首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The various measurements of the linear matter density perturbation amplitude obtained from the observations of the cosmic microwave background (CMB) anisotropy, weak gravitational lensing, galaxy cluster mass function, matter power spectrum, and redshift space distortions are compared. The Planck data on the CMB temperature anisotropy spectrum at high multipoles, ? > 1000 (where the effect of gravitational lensing is most significant), are shown to give a measurement of the matter density perturbation amplitude that contradicts all other measurements of this quantity from both Planck CMB anisotropy data and other data at a significance level of about 3.7σ. Thus, at present these data should not be combined together for the calculations of constraints on cosmological parameters. Except for the Planck data on the CMB temperature anisotropy spectrum at high multipoles, all the remaining measurements of the density perturbation amplitude agree well between themselves and give the following constraints: σ8 = 0.792± 0.006 on the linear matter density perturbation amplitude, Ωm = 0.287± 0.007 on the matter density parameter, and H0 = 69.4 ± 0.6 km s?1 Mpc?1 on the Hubble constant. Various constraints on the sum of neutrino masses and the number of neutrino flavors can be obtained by additionally taking into account the data on baryon acoustic oscillations and (or) direct Hubble constant measurements in the local Universe.  相似文献   

2.
Attention is given to four reasons for believing that the upper limit on the rotation of the Universe ω set by isotropy of the 3K background may not be appropriate to the local system because of its hierarchical structure. In particular, recent work of Rubinet al. (1973) on the anisotropy of Hubble's parameter (H) as determined by certain galaxies is examined. The anisotropy inH is a 1st order harmonic effect, inconsistent with an origin in an acceleration of the expansion of the Universe (U α;4≠0), but explicable as being due to a large peculiar velocity of the Local Group. This compromises limits set on ω by isotropy of the 3K field, as does the realization that only weak limits can be set if the last-scattering surface (z *) is notz *→∞ but is at smallz * (as expected in a hierarchy). In a rotating Universe, the 3-spaces of constant density cannot be orthogonal on the world lines of matter: a number test of Gödell based on this is generalized and applied (after consideration of Galactic obscuration) to the local Universe, by taking data on clusters of galaxies from the Abell and Zwicky catalogues. Data from the former give only a marginally significant result for the component ω1 of ω in one direction, but a bootstrap argument is applied which takes significance over from Abell's data (considered as a class of galaxies) to Zwicky's data (taken as a class of clusters), giving a statistically significant result on the hypothesis that clusters are the fundamental units of the Universe: it seems likely that ω1r?(const)r-n with 0?n?1 over the interval 500–1000 Mpc (H=60 km s?1 Mpc?1) with a total rotation of ω<2ω1, and ω1 = 1.2 (+0.25) x 10-18 s-1 evaluated on data out to 103 Mpc. Strictly, the quoted value of the rotation only applies to a region of space that in some sense has an isotropic limit: if the actual hierarchy has a large density-dependence away from a local origin (i.e., large thinning factor), then the numerical value of the rotation is smaller than the quoted value but still finite and significant.  相似文献   

3.
We analyze the arrival directions of cosmic rays with energies E 0≈(1–4)×1017 eV and zenith angles θ≤53≤ detected with the Yakutsk extensive air shower (EAS) array during 1974–2001. We show that ~10% of them form many clusters correlated with the Supergalactic plane. Enhanced particle fluxes arrive from the Supergalactic plane and the regions that are symmetrically adjacent to it at angles ±b SG ≈ 6°.5. The relatively high concentrations of clusters of galaxies and quasars that bear a relationship to the large-scale structure of the Universe are observed in these regions.  相似文献   

4.
For 2442 galaxies of the catalog, compiled based on the NED, SDSS, and CATS survey data with redshifts z, > 0.3 we conducted an analysis of the amplitude of temperature fluctuations in the cosmic microwave background (CMB) in the points, corresponding to the direction to these objects. To this end, we used the ILC map from the WMAP mission seven-year data release. We have estimated the dipole component of the background and tested the hypothesis of Kashlinsky on the existence of a “dark bulk flow”, determined for the estimated dipole component of the CMB WMAP by the value of the CMB anisotropy in the direction to the clusters of galaxies. We show that the amplitude of this dipole T max = 0.012mK is located within the σ interval, estimated by Monte Carlo simulations for the Gaussian fluctuations of the CMB signal in the ΛCDM model. The low amplitude of the dipole indicates that it is impossible to confirm this hypothesis from the WMAP data. In addition, we studied the statistics of the fluctuation amplitude of the microwave signal in the direction to radio galaxies. A weakening of the absolute value of the mean signal in the corresponding fields was discovered.  相似文献   

