首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mummichog,Fundulus heteroclitus, is one of the most abundant macrofaunal components of salt marsh ecosystems along the east coast of the United States. During April–November 1998, we determined the habitat use and movement patterns of young-of-the-year (YOY) and adult mummichogs in a restored marsh, formerly a salt hay farm, and an adjacent creek in order to expand our understanding of the ecology of the species and evaluate the success of the restoration. Four major fish habitat types (large first-order natural creek, second-order created creek, linear drainage ditch, and marsh surface) were identified within the study site. Patterns of relative abundance and mark and recapture using coded wire tags were used to determine the habitat use, tidal movements, home range, and site fidelity of the species within these habitat types. A total of 14,784 fish, ranging from 20–100 mm SL, were captured with wire mesh traps and tagged, and 1,521 (10.3%) fish were recaptured. A variety of gears were used to attempt to recapture fish across all habitat types, including wire mesh traps, push nets, and otter trawls. Based on abundance and recaptures of tagged fish, the YOY and adults primarily used the shallow subtidal and intertidal areas of the created creek, the intertidal drainage ditches, and the marsh surface of the restored marsh but not the larger, first-order natural creek. At low tide, large numbers were found in the subtidal areas of the created creek; these then moved onto the marsh surface on the flooding tide. Elevation, and thus hydroperiod, appeared to influence the microscale use of the marsh surface. We estimated the home range of adults and large YOY (20–100 mm SL) to be 15 ha at high tide, which was much larger than previously quantified. There was strong site fidelity to the created creek at low tide. The habitat use and movement patterns of the mummichog appeared similar to that reported for natural marshes. Coupled with the results of other studies on the feeding, growth, and production of this species in this restoreh, the species appeared to have responded well to the restoration.  相似文献   

2.
We examined the diets of Gulf killifish,Fundulus grandis Baird and Girard, collected monthly from March through July 1988 with unbaited minnow traps during two sampling periods: (1) on flood tides before they reached the marsh surface, and (2) on ebb tides as they left the marsh. Thirty-five prey taxa, plant parts, and detritus were identified from the stomach contents of 110 Gulf killifish (mean SL = 55 mm, range = 30?82 mm). Fiddler crabs,Uca longisignalis Salmon and Atsaides; amphipods, mostlyCorophium louisianum Shoemaker; tanaidaceans,Hargeria rapax (Harger); and hydrobiids,Littoridinops palustris Thompson, were their most important prey. Killifish diets differed both quantitatively and qualitatively relative to the habitat in which they were feeding. Fiddler crabs and polychaetes were consumed more frequently and in greater numbers in the intertidal zone, whereas more amphipods were eaten by killifish feeding in subtidal and low intertidal areas. Gulf killifish consumed a greater volume of food when they had access to the marsh surface than when they were confined to subtidal areas.  相似文献   

3.
Salt marsh habitats influenced by southern California's mixed, semi-diurnal tides are, on average, accessible to fishes less than 16% of the time. However, five species (four natives, one oxotic) and a variety of juvenile and adult size classes were collected on the marsh surface during a year-long sampling from June 1997 through June 1998 at Sweetwater Marsh National Wildlife Refuge on San Diego Bay.Fundulus parvipinis andGillichthys mirabilis were the most abundant fish species using the marsh. Analyses of their guts revealed that the marsh surface provides a rich foraging area for fishes on high spring tides.F. parvipinnis with marsh access consumed six times as much food as fishes restricted to creek habitats (on a g-food g-fish?1 basis) and also fed on additional prey types. Because the salt marsh is an important foraging area for fishes, we recommend that restoration projects (especially those intended to mitigate lost fish habitat) include vegetated areas with interconnecting tidal creeks.  相似文献   

4.
Many applications of otolith chemistry use the ratios of strontium (Sr) and barium (Ba) to calcium (Ca) as indicators of salinity exposure, because typically, as salinity increases, Sr concentration increases and Ba concentration decreases. However, these relationships are nonlinear, can be confounded by temperature, and investigations of salinity and temperature effects on otolith chemistry produce varied results. To determine the relationships of temperature and salinity on Sr:Ca and Ba:Ca in otoliths, we used free ranging Gulf Killifish (Fundulus grandis) in the northern Gulf of Mexico. This species is ideal because it is euryhaline and exhibits limited movements. Otolith edge Sr:Ca and Ba:Ca ratios were related to the previous 30-day mean salinity and temperature experienced by fish. The best model to describe otolith Sr:Ca was one that included a positive asymptotic relationship for both salinity and temperature. However, the salinity asymptotic maximum was reached at 10 psu and changes in otolith Sr:Ca above 10 psu were indicative of temperature changes. Otolith Ba:Ca exhibited an exponential decreasing relationship with salinity, and an exponential increasing relationship with temperature, and these two models combined best explained otolith Ba:Ca. Above 10 psu, the modeled Ba:Ca ratio continued to decrease demonstrating that this ratio may be indicative of salinity changes beyond this value. Therefore, using both Sr:Ca and Ba:Ca could be beneficial in reconstructing fish environmental histories. Temperature effects on otolith element ratios could confound past salinity reconstructions as well and must be a result of endogenous processes, given that no relationship between temperature and water chemistry existed.  相似文献   

5.
We examined connectivity among marsh subhabitats to determine the structural limits and important components of a polyhaline salt marsh by studying the patterns of abundance, residency, and movement of a numerically and ecologically dominant nektonic fish (mummichog, Fundulus heteroclitus). We captured, tagged (n = 14,040 individuals, 30–110 mm), and recaptured from Feb 2001 to Jul 2002, although most recaptures (75–95% by tagging location) occurred within 150 days. Seasonal residency and movements were common among most subhabitats based on catch per unit effort and recapture per unit effort. Thus, these (marsh pools, intertidal and subtidal creeks, and marsh surface) should be considered natural subhabitats within New England type salt marshes. Further, all these subhabitat types should be included in studies of salt marsh nekton and marsh restoration and creation activities.  相似文献   

6.
The surface of the salt marsh is an important, but largely unrecognized, site for fish reproduction and larval growth. In an attempt to determine the composition and distribution of fishes utilizing these habitats, we sampled larval and juvenile fish with plankton nets, dip nets, and traps at a variety of microhabitats (tidal and nontidal ponds and ditches and the marsh surface) in three New Jersey high marshes. Two of the three marshes had been altered for mosquito control. During April to September 1980, we collected over 2,400 larvae and juveniles. All study sites were dominated by the larvae of the resident killifishes (Fundulus heteroclitus, Cyprinodon variegatus, F. luciae, andLucania parva) and less commonlyMenidia beryllina. However, the occurrence and abundance of each species varied with microhabitat. Larval production in all three marshes peaked during June–July, but extended from May until September. In most instances juveniles of the dominant fishes had microhabitat preferences similar to the larvae. High marshes may be more important for fish production than previously recognized because they serve as nursery areas for the resident killifishes.  相似文献   

7.
Alteration of estuarine shorelines associated with increased urbanization can significantly impact biota and food webs. This study determined the impact of shoreline alteration on growth and movement of the estuarine fish Fundulus heteroclitus in a tributary of the Delaware Coastal Bays. Fundulus heteroclitus is abundant along the east coast of the USA, and is an important trophic link between marsh and subtidal estuary. The restricted home range of F. heteroclitus allowed discrete sampling, and fish growth comparisons, along 35–65-m long stretches of fringing Spartina alterniflora and Phragmites australis marsh, riprap, and bulkhead. Fundulus heteroclitus were tagged with decimal Coded Wire Tags. Of 725 tagged F. heteroclitus, 89 were recaptured 30–63 days later. Mean growth rate (0.06–0.15 mm day?1 across all shoreline types) was greatest at riprap, lowest at Spartina and Phragmites, and intermediate at bulkhead, where growth was not significantly different from any other shoreline. This suggests that discernible environments exist along different shoreline types, even at the scale of tens of meters. No difference in movement distance was detected at different shoreline types; most individuals displayed a high degree of site fidelity. Forty-seven percent were recaptured within 5 m of their tagging location, although alongshore movements up to 475 m were recorded. Estimates of relative F. heteroclitus productivity, using relative density data from a concurrent study, were highest along Spartina and Phragmites, intermediate at riprap, and lowest at bulkhead. Therefore, despite greater growth rates along riprap than at vegetated shores, armoring reduces abundance sufficiently to negatively impact localized productivity of F. heteroclitus.  相似文献   

