  相似文献   

10.
根据中纬Wakkanai站与低纬Okinawa站的垂测数据,得出电离层峰区垂直漂移的频谱结构.结果表明,漂移除具有周期在24h之内的潮汐分量外,低纬站还呈现出值得特别注意的2.1d的周期振荡.作者认为,低纬垂直漂移的振荡行为,主要是电场的波动分量引起;这种波动电场包含潮汐振荡与行星波两日振荡的成分.峰值电子浓度的振荡最直接地是由中性大气温度控制;而峰高的波动起伏,则主要是电场振荡的结果.  相似文献   

11.
Data on observations of acoustic gravity waves and variations in the electric field strength in the surface layer of the atmosphere are presented. Analysis of the obtained data shows that synchronous variations in the pressure and electric field strength appear with the passage of a weather front, solar terminator, and in some other cases. It is seen that the amplitude of electric field perturbations is approximately proportional to the amplitude of variation in the pressure. A possible mechanism of generating electric field perturbations during the passage of microbaroms has been considered.  相似文献   

12.
An RH-560 rocket flight was conducted from Sriharikota rocket range (SHAR) (14°N, 80°E, dip 14°N) along with other experiments, as a part of equatorial spread F (ESF) campaign, to study the nature of irregularities in electric field and electron density. The rocket was launched at 2130 local time (LT) and it attained an apogee of 348 km. Results of vertical and horizontal electric field fluctuations are presented here. Scale sizes of electric field fluctuations were measured in the vertical direction only. Strong ESF irregularities were observed in three regions, viz., 160/190 km, 210/257 km and 290/330 km. Some of the valley region vertical electric field irregularities (at 165 km and 168 km), in the intermediate-scale size range, observed during this flight, show spectral peak at kilometer scales and can be interpreted in terms of the image striation theory suggested by Vickrey et al. The irregularities at 176 km do not exhibit any peak at kilometer scales and appear to be of a new type. Scale sizes of vertical electric field fluctuations showed a decrease with increasing altitude. The most prominent scales were of the order of a few kilometers around 170 km and a few hundred meters around 310 km. Spectra of intermediate-scale vertical electric field fluctuations below the base of the F region (210/257 km) showed a tendency to become slightly flatter (spectral index n = –2.1 ± 0.7) as compared to the valley region (n = –3.6 ± 0.8) and the region below the F peak (n = –2.8 ± 0.5). Correlation analysis of the electron density and vertical electric field fluctuations suggests the presence of a sheared flow of current in 160/330 km region.  相似文献   

13.
双声源激发随钻测井声电耦合波理论模拟   总被引:3,自引:2,他引:1       下载免费PDF全文
随钻单极源声波测井中,由于钻铤模式波的干扰而使地层纵波速度的测量变得困难.孔隙地层的声电转换物理效应给我们提供了通过测量转换电信号实现声学参数测量的可能性.针对随钻声电测井,采用Pride声电耦合方程组描述井外孔隙地层的声电耦合波场,考虑随钻环境条件下的边界条件,采用实轴积分法计算出了随钻声电测井瞬态响应的波场.计算结果表明,声电转换比与电缆声电测井量级相同,也说明随钻环境下声电效应是可应用的.但是,从得到的电场波形图中可以观察到,钻铤模式波成分虽有压制,但仍然存在.为了削弱钻铤模式波,鉴于钻铤的声波速度已知,我们尝试利用双发射源测井方法,通过控制源间距及合适的发射延迟时间对钻铤模式波进行进一步压制.结果表明,采用双源后的井内转换声场和电场波形中,钻铤模式波被有效地抑制,残余钻铤波的相对振幅明显减小,压制效果在电场波形中尤为明显,地层波的信噪比显著增强,有利于地层纵波速度的提取.  相似文献   

14.
均匀半空间瞬变电磁场直接时域响应数值分析   总被引:1,自引:0,他引:1       下载免费PDF全文
近源时域电磁场具有信号强、探测深度大和精度高等优点,但传统瞬变电磁场理论中偶极子近似在近源区会引起较大误差,推导瞬变电磁场直接时域解析式是解决这一问题的关键.本文在点电荷微元假设下通过时域格林函数,采用分离变量等方法推导出了上半空间一次有源波动场和反射波的时域解析式和下半空间二次无源波动场的时域解析式,结合均匀半空间瞬变电磁场的边界条件给出了均匀半空间瞬变电磁场的直接时域解析式,进而利用第一型曲线积分,通过沿回线源叠加推导出圆回线源在瞬变电磁场中的直接时域解析式.然后在半空间表面上,与传统的电偶极源假设下的表达式作了比较.数值结果表明两者在远源区的计算结果相差甚微,而近源区则存在很大误差.本文利用真正点元(点电荷)严密推导给出的均匀半空间表面上瞬变电磁场的直接时域解析式适用于全场区探测,克服了偶极子假设下只适用远场区的不足,为瞬变电磁法的进一步发展和实际勘探提供了新的理论基础.  相似文献   

15.
The phenomenon of acoustic waves inducing electric fields in porous media is called the seismoelectric effect. Earlier investigators proposed the usage of seismoelectric effect for well logging. Soil texture has a strong influence on the coupled wave fields during shallow surface explorations. In this article, we study the borehole pure shear‐horizontal wave and the coupling transverse‐electric field (acoustic–electrical coupling wave fields) in the partially saturated soil. Combined with related theories, we expand the formation parameters to partially saturated forms and discuss the influence of soil texture conditions on the seismoelectric wave fields. The results show that the elastic and electrical properties of porous media are sensitive to water saturation. The compositions of the acoustic and electric fields for different soil textures do not change, but the waveforms differ. We also use the secant integral method to simulate the interface‐converted electromagnetic waves. The results show that interface response strength is greatly influenced by soil texture. In addition, considering the sensitivity of the inducing electric field to fluid salinity, we also simulate the time‐domain waveforms of electric field for different pore fluid salinity levels. The results show that as the salinity increases, the electric field amplitude decreases monotonically. The above conclusions have certain significance for the application of borehole shear wave and its coupled electric fields for resource exploration, saturation assessment and groundwater pollution monitoring.  相似文献   

16.
Using hourly mean auroral electrojet indices for the past 20 years, we examine the seasonal and solar cycle variations of the AU and AL indices as well as the smaller time-scale fluctuations in these indices. The AU and AL indices maximize during summer and equinoctial months, respectively. By removing the effects of the solar conductance from the AU index, it is found that the electric field contribution to the AU index exhibits the same semiannual variation pattern as the AL index, indicating that the semiannual magnetic variations are controlled by the electric field. Since the auroral electrojets are mostly Hall currents flowing in the east–west direction, the fluctuations of the auroral electrojet indices can be interpreted in terms of fluctuations in the north–south component of the electric field and the Hall conductance. The AU fluctuation is largely due to that of the electric field, while the AL fluctuation is attributed to both the electric field and Hall conductance with their contributions being comparable. The high fluctuation of AL compared to that of AU is attributed to particle precipitation associated with substorm activity. However, the fluctuations of the electric field and conductance do not show any noticeable seasonal dependence. The variation pattern of the yearly mean AL index follows the mirror image of the AU index during the past 20 years, indicating that the absolute values of the two indices are proportional to each other. This suggests again that the electric field is the main modulator of magnetic disturbance. On the other hand, they show a tendency to become higher during the declining phase of the solar cycle. This is the same variation pattern confirmed from the aa index. However, the fluctuations of the electric field and the Hall conductance do not show any apparent dependence on the solar cycle.  相似文献   

17.
声电效应测井的有限差分模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
关威  姚泽鑫  胡恒山 《地球物理学报》2017,60(11):4516-4526
本文研究声电效应测井波场的有限差分模拟算法.忽略井外地层中诱导电磁场对孔隙弹性波的影响,将求解动电耦合波方程组的问题解耦,先计算孔隙弹性波,再计算其诱导电磁场.基于轴对称柱坐标系下的速度-应力交错网格,采用时域有限差分计算井孔流体声波和井外地层孔隙弹性波.将电磁场近似看作似稳场,基于轴对称柱坐标系下的5点式有限差分网格,求解不同时刻的电位Poisson方程,计算诱导电场.结果表明:本文算法可准确模拟频率6.0 kHz的声电效应测井全波;在声波测井频率范围内,电导率、动电耦合系数和动态渗透率的低频近似对伴随电磁场的计算影响不大;地层水平界面导致伴随反射斯通利波的电场和显著的界面电磁波,后者对于探测地层界面具有潜在的应用价值.  相似文献   

18.
基于简化的Pride理论模拟声电效应测井响应   总被引:3,自引:6,他引:3       下载免费PDF全文
针对声电效应测井问题,提出了一种全波列数值模拟方法.该方法忽略声电效应测井 时转换电场对声场的影响,并将电场视为似稳场.采用点声源模型,依据Biot理论得出了井外 孔隙介质声场的表达式,运用这些表达式和似稳电场近似方法,导出了声电效应测井时转换 电场的计算公式.在计算出的转换电场波形中,有伴随斯通利波的电场、伴随纵波和横波的 电场、和临界折射电磁波场.在25kHz以下的频率范围内,依据这种方法计算出来的声电转换 波波形与依据完整Pride理论计算的波形一致.  相似文献   

19.
We have performed a spectral analysis of variations in the E z component of a quasistatic electric field in the atmospheric surface layer in a wide band of internal gravity waves (from 5 min to 3 h) for quiet and seismically active conditions as well as high thunderstorm activity. Observational data of the field for September, 1999 and August–September, 2002, were used. It has been shown that, if there are no thunderstorms or earthquakes, the background spectrum includes oscillations with maxima at periods of T ∼ 1.8 and 1 h, 40, 30, 15, and 10–13 min. Their intensity in the range of periods of 0.5–3.0 h is two or more orders of magnitude higher than the intensity of maxima in the range of 5–30 min. Before earthquakes, with anomalies in diurnal variations of field intensity, there is a tendency of increased background spectrum at maxima noted there. In both ranges of oscillation periods, the spectral intensity increases by one to one and a half orders of magnitude. Under high thunderstorm activity, the variability is higher as compared to the spectra of earthquake precursors by both locations of maxima and their intensity. The intensity of maxima exceeds the maxima on the eve of earthquakes one to one and a half orders of magnitude in the range of periods 0.5–3.0 h and two and more orders of magnitude in the range of periods 5–30 min.  相似文献   

20.
The present paper reveals that the air contains electromagnetic energy of extremely low frequency, low amplitude as well as of a low phase speed. The energy is of great interest because of its impact on certain biological processes. It is created by the interaction of two well-known phenomena. The rotation of the earth generates 24 h periods currents in the magnetosphere, known as the Birkeland currents. The currents generate transverse electromagnetic waves (EM waves) propagating parallel to the geomagnetic field lines. Furthermore, the air and the earth crust contain electrons caused by the global electric circuit. The electric field vectors of the EM waves exert a force on these electrons, causing them to oscillate and thus generate currents of extremely low frequency both in the air and in the earth crust. A theoretical model of the system is presented and measurement techniques are described. Measurements have been performed during a six year period. The results of the performed measurements verified the theoretical model. Impact on biological processes is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号