5.
Clusters of galaxies are the most massive virialized structures in the Universe. Given that the mass function of large-scale structures decreases exponentially at the high-mass end, galaxy clusters are a sensitive probe of its normalization and redshift evolution, and hence of the cosmological parameters that most influence it. It will be discussed to what extent these cosmological parameters, namely the present amplitude of density perturbations, the matter density and a possible cosmological constant, can be constrained using observational data on the present and past abundance of galaxy clusters. Results will be presented based on the available data, as well as expected constraints from the X-ray Cluster Survey (XCS).  相似文献   

6.
We use a wide range of observations to constrain cosmological models possessing a significant asymmetry in the lepton sector, which offer perhaps the best chance of reconciling a critical-density Universe with current observations. The simplest case, with massless neutrinos, fails to fit many experimental data and does not lead to an acceptable model. If the neutrinos have mass of order 1 eV (which is favoured by some neutrino observations), then models can be implemented which prove a good fit to the microwave anisotropies and large-scale structure data. However, taking into account the latest microwave anisotropy results, especially those from BOOMERANG, we show that the model can no longer accommodate the observed baryon fraction in clusters. Together with the observed acceleration of the present Universe, this puts considerable pressure on such critical-density models.  相似文献   

7.
An analysis of the redshift-magnitude data for the 98 clusters of the list of Sandage and Hardy (1973) is repeated taking into account both the effect of richness and Bautz-Morgan classification on the absolute magnitude of the brightest members. We find that while the relationship between M and B-M class—whatever it is—does not change the value ofq 0 theM-r relation is so dependent on the model of the Universe that we cannot use all the clusters in the analysis unless we establish that relation in an independent way. The analysis of richness 1 and 2 clusters support an open model of the Universe (q 0<0.5) while the uncertainties in the attribution of richness to the three most distant clusters do not permit to discard the steady state.  相似文献   

8.
A sample of 11 thousand galaxies with radial velocities V LG < 3500 km/s is used to study the features of the local distribution of luminous (stellar) and dark matter within a sphere of radius of around 50 Mpc around us. The average density of matter in this volume, ?? m,loc = 0.08 ± 0.02, turns out to be much lower than the global cosmic density ?? m,glob = 0.28 ± 0.03. We discuss three possible explanations of this paradox: 1) galaxy groups and clusters are surrounded by extended dark halos, the major part of the mass of which is located outside their virial radii; 2) the considered local volume of the Universe is not representative, being situated inside a giant void; and 3) the bulk of matter in the Universe is not related to clusters and groups, but is rather distributed between them in the form of massive dark clumps. Some arguments in favor of the latter assumption are presented. Besides the two well-known inconsistencies of modern cosmological models with the observational data: the problem of missing satellites of normal galaxies and the problem of missing baryons, there arises another one??the issue of missing dark matter.  相似文献   