8.
Concentrations of selected anthropogenic chemical contaminants and levels of pollution-related biological effects were measured during three consecutive years (1990–1992) in hardhead catfish (Arius felis), Gulf killifish (Fundulus grandis), longnose killifish (F. majalis), and red drum (Scieaenops ocellatus) from 12 subtidal and intertidal sites in Tampa Bay and nearby Sarasota Bay. Each species was collected from at least four sites. Compared to nonindustrialized sites, concentrations of PCBs, DDTs, and alpha-chlordane in liver, and of fluorescent aromatic compounds in bile, were highest in fish from sites in or near Hillsborough Bay, the most industrialized portion of Tampa Bay. The results of analyses for two biochemical markers of contaminant-induced effects in fish, hepatic cytochrome P4501A activities and levels of hepatic DNA adducts, also showed the highest levels to be in all four fish species from sites in the vicinity of Hillsborough Bay. Liver lesions, considered to be pollution-associated in several other bottom-feeding fish species, were found in hardhead catfish and longnose killifish, exclusively from sites in Hillsborough Bay. Overall, concentrations of selected contaminants and their derivatives in the four target fish species generally reflected concentrations of these contaminants found in sediment. The biochemical and histopathological responses demonstrated that chemical contaminant concentrations in the vicinity of Hillsborough Bay are sufficiently high to cause adverse effects in indigenous fish species. The results, collectively, showed that the extent of contaminant exposure and biological effects in fish from sites in Tampa Bay were low to moderate compared to more urbanized coastal sites of the United States. *** DIRECT SUPPORT *** A01BY073 00009  相似文献   

9.
Killifish are ecologically important components of salt marsh ecosystems, but no studies have determined the importance of locally produced versus allochthonous food sources on a scale of less than multiple kilometers. The goal of our study was to examine diet and movement of the killifish,Fundulus heteroclitus, collected from a Maine salt marsh to assess the importance of locally produced versus allochthonous food sources on a scale of several hundred meters. We compared the gut contents and stable isotope signatures ofF. heteroclitus from four regions along the central river of a Maine salt marsh to the distinct food sources and isotopic signatures of the region of the marsh in which they were caught.F. heteroclitus were relying on locally produced food sources even on the scale of several hundred meters. They fed daily in a small area less than 6 ha and maintained relatively strong site fidelities over the course of several months. Phytoplankton and salt marsh detritus both contributed to the high production ofF. heteroclitus; terrestrial plant detritus was not an important component of their diet. The diet and feeding patterns ofF. heteroclitus from this small Maine salt marsh were similar to the patterns found in much larger salt marshes, suggesting that locally produced organic matter is essential to the production of these ecologically important fish.  相似文献   

10.
The tropically associated black mangrove (Avicennia germinans) is expanding into salt marshes of the northern Gulf of Mexico (nGOM). This species has colonized temperate systems dominated by smooth cordgrass (Spartina alterniflora) in Texas, Louisiana, Florida and, most recently, Mississippi. To date, little is known about the habitat value of black mangroves for juvenile fish and invertebrates. Here we compare benthic epifauna, infauna, and nekton use of Spartina-dominated, Avicennia-dominated, and mixed Spartina and black mangrove habitats in two areas with varying densities and ages of black mangroves. Faunal samples and sediment cores were collected monthly from April to October in 2012 and 2013 from Horn Island, MS, and twice yearly in the Chandeleur Islands, LA. Multivariate analysis suggested benthic epifauna communities differed significantly between study location and among habitat types, with a significant interaction between the two fixed factors. Differences in mangrove and marsh community composition were greater at the Chandeleurs than at Horn Island, perhaps because of the distinct mangrove/marsh ecotone and the high density and age of mangroves there. Infaunal abundances were significantly higher at Horn Island, with tanaids acting as the main driver of differences between study locations. We predict that if black mangroves continue to increase in abundance in the northern GOM, estuarine faunal community composition could shift substantially because black mangroves typically colonize shorelines at higher elevations than smooth cordgrass, resulting in habitats of differing complexity and flooding duration.  相似文献   

11.
Monthly field sampling of active animals in a Louisiana coastal salt marsh monitored changes in size class frequency distributions, ovarian development of females, and rates of egg extrusion for two species ofUca endemic to the Gulf of Mexico. Ovigerous females occurred no earlier than February forUca spinicarpa and April forUca longisignalis. Peak percentages of ovigerous females were observed in June 1992 forUca longisignalis (67%) and in March 1993 forUca spinicarpa (85%). Peaks in ash-free dry weight (AFDW, in g) of females coincide with peak periods of ovarian development and subsequent ovigery. Mean biomass as AFDW of males and females combined forUca longisignalis was 0.26 g individual?1 and forUca spinicarpa was 0.17 g individual?1. A significant correlation existed between AFDW and carapace width in both species, males and females.U. longisignalis appears to be of warm-temperate lineage, and its reproductive activity is the more seasonally restricted, with later ovarian development, earliest egg laying delayed to late spring, and peak ovigery in summer. In keeping with putative tropical affinities ofUca spinicarpa, ovarian development is episodic over a longer-period from late winter to summer, and eggs are produced earlier in the year. The more striking seasonality in reproductive activity and biomass peaks forUca longisignalis may also reflect some nutritional dependency on temperate, annual marsh plants that characterize its preferred habitats.  相似文献   

12.
A tier III, essential fish habitat analysis was used to evaluate the biochemical condition of common mummichog Fundulus heteroclitus residing in two isolated tidal salt marshes, one a relatively undisturbed polyhaline site dominated by Spartina alterniflora and the other a meso-oligohaline site dominated by an invasive variety of Phragmites australis. Stable isotopes signatures of C, N, and S in whole tissue samples of F. heteroclitus were used to compare the trophic spectrum for this species in each marsh as a function of the dominant macrophytes present with additional contributions from phytoplankton and benthic microalgae. Allometry of wet mass and its components, water mass, lean protein mass and lipid mass in individual fish exhibited hyperallometric patterns; and average lipid mass fell within the range reported for most fundulids, including F. heteroclitus. Significant differences were also detected in the allocation of lipid classes to energy reserves in the form of triacylglycerols (TAG) and free fatty acids. These reserves, especially TAG, are critical for reproduction, migration, and overwintering survival in many taxa and were significantly lower in fish collected in the P. australis-dominated marsh. Relative to the relatively undisturbed Spartina-dominated site, we tentatively conclude that the P. australis-invaded marsh was an inferior habitat for F. heteroclitus.  相似文献   

13.
Large-scale marsh restoration efforts were conducted to restore normal salt marsh structure and function to degraded marshes (i.e., former salt hay farms) in the mesohaline lower Delaware Bay. While nekton response has been previously evaluated for the marsh surface and subtidal creeks in these marshes, little effort has been focused on intertidal creeks. Nekton response in intertidal creeks was evaluated by sampling with seines to determine if restored (i.e., former salt hay farms restored in 1996) and reference (i.e., natural or relatively undisturbed) salt marshes were utilized by intertidal nekton in a similar manner. The overall nekton assemblage during June–October 2004–2005 was generally comprised of the same species in both the restored and reference marshes. Intertidal creek catches in both marsh types consisted primarily ofFundulus heteroclitus andMenidia menidia, with varying numbers of less abundant transient species present. Transient nekton were more abundant at restored marshes than reference marshes, but in insufficient numbers to cause differences in nekton assemblages. In both marsh types, low tide stages were characterized by resident nekton, dominated byF. heteroclitus, while high tide stages were characterized by a variable mix of transient and resident nekton. Assemblage level analyses indicated that intertidal creeks in restored and reference marshes were generally utilized in a similar manner by a similar nekton assemblage, so restoration efforts were deemed successful. This is in agreement with multiple comparative studies from the ame marshes examining fish, invertebrates, and vegetation in different marsh habitats.  相似文献   

14.
The mummichog,Fundulus heteroclitus, is one of the most important macrofaunal components of salt marsh surfaces and an important link to subtidal areas of the adjacent estuary along the east coast of the U.S. We estimated growth, population size, and production of the mummichog in a restored marsh in order to improve our understanding of the role of this resident fish and to evaluate the success of the restoration. The restored marsh, covering 234 ha, was a former salt hay farm located in the mesohaline portion of Delaware Bay that was restored to tidal influence in August 1996. We separated the mummichog population into two components based on life history stage and summer habitat use patterns. One component, consisting of adults and large young-of-the-year (YOY), exhibited tidal movements to and from the marsh surface and the subtidal creeks. These were examined with an intensive mark and recapture program using coded wire tags. Another component, consisting of small YOY, remained on the marsh surface throughout the tidal cycle. Throw traps were used to sample these small YOY. The mean annual population density of adults and large YOY for the entire marsh was approximately 1.2 fish m−2 and mean monthly density peaked at 2.9 fish m−2. The mean annual density of small YOY on the marsh surface was 15.1 fish m−2 and mean monthly density peaked at 41.4 fish m−2. Size and season influenced the growth rate of individual fish and instantaneous growth rates ranged from 0.03 to 2.26 mo−1. Total annual mummichog production was estimated to be 8.37 g dw m−2 yr−1, with adults and large YOY contributing 28.4% (2.38 g dw m−2 yr−1) and small YOY on the marsh surface contributing 71.6% (5.99 g dw m−2 yr−1). The seasonal use and population densities were comparable to previous studies in natural marshes while growth and production of mummichog in this restored marsh appeared to be higher. Coupled with the results of other studies on the feeding, movement, and habitat use of this species in this restored marsh, the species has responded well to the restoration.  相似文献   

15.
Mummichog,Fundulus heteroclitus, were collected weekly from a southern New Jersey high-salinity salt marsh from October 1988 to June 1989 and from September 1989 to June 1990 to determine the overwintering habitat. Major habitat types sampled within the salt marsh were subtidal creek, intertidal creeks, and salt-marsh pools. Few individuals were collected in the intertidal creek or the subtidal creek from the end of October through the beginning of May for both years, when creek water temperatures were low. Both young-of-the-year and adults of both sexes were abundant in the salt-marsh pools (total lengths ranged from 29 mm to 125 mm) throughout the winter. In the spring, catch per unit effort (CPUE) within the tidal creek increased with increasing water temperature, while CPUE in marsh pools decreased with increases in estuarine water temperature. These collection patterns indicate that the majority ofF. heteroclitus may move from subtidal and intertidal creeks into salt-marsh pools in the late fall and leave in the spring. This seasonal movement could explain how fish survive winter environmental conditions because daily average water temperatures of salt-marsh pools were warmer than subtidal creek temperatures for much of the winter.  相似文献   

16.
Anthropogenic modifications of estuarine environments, including shoreline hardening and corresponding alteration of water quality, are accelerating worldwide as human population increases in coastal regions. Estuarine fish species inhabiting temperate ecosystems are adapted to extreme variations in environmental conditions including water temperature, salinity, and dissolved oxygen across seasonal, daily, and hourly time scales. The present research utilized quantitative sampling to examine the spatiotemporal distribution of shore-zone estuarine fish species in association with four unique shoreline types across a range of water temperature and dissolved oxygen conditions. Fish were collected from the intertidal and shallow subtidal region of four shoreline types, Spartina alterniflora marsh, Phragmites australis marsh, riprap, and bulkhead, in the summer and fall of 2009 and 2010. Analyses were performed to (1) compare mean fish density among shoreline types across all water conditions and (2) explore relationships of the complete fish assemblage, three functional species groupings, and two fish species (Fundulus heteroclitus and Menidia menidia) to unique shoreline/water conditions. Significantly greater mean fish densities were found along S. alterniflora shorelines than armored shorelines. Several metrics including fish density, species richness, and occurrence rates suggest S. alterniflora shorelines may serve as a form of refuge habitat during periods of low dissolved oxygen and high temperatures for various species, particularly littoral-demersal species including F. heteroclitus. Potential mechanisms that could contribute to a habitat providing refuge during adverse water quality conditions include tempering of the adverse condition (decreased temperatures, increased dissolved oxygen), predation protection, and increased foraging opportunities.  相似文献   

17.
Variability in early life stages of species that are permanent residents of the estuarine nekton is poorly understood, especially in systems with extensive areas of emergent vegetation (e.g., salt marshes and mangroves). Sampling small mobile nekton in these shallow intertidal habitats presents a difficult methodological challenge. Simulated aquatic microhabitats (SAMs) were used to collect the early life stages of resident nekton that remained on the emergent marsh surface after it was exposed by the tide and could not be adequately sampled by traditional methods. Where the intertidal is a prominent areal component of the estuary, a large portion of young nekton could be overlooked using other common survey methods (e.g., plankton tows or block nets). Populations of young fishes and natant crustaceans were monitored for a year at 3-d to 6-d intervals from both low and high intertidal elevations within each of two marsh sites on Sapelo Island, Georgia, USA. Three species accounted for >99% of the 41,023 individuals collected. These were the killifishesFundulus heteroclitus (57.0%) andF. luciae (4.0%), and the daggerblade grass shrimp,Palaemonetes pugio (38.4%). YoungF. heteroclitus were used in field enclosure experiments to relate abundance data to actual areal densities. Average annual estimated density of young nekton on the surface of the intertidal marsh at low tide was 7.2 individuals m?2. Early life stages of estuarine resident species, particularly those with demersal young, are not affected by the same physical processes influencing larval supply and recruitment variability in marine-spawned species. In salt marshes, biotic factors (e.g., adult reproductive activity, predation, and food limitation) may be more important as proximate causes of variation during the early life histories of resident nekton.  相似文献   

18.
Fishes and invertebrate macrofauna (nekton) were sampled biweekly (July through October 1985) from the surface of tidal freshwater marshes. