首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
沿海海—气界面的化学物质交换   总被引:18,自引:1,他引:18  
高原 Duce  RA 《地球科学进展》1997,12(6):553-563
沿海海-气界面化学物质的交换对生物地球化学循环起着十分重要的作用。大气沉降过程是化学物质进入沿海区域的重要途径之一。物质平衡估算的结果指出,在某些沿海区域,经由大气输入的若干痕量物质的总量几乎相当于河流的输入量,有的甚至更多。大气沉降作用是一些沿海区域氮化物的重要来源,并与富营养化有紧密关系。  相似文献   

2.
A box model of mercury (Hg) cycling between the atmosphere and ocean is described and used to estimate Hg fluxes on a global scale (The Global/Regional Interhemispheric Mercury Model, GRIMM). Unlike previous simulations of this system, few assumptions are made concerning the rate of prominent marine biogeochemical processes affecting Hg (e.g., evasion, particle scavenging, and deep ocean burial). Instead, consistency with two observed atmospheric distributions was required: the interhemispheric gradient in total atmospheric Hg and the value for changes in the deposition of Hg from the atmosphere since industrialization observed in both hemispheres. Sensitivity analyses underscore the importance to modeling of the atmospheric lifetime of Hg, the magnitude of the interhemispheric gradient, the historical changes in Hg concentrations of various reservoirs, and vertical exchange between the surface ocean and the permanent thermocline. Results of the model indicate: lower evasional fluxes of Hg from the global ocean than previous estimates; a prominent role for particle scavenging as a removal mechanism from the surface ocean; a modest influence of dry processes (dust and gas) on Hg removal from the atmosphere; and an estimate of natural land-based sources of Hg to the atmosphere that is no more than about half that of anthropogenic sources.  相似文献   

3.
We present a nitrogen cycle model for pre-industrial times based on an extensive literature database. The model consists of 18 reservoirs in the domains of the atmosphere, land, and ocean. The biotic reservoirs on land and in the ocean (N-fixing plants, non-N-fixing plants, and marine biota) interact with atmospheric N2 and dissolved inorganic nitrogen (DIN, consisting of N2, NO3 ?, and NH4 +) in the ocean and soil waters. Marine DIN is taken up by marine biota and transformed from ocean particulate organic matter to dissolved organic nitrogen and the ocean sediment. The atmosphere, the largest nitrogen reservoir, supplies N2 to the system by N fixation, deposition, and dissolution, and these input fluxes are balanced by denitrification and volatilization back to the atmosphere. The land and ocean domains are linked by river transport, which carries both dissolved and particulate nitrogen to the oceanic coastal zone. The isotope–mass balances of the N reservoirs are calculated from the isotopic composition of the reservoirs and the fractionation factors accompanying the fluxes between the reservoirs based on reported values from different natural conditions. The model sensitivity was tested for different biouptake rates and was run with various human perturbations, including fertilization, nitrous oxide emissions, population-related sewage disposal, land-use changes, and temperature-dependent rate kinetics. The new N mass–isotope cycle model provides the basis for assessment of the impact of artificial fertilization between 1700 and 2050. The perturbation experiments in this study suggest that land-use change is the key factor altering the N mass cycle since industrialization.  相似文献   

4.
Epochs of changing atmospheric CO2 and seawater CO2–carbonic acid system chemistry and acidification have occurred during the Phanerozoic at various time scales. On the longer geologic time scale, as sea level rose and fell and continental free board decreased and increased, respectively, the riverine fluxes of Ca, Mg, DIC, and total alkalinity to the coastal ocean varied and helped regulate the C chemistry of seawater, but nevertheless there were major epochs of ocean acidification (OA). On the shorter glacial–interglacial time scale from the Last Glacial Maximum (LGM) to late preindustrial time, riverine fluxes of DIC, total alkalinity, and N and P nutrients increased and along with rising sea level, atmospheric PCO2 and temperature led, among other changes, to a slightly deceasing pH of coastal and open ocean waters, and to increasing net ecosystem calcification and decreasing net heterotrophy in coastal ocean waters. From late preindustrial time to the present and projected into the 21st century, human activities, such as fossil fuel and land-use emissions of CO2 to the atmosphere, increasing application of N and P nutrient subsidies and combustion N to the landscape, and sewage discharges of C, N, P have led, and will continue to lead, to significant modifications of coastal ocean waters. The changes include a rapid decline in pH and carbonate saturation state (modern problem of ocean acidification), a shift toward dissolution of carbonate substrates exceeding production, potentially leading to the “demise” of the coral reefs, reversal of the direction of the sea-to-air flux of CO2 and enhanced biological production and burial of organic C, a small sink of anthropogenic CO2, accompanied by a continuous trend toward increasing autotrophy in coastal waters.  相似文献   

5.
Ocean acidification due to anthropogenic CO2 emissions is a dominant driver of long-term changes in pH in the open ocean, raising concern for the future of calcifying organisms, many of which are present in coastal habitats. However, changes in pH in coastal ecosystems result from a multitude of drivers, including impacts from watershed processes, nutrient inputs, and changes in ecosystem structure and metabolism. Interaction between ocean acidification due to anthropogenic CO2 emissions and the dynamic regional to local drivers of coastal ecosystems have resulted in complex regulation of pH in coastal waters. Changes in the watershed can, for example, lead to changes in alkalinity and CO2 fluxes that, together with metabolic processes and oceanic dynamics, yield high-magnitude decadal changes of up to 0.5 units in coastal pH. Metabolism results in strong diel to seasonal fluctuations in pH, with characteristic ranges of 0.3 pH units, with metabolically intense habitats exceeding this range on a daily basis. The intense variability and multiple, complex controls on pH implies that the concept of ocean acidification due to anthropogenic CO2 emissions cannot be transposed to coastal ecosystems directly. Furthermore, in coastal ecosystems, the detection of trends towards acidification is not trivial and the attribution of these changes to anthropogenic CO2 emissions is even more problematic. Coastal ecosystems may show acidification or basification, depending on the balance between the invasion of coastal waters by anthropogenic CO2, watershed export of alkalinity, organic matter and CO2, and changes in the balance between primary production, respiration and calcification rates in response to changes in nutrient inputs and losses of ecosystem components. Hence, we contend that ocean acidification from anthropogenic CO2 is largely an open-ocean syndrome and that a concept of anthropogenic impacts on marine pH, which is applicable across the entire ocean, from coastal to open-ocean environments, provides a superior framework to consider the multiple components of the anthropogenic perturbation of marine pH trajectories. The concept of anthropogenic impacts on seawater pH acknowledges that a regional focus is necessary to predict future trajectories in the pH of coastal waters and points at opportunities to manage these trajectories locally to conserve coastal organisms vulnerable to ocean acidification.  相似文献   

6.
Dimethylsulphide (DMS) is an important marine biogenic gas and can be released into atmosphere through sea air gas exchange. The oxidants of DMS in atmosphere are the main compounds of pristine marine sulphate aerosols and would affect the global climate change finally. Almost all the atmospheric DMS, about 90%, comes from the ocean. The southern ocean, which consists about 20% of the whole ocean area, is one of the largest atmospheric DMS sources. In contrast with the other oceans, the Southern Ocean appears great spatial and temporal variability of surface seawater DMS. In addition, there are the complex hydrography system, variable sea ice condition and various biologic activities in the Southern Ocean as to make survey and understand DMS as well as its controlling factors most difficult. Moreover, it is significant to integrate the DMS sea ice exchange processes and its controlling factors studies. In order to develop survey and research on the sea air DMS exchange and biogeochemistry processes, estimate methods of the sea air DMS fluxes will be reviewed, characteristics of the spatial and temporal distribution of surface seawater DMS will be discussed and the sea air DMS flux in the Southern Ocean will be assessed. Finally, major controlling factors of DMS sea air DMS processes will also be analyzed.  相似文献   

7.
Current assessments of the role of atmospheric deposition in the declining health of aquatic ecosystems indicate that the atmosphere could account for as much as 30% to 40% of total external nitrogen loading to some coastal waters. All such assessments are uncertain and need to be refined. To focus attention on the problem as it affect eastern North American coastal waters, a series of interdisciplinary workshops has been conducted, bringing together scientists and regulators. The series started with a meeting at Mt. Washington, Maryland in 1994, with subsequent meetings at Warrenton, Virginia in 1995, and Raleigh, North Carolina in 1997. Although the workshops considered all nitrogen species, toxic chemicals, trace metals, precipitation chemistry, airborne aerosols, and supporting meteorological investigation, most of the discussion centered around the issue of nitrogen-species deposition. It was concluded that work is urgently needed to establish integrated monitoring stations to provide high quality deposition and watershed retention data within the catchment area to take spatial and temporal variability into account in atmospheric deposition models, to improve biogeochemical watershed models, especially from the perspective of biological utilization and cycling of deposited materials, to refine emissions inventories and projections on which scenario investigations are based, to enhance all ongoing data collection efforts, especially those related to specific process studies, and to improve spatial resolution by increasing the number of deposition measurement sites. An overall conclusion was that there must be a strong effort to include considerations of air pollution and atmospheric deposition in the water quality regulatory process. It was repeatedly emphasized that any new efforts should build on existing programs rather than risk new starts that compete with ongoing and already productive work.  相似文献   

8.
The concentrations of trace elements in groundwater and seawater were measured in a coastal embayment (Bangdu Bay) of a volcanic island (Jeju) off the southernmost coast of Korea in August and December of 2009. The concentrations of trace elements (Al, Mn, Fe, Co, Ni, and Cu) in the groundwater in summer were approximately 20-fold higher than those in winter, with good correlation to each other. Overall, the concentrations of most of the trace elements in the groundwater were 3- to 70-fold higher than those in the seawater of this Bay. Simple budget calculations showed that large fluxes of submarine groundwater discharge (SGD)-driven trace elements were responsible for the unusually enhanced concentrations of trace elements (particularly for Al, Fe and Co) in the summer seawater. The results imply that the temporal changes in SGD-driven trace element fluxes are large and may contribute considerably to the budget of trace elements in the coastal ocean, particularly off a highly permeable volcanic island.  相似文献   

9.
海洋硅循环是海洋生物地球化学循环的关键过程之一,对调控全球二氧化碳浓度、海洋酸碱度和多种元素(氮、磷、铁、铝等)的循环具有重要作用。在当今气候变化和人类活动影响日益增强的背景下,硅循环与“生物泵”及碳循环的紧密联系,是其成为地球科学领域研究热点的主要原因。海洋中硅的外部来源主要为河流、地下水、大气沉降、海底玄武岩风化作用和海底热液输送5个途径,在全球气温变暖趋势的影响下,极地冰川融化成为高纬度海域不可忽视的硅源。生物硅在沉积物中的埋藏、硅质海绵和生物硅的反风化作用是重要的海洋硅移除过程。海洋硅循环过程复杂,受生物(生物吸收、降解)、物理(吸附、溶解)和化学(矿化分解和反风化作用)多重因素的影响,针对海洋硅循环关键过程的研究有助于综合评估海洋硅的“源-汇”和收支。本文总结了海洋硅循环的主要过程及海洋硅的收支,根据国际和国内研究现状讨论了当前海洋硅循环研究中面临的主要问题和挑战。现有研究成果显示,海洋硅的外源输入和输出通量比以往的评估分别增加了2.4和2.2倍。在短时间尺度内(<8 ka),全球海洋中硅的收支大致平衡,海洋硅循环基本处于稳定状态。气候变化和人类活动导致河流输送至陆架边缘海的硅通量发生变化,可能影响硅藻等海洋浮游植物种群结构,是未来海洋硅循环研究需要关注的问题之一。陆架边缘海较高沉积速率和强烈的反风化作用提高了该区域生物硅的埋藏效率,准确评估该区域生物硅的埋藏通量仍是亟须解决的难题。目前的研究评估了全球海洋浮游硅藻、硅质海绵以及放射虫生产力,而海洋底栖硅藻生产力的贡献受到忽视,未来需要关注底栖硅藻对生物硅的贡献及其在海洋硅的生物地球化学过程中的作用。  相似文献   

10.
Continuous high-resolution sedimentary record of heavy metals (chromium (Cr), copper (Cu), lead (Pb), zinc (Zn), manganese (Mn), and mercury (Hg)), from lakes Lucerne and Meidsee (Switzerland), provides pollutant deposition history from two contrasting Alpine environments over the last millennia. The distribution of conservative elements (thorium (Th), scandium (Sc) and titanium (Ti)) shows that in absence of human disturbances, the trace element input is primarily controlled by weathering processes (i.e., runoff and erosion). Nonetheless, the enrichment factor (EF) of Pb and Hg (that are measured by independent methods), and the Pb isotopic composition of sediments from the remote lake Meidsee (which are proportionally more enriched in anthropogenic heavy metals), likely detect early mining activities during the Bronze Age. Meanwhile, the deposition of trace elements remains close to the range of natural variations until the strong impact of Roman activities on atmospheric metal emissions. Both sites display simultaneous increases in anthropogenic trace metal deposition during the Greek and Roman Empires (ca 300 BC to AD 400), the Late Middle Ages (ca AD 1400), and the Early Modern Europe (after ca AD 1600). However, the greatest increases in anthropogenic metal pollution are evidenced after the industrial revolution of ca AD 1850, at low and high altitudes. During the twentieth century, industrial releases multiplied by ca 10 times heavy metal fluxes to hydrological systems located on both sides of the Alps. During the last decades, the recent growing contribution of low radiogenic Pb further highlights the contribution of industrial sources with respect to wood and coal burning emissions.  相似文献   

11.
Carbonyl sulfide (COS) mixing ratioswere measured in the marine atmosphere and in airequilibrated with surface sea water during severalcruises in the North Sea and western NorthAtlantic. In April 1994, North Sea waters weresupersaturated with respect to the atmosphere,resulting in oceanic emissions of COS. Saturationratios varied between the equilibrium value of one inthe central North Sea and high values of >15 in theElbe Estuary. We observed weak diel cycles of surfacewater COS during a three day drift station. During theunderway parts of the cruise, diel COS variations weremasked by the high geographical variability of COSconcentrations in the German Bight. In August 1994, weobserved a pronounced diel cycle of COS off theFlorida coast with saturation ratios varying betweenthe equilibrium value of one in the early morning andmaximum values of four to five in the afternoon. InMarch 1995, we found COS supersaturation as well asextensive undersaturation in the western NorthAtlantic between Norfolk, VA, and Bermuda. Suchundersaturation in marine surface waters results inregional and seasonal uptake of atmospheric COS. Basedon our data and those of other researchers, weestimate the global oceanic COS net emission to bebetween 1.3 and 2.5 Gmol yr-1. This estimate is significantly smaller than previous ones which had notconsidered the possibility of COS uptake by theoceans. COS hydrolysis in the ocean has a significantinfluence on the atmospheric turnover time of COS,which we estimate to be 5.7 yr. This may contribute tothe lack of an observable increase in atmospheric COSlevels despite substantial anthropogenic emissions. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
《Applied Geochemistry》2006,21(11):1913-1923
Mercury is emitted to the air from Hg-enriched and low Hg-containing (natural background) substrates. Emitted Hg can be geogenic, or can be derived from the re-emission of Hg that was previously deposited to the soil from the atmosphere. Atmospheric Hg can be derived from natural and/or anthropogenic sources and can be deposited by wet or dry processes. It is important to understand the relative magnitude of emission, deposition, and re-emission of Hg associated with terrestrial ecosystems with natural background soil Hg concentrations because these landscapes cover large terrestrial surface areas. This information is also important for developing biogeochemical mass balances, assessing the impacts of atmospheric Hg sources, and predicting the effectiveness of regulatory controls at local, regional, and global scales.The major focus of this paper is to discuss air–substrate Hg exchange for low Hg-containing soils (<0.1 μg Hg g−1) from two areas in Nevada and one in Oklahoma, USA. Data collected with field and laboratory gas exchange systems are presented. Results indicate that in order to adequately characterize substrate–air Hg exchange, diel and seasonal data must be collected under a variety of environmental conditions. Field and laboratory data showed that dry deposition of gaseous Hg to substrates with low Hg concentrations is an important process. Environmental parameters important in influencing emissions include soil water content, incident light, temperature, atmospheric oxidants, and air Hg concentrations. There are synergistic and antagonistic effects between these parameters complicating prediction of flux.  相似文献   

13.
Using coupled terrestrial and coastal zone models, we investigated the impacts of deglaciation and anthropogenic inputs on the CO2–H2O–CaCO3 system in global coastal ocean waters from the Last Glacial Maximum (LGM: 18,000 year BP) to the year 2100. With rising sea level and atmospheric CO2, the carbonate system of coastal ocean water changed significantly. We find that 6 × 1012 metric tons of carbon were emitted from the coastal ocean, growing due to the sea level rise, from the LGM to late preindustrial time (1700 AD) because of net heterotrophy and calcification processes. This carbon came to reside in the atmosphere and in the growing vegetation on land and in uptake of atmospheric CO2 through the weathering of rocks on land. It appears that carbonate accumulation, mainly, but not exclusively, in coral reefs from the LGM to late preindustrial time could account for about 24 ppmv of the 100 ppmv rise in atmospheric CO2, lending some support to the “coral reef hypothesis”. In addition, the global coastal ocean is now, or soon will be, a sink of atmospheric CO2. The temperature rise of 4–5°C since the LGM led to increased weathering rates of inorganic and organic materials on land and enhanced riverine fluxes of total C, N, and P to the coastal ocean of 68%, 108%, and 97%, respectively, from the LGM to late preindustrial time. During the Anthropocene, these trends have been exacerbated owing to rising atmospheric CO2, due to fossil fuel combustion and land-use practices, other human activities, and rising global temperatures. River fluxes of total reactive C, N, and P are projected to increase from late preindustrial time to the year 2100 by 150%, 380%, and 257%, respectively, modifying significantly the behavior of these element cycles in the coastal ocean, particularly in proximal environments. Despite the fact that the global shoal water carbonate mass has grown extensively since the LGM, the pHT (pH values on the total proton scale) of global coastal waters has decreased from ~8.35 to ~8.18 and the carbonate ion concentration declined by ~19% from the LGM to late preindustrial time. The latter represents a rate of decline of about 0.028 μmol CO3 2? per decade. In comparison, the decrease in coastal water pHT from the year 1900 to 2000 was about 8.18–8.08 and is projected to decrease further from about 8.08 to 7.85 between 2000 and 2100, according to the IS92a business-as-usual scenario of CO2 emissions. Over these 200 years, the carbonate ion concentration will fall by ~120 μmol kg?1 or 6 μmol kg?1 per decade. This decadal rate of decline of the carbonate ion concentration in the Anthropocene is 214 times the average rate of decline for the entire Holocene. Hence, when viewed against the millennial to several millennial timescale of geologic change in the coastal ocean marine carbon system, one can easily appreciate why ocean acidification is the “other CO2 problem”.  相似文献   

14.
近海营养盐和微量元素的大气沉降   总被引:3,自引:1,他引:2  
受气候变化和人类活动的影响,传输和沉降到全球近海的大气污染物急剧增加.1997年后对近海营养盐和微量元素大气沉降的众多研究表明,通过大气沉降至近海的氮和磷分别为13~73 mmol N/(m2·a)和0.11~1.6 mmol P/(m2·a),微量元素的沉降通量具有显著的时空变化特征,在不同海区最高可相差3个数量级.对于很多近海包括东海(East China Sea)和黄海(Yellow Sea),大气沉降的营养盐和部分微量元素可能超出了其河流输入量.大气沉降除了对近海富营养化有重要贡献之外,其事件性特征可使初级生产力在短期内大幅度增加,从而影响赤潮发生.微量元素沉降还可能抑制某些藻类生长,对初级生产力和生态系统结构产生更为复杂的影响.未来研究重点是准确估算近海各物质的大气沉降通量,了解其对浮游植物生长的影响机制.  相似文献   

15.
The coastal waters of the mid-Atlantic region of the United States receive inputs of atmospheric pollutants as a consequence of being located downwind from major industrial and urban emissions. These inputs are potentially the largest received by any marine area of the country. Of current interest is the atmospheric input of dissolved inorganic nitrogen (DIN = NO3 ?+NH4 +). We have conducted a first-order examination of the magnitude of atmospheric DIN deposition relative to other large-scale inputs for Delaware Bay, a partially urbanized mid-Atlantic coastal plain estuary. The following loading terms: direct atmospheric deposition, indirect atmospheric loading, urban point discharges, fluvial input, benthic flux, and salt marsh export were evaluated. On an annual basis, municipal-industrial effluents provide a dominant source (ca. 40%) of the DIN inputs to the estuary. Total (wet plus dry) atmospheric deposition accounts for about 15% of the total annual DIN inputs. However, during summer, which is characterized by low river-flow and seasonally maximum atmospheric loading, this figure increases to around 25%. Although atmospheric input can satisfy only a fraction of the primary production demands, this summer flux may represent an ecologically important source of external DIN, half of which is directly deposited to surface photic zones where it is readily available for biological uptake.  相似文献   

16.
Oxidized reactive nitrogen in the atmosphere mainly consists of nitrogen oxides (NO X =NO+NO2, NO3) and nitric acid. The atmospheric cycling of NO X influences the formation of ozone and hydroxyl radicals that are important for atmospheric oxidation capacity. Nitric acid, the final product of NO X oxidation, not only is an important component of particulate pollutants, but also has a direct impact on the ecosystem through dry and wet deposition. The stable nitrogen isotope (δ15N) shows the potential to study reactive nitrogen cycle, and to trace the emission, transport and deposition of reactive nitrogen from local to global scales. Here, we reviewed previous studies using δ15N to investigate NO X emission and atmospheric reactive nitrogen cycle, and discuss the uncertainties of δ15N signatures of different NO X sources from two aspects: NO X generation mechanism and NO X collection methods. We also discussed the nitrogen isotope fractionation and the consequences during the conversions of NO y molecules. We ended up with discussions on the possibility of using δ15N to trace NO X emissions. Although there are still large uncertainties in quantifying and tracing NO X emissions using nitrogen stable isotopes, such isotope tool is efficient enough to trace reactive nitrogen cycles in the atmosphere. On the basis of this, we proposed that we can combine atmospheric chemistry transmission models with isotope tracers to improve our understanding of regional and global atmospheric reactive nitrogen cycle regarding the fluxes of different emission sources, their atmospheric transformation, etc.  相似文献   

17.
Marine chemistry of the coastal environment starts with principles of rock weathering that use carbonic acid to mobilize elements, only some of which comprise the majority of sea salt. The principle reason is reverse weathering, extensively represented in coastal waters, and returns most elements to newly formed colloids or minerals while recycling carbon dioxide to the atmosphere. This includes the deeper ocean expanse of sediment diagenesis, plus hydrothermal plumes and attendant low-temperature basalt alteration. Within the estuarine and extended shelf regimes, both conservative and non-conservative processes can be distinguished and modeled to determine proportions of weathered elements transmitted to the sea or consumed by reverse weathering. Conceptually, the steady-state processes that lead to the composition of seawater can be viewed as heterogeneous equilibria between dissolved constituents and solid mineral products taking hundreds of millennia. However, initial processes in the estuarine and coastal environment are characterized by shorter term scavenging associated with inorganic and organic colloids. These recycle both carbon and trace elements on timescales commensurate with estuarine flushing and coastal exchange with the ocean. The natural uranium and thorium decay series provide powerful tools for quantifying the rates of estuarine processes, including those within groundwater and the subterranean estuary. In the future, new mass spectrometric and nuclear magnetic resonance techniques will help to define the molecular nature of newly formed estuarine colloids as has been done for dissolved organic matter. As the coastal environment undergoes the forces of climate change in the form of warming and sea level rise, future research should address how these will impact chemistry of the coastal environment as a net source or sink of carbon dioxide and associated organic material.  相似文献   

18.
大气污染物向海洋的输入及其生态环境效应   总被引:7,自引:3,他引:7  
纵观20年来,特别是近几年来逐渐成为生物地球化学循环研究热点之一的大气对海洋物质输入的研究,从大气物质入海通量,大气物质入海对海洋生态系统和环境的影响,大气物质入海的科学研究计划和项目等方面分析了这一领域的研究现状和未来趋势。给出了不同海区各种主要大气入海物质的通量或在同类物质入海总量中的比例,讨论了氮、磷、铁等营养物质和持续性有毒污染物,如PAH、PCBs、杀虫剂和重金属对海洋生态系统和环境的不同影响。  相似文献   

19.
根据陆海相互作用的观点,黄河流域、黄河干流、河口三角洲及其邻近海区的生态环境相互联系,组成了一个有机的生态系统链,可称为黄河-渤海生态系统。黄河流域的降水量、土壤植被条件使黄河干流具有水少沙多、水沙异源和水资源缺乏的特征。干流入海水、沙通量变化影响了黄河三角洲地区的侵蚀、堆积和发育过程。黄河物质入海后在河口及邻近海域形成了具有高生产力的生态环境和著名的渔场。据此绘出了黄河-渤海生态环境内各环节相互联系的概念模式图,并提出了黄河流域大面积水土保持和南水北调工程逐步展开等新环境下,本区陆海相互作用的研究方向。  相似文献   

20.
The coastal zone, consisting of the continental shelves to a depth of 200 meters, including bays, lagoons, estuaries, and near-shore banks, is an environment that is strongly affected by its biogeochemical and physical interactions with reservoirs in the adjacent domains of land, atmosphere, open ocean, and marine sediments. Because the coastal zone is smaller in volume and areal coverage relative to the open ocean, it traditionally has been studied as an integral part of the global oceans. In this paper, we show by numerical modeling that it is important to consider the coastal zone as an entity separate from the open ocean in any assessment of future Earth-system response under human perturbation. Model analyses for the early part of the 21st century suggest that the coastal zone plays a significant modifying role in the biogeochemical dynamics of the carbon cycle and the nutrient cycles coupled to it. This role is manifested in changes in primary production, storage, and/or export of organic matter, its remineralization, and calcium carbonate precipitation- all of which determine the state of the coastal zone with respect to exchange of CO2 with the atmosphere. Under a scenario of future reduced or complete cessation of the thermohaline circulation (THC) of the global oceans, coastal waters become an important sink for atmospheric CO2, as opposed to the conditions in the past and present, when coastal waters are believed to be a source of CO2, to the atmosphere. Profound changes in coastal-zone primary productivity underscore the important role of phosphorus as a limiting nutrient. In addition, our calculations indicate that the saturation state of coastal waters with respect to carbonate minerals will decline by ~15% by the year 2030. Any future slowdown in the THC of the oceans will increase slightly the rate of decline in saturation state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号