9.
The present-day large increase of the amount of data relevant to cosmology, as well as their increasing accuracy, leads to the idea that the determination of cosmological parameters has been achieved with a rather good precision, may be of the order of 10%. There is a large consensus around the so-called concordance model. Indeed this model does fit an impressive set of independent data, the most impressives been: CMB Cl curve, most current matter density estimations, Hubble constant estimation from HST, apparent acceleration of the Universe, good matching of the power spectrum of matter fluctuations. However, the necessary introduction of a non zero cosmological constant is an extraordinary new mystery for physics, or more exactly the come back of one of the ghost of modern physics since its introduction by Einstein. Here, I would like to emphasize that some results are established beyond reasonable doubt, like the (nearly) flatness of the universe and the existence of a dark non-baryonic component of the Universe. But also that the evidence for a positive cosmological constant may not be as strong as needed for its existence to be considered as established beyond doubt. In this respect, I will argue that an Einstein-De Sitter universe might still be a viable option. Some observations do not fit the concordance picture. I discuss several of the claimed observational evidences supporting the concordance model and will focus more specifically on the observational properties of clusters which offer powerful constraints on various quantities of cosmological interest. They are particularly interesting in constraining the cosmological density parameter, nicely complementing the CMB result, which by its own does not request a non vanishing cosmological constant, contrary to what is sometimes claimed. Early, local, estimations based on the M/L ratio are now superseded by new tests that have been proposed during the last ten years which are globalin nature. Here, I will briefly discuss three of them: 1) the evolution of the abundance of clusters with redshift 2) the baryon fraction measured in local clusters 3) apparent evolution of the baryon fraction with redshift. I will show that these three independent tests lead to high matter density for the Universe in the range 0.6 — 1. I therefore conclude that the dominance of vacuum to the various density contributions to the Universeis presently a fascinating possibility, but it is still premature to consider it as an established scientific fact.  相似文献   

10.
Large patterns could exist on the microwave sky as a result of various non-standard possibilities for the large-scale Universe – rotation or shear, non-trivial topology, and single topological defects are specific examples. All-sky (or nearly all-sky) CMB data sets allow us, uniquely, to constrain such exotica, and it is therefore worthwhile to explore a wide range of statistical tests. We describe one such statistic here, which is based on determining gradients and is useful for assessing the level of 'preferred directionality' or 'stripiness' in the map. This method is more general than other techniques for picking out specific patterns on the sky, and it also has the advantage of being easily calculable for the mega-pixel maps which will soon be available. For the purposes of illustration, we apply this statistic to the four-year COBE DMR data. For future CMB maps, we expect this to be a useful statistical test of the large-scale structure of the Universe. In principle, the same statistic could also be applied to sky maps at other wavelengths, to CMB polarization maps, and to catalogues of discrete objects. It may also be useful as a means of checking for residual directionality (e.g. from Galactic or ecliptic signals) in maps.  相似文献   

11.
We review the first science results from the Arcminute Cosmology Bolometer Array Receiver (ACBAR); a multi-frequency millimeter-wave receiver optimized for observations of the Cosmic Microwave Background (CMB) and the Sunyaev–Zel’dovich (SZ) effect in clusters of galaxies. ACBAR was installed on the 2 m Viper telescope at the South Pole in January 2001 and the results presented here incorporate data through July 2002. We present the power spectrum of the CMB at 150 GHz over the range ℓ=150–3000 measured by ACBAR as well as estimates for the values of the cosmological parameters within the context of ΛCDM models. We find that the inclusion of ΩΛ greatly improves the fit to the power spectrum. We also observe a slight excess of small-scale anisotropy at 150 GHz; if interpreted as power from the SZ effect of unresolved clusters, the measured signal is consistent with CBI and BIMA within the context of the SZ power spectrum models tested.  相似文献   

12.
The constraints on total neutrino mass and effective number of neutrino species based on CMB anisotropy power spectrum, Hubble constant, baryon acoustic oscillations and galaxy cluster mass function data are presented. It is shown that discrepancies between various cosmological data in Hubble constant and density fluctuation amplitude, measured in standard ΛCDM cosmological model, can be eliminated if more than standard effective number of neutrino species and non-zero total neutrino mass are considered. This extension of ΛCDM model appears to be ≈3σ significant when all cosmological data are used. The model with approximately one additional neutrino type, N eff ≈ 4, and with non-zero total neutrino mass, Σ ≈ 0.5 eV, provide the best fit to the data. In the model with only one massive neutrino the upper limits on neutrino mass are slightly relaxed. It is shown that these deviations from ΛCDM model appearmainly due to the usage of recent data on the observations of baryon acoustic oscillations. The larger than standard number of neutrino species is measured mainly due to the comparison of the BAO data with direct measurements of Hubble constant, which was already noticed earlier. As it is shown below, the data on galaxy cluster mass function in this case give the measurement of non-zero neutrino mass.  相似文献   

13.
As they are the largest virialized structures formed in the universe, galaxy clusters are good probes of evolution of dark matter haloes since their formation from the fluctuation of the CMB. While the local cluster abundance allows us to constrain the shape and amplitude of the mass distribution regarding to the matter density, their redshift distribution is much more sensitive to the matter density of the universe and allows us to break the degeneracy. Here I compare the modelized distribution of clusters with existing catalogs such as EMSS to derive constraints on ΩM, σ8 and γ.  相似文献   

14.
We compare the anisotropic properties of the cosmic microwave background (CMB) maps constructed based on the data of NASA’s WMAP (9th year of observations) and ESA’s Planck (2015 release) space missions. In our analysis, we use two two-dimensional estimators of the scatter of the signal on a sphere, which amount to algorithms of mapping the ratio of the scatter in the Northern and Southern hemispheres depending on the method of dividing (specifically, rotating and cutting) the sky into hemispheres. The scatter is computed either as a standard deviation σ, or as the difference between the minimum and maximum values on a given hemisphere. Applying both estimators to the CMB anisotropy datameasured by two spacemissions, Planck and WMAP, we compared the variations of the background at different angular scales.Maps with a resolution of l ≤ 100 show that the division into regions with different levels of statistical anisotropy lies close to the ecliptic plane, and after preliminary removal of the l ≤ 20 harmonics from the CMB data, the anisotropic signal related to the Galaxy begins to dominate.  相似文献   

15.
Using the explicit form of the functions to describe the monopole and dipole spectra of the Cosmic Microwave Background (CMB) radiation, the exact expressions for the temperature dependences of the radiative and thermodynamic functions, such as the total radiation power per unit area, total energy density, number density of photons, Helmholtz free energy density, entropy density, heat capacity at constant volume, and pressure in the finite range of frequencies v 1vv 2 are obtained. Since the dependence of temperature upon the redshift z is known, the obtained expressions can be simply presented in z representation. Utilizing experimental data for the monopole and dipole spectra measured by the COBE FIRAS instrument in the 60–600 GHz frequency interval at the temperature T=2.72548 K, the values of the radiative and thermodynamic functions, as well as the radiation density constant a and the Stefan-Boltzmann constant σ are calculated. In the case of the dipole spectrum, the constants a and σ, and the radiative and thermodynamic properties of the CMB radiation are obtained using the mean amplitude T amp=3.358 mK. It is shown that the Doppler shift leads to a renormalization of the radiation density constant a, the Stefan-Boltzmann constant σ, and the corresponding constants for the thermodynamic functions. The expressions for new astrophysical parameters, such as the entropy density/Boltzmann constant, and number density of CMB photons are obtained. The radiative and thermodynamic properties of the Cosmic Microwave Background radiation for the monopole and dipole spectra at redshift z≈1089 are calculated.  相似文献   

16.
《New Astronomy》2004,9(2):83-101
The polarization of the Cosmic Microwave Background (CMB) is a powerful observational tool at hand for modern cosmology. It allows to break the degeneracy of fundamental cosmological parameters one cannot obtain using only anisotropy data and provides new insight into conditions existing in the very early Universe. Many experiments are now in progress whose aim is detecting anisotropy and polarization of the CMB. Measurements of the CMB polarization are however hampered by the presence of polarized foregrounds, above all the synchrotron emission of our Galaxy, whose importance increases as frequency decreases and dominates the polarized diffuse radiation at frequencies below ≃50 GHz. In the past the separation of CMB and synchrotron was made combining observations of the same area of sky at different frequencies. In this paper, we show that the statistical properties of the polarized components of the synchrotron and dust foregrounds are different from the statistical properties of the polarized component of the CMB, therefore one can build a statistical estimator which allows to extract the polarized component of the CMB from single frequency data also when the polarized CMB signal is just a fraction of the total polarized signal. Our estimator improves the signal/noise ratio for the polarized component of the CMB and reduces from ≃50 to ≃20 GHz, the frequency above which the polarized component of the CMB can be extracted from single frequency maps of the diffuse radiation.  相似文献   

17.
In this paper, I investigate a local effect of polarization of the Cosmic Microwave Background (CMB) in clusters of galaxies, induced by the Thomson scattering of an anisotropic radiation. A local anisotropy of the CMB is produced by some scattering and gravitational effects, as, for instance, the Sunyaev Zel‘dovich effect, the Doppler shift due to the cluster motion and the gravitational lensing. The resulting anisotropy ΔI/I depends on the physical properties of the clusters, in particular on their emissivity in the X band on their size, on their gravitational potential and on the peculiar conditions characterizing the gas they contain. By solving the Boltzmann radiative transfer equation in presence of such anisotropies I calculate the average polarization at the centre of some clusters, namelyA2218, A576 and A2163, whose properties are quite well known. I prove that the gravitational effects due to the contraction or to the expansion have some importance, particularly for high density structures; moreover, the peculiar motion of the cluster, considered as a gravitational lens, influences the propagation of the CMB photons by introducing a particular angular dependence in the gravitational anisotropy and in the scattering integrals. Thus, the gravitational and the scattering effects overally produce an appreciable local average polarization of the CMB, may be observable through a careful polarization measurements towards the centres of the galaxy clusters. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
The parameters of the cosmological model with cold dark matter and cosmological constant (ΛCDM model) were determined using three-year Wilkinson Microwave Anisotropy Probe observations of cosmic microwave background together with some data on the large-scale structure of the universe. The data cover scales from 1 to 10 000 Mpc. The best-fit ΛCDM model parameters were derived by minimizing the x 2 statistic with the use of the Levenberg-Markquardt approach (ΩΛ = 0.736 ± 0.065, Ωm = 0.238 ± 0.080, Ωb = 0.05 ± 0.011, h = 0.68 ± 0.09, σ8 = 0.73 ± 0.08, and n s = 0.96 ± 0.015). The ΛCDM model with these parameters is shown to agree well with the angular power spectrum of cosmic microwave background temperature fluctuations and with the density perturbation power spectra estimated from spatial distributions of galaxies and rich clusters of galaxies as well as from the statistics of the Ly α absorption lines in the spectra of distant quasars. The accord between the model large-scale structure characteristics and the observed ones is analyzed, and conceivable factors causing appreciable discrepancies between some characteristics are discussed.  相似文献   

19.
We analyze the properties of the clusters of galaxies in the region of the Ursa Major (UMa) supercluster using observational data from SDSS and 2MASS catalogs. The region studied includes a supercluster (with a galaxy and cluster overdensity of 3 and 15, respectively) and field clusters inside the 150-Mpc diameter surrounding region. The total dynamical mass of 10 clusters of galaxies in UMa is equal to 2.25 × 1015 M , and the mass of 11 clusters of galaxies in the UMa neighborhood is equal to 1.70 × 1015 M . The fraction of early-type galaxies brighter than M K * + 1 in the virialized regions of clusters is, on the average, equal to 70%, and it is virtually independent on the mass of the cluster. The fraction of these galaxies and their average photometric parameters are almost the same both for UMa clusters and for the clusters located in its surroundings. Parameters of the clusters of galaxies, such as infrared luminosities up to a fixed magnitude, the mass-to-luminosity ratio, and the number of galaxies have almost the same correlations with the cluster mass as in other samples of galaxies clusters. However, the scatter of these parameters for UMa member clusters is twice smaller than the corresponding scatter for field clusters, possibly, due to the common origin of UMa clusters and synchronized dynamical evolution of clusters in the supercluster.  相似文献   

20.
We present the cosmological parameters constraints obtained from the combination of galaxy cluster mass function measurements (Vikhlinin et al. 2009a, 2009b) with new cosmological data obtained during last three years: updated measurements of cosmic microwave background anisotropy with Wilkinson Microwave Anisotropy Probe (WMAP) observatory, and at smaller angular scales with South Pole Telescope (SPT), new Hubble constant measurements, baryon acoustic oscillations and supernovae Type Ia observations. New constraints on total neutrino mass ??m ?? and effective number of neutrino species are obtained. In models with free number of massive neutrinos the constraints on these parameters are notably less strong, and all considered cosmological data are consistent with non-zero total neutrino mass ??m ?? ?? 0.4 eV and larger than standard effective number of neutrino species, N eff ?? 4. These constraints are compared to the results of neutrino oscillations searches at short baselines. The updated dark energy equation of state parameter constraints are presented. We show that taking in account systematic uncertanties, current cluster mass funstion data provide similarly powerful constraints on dark energy equation of state, as compared to the constraints from supernovae Type Ia observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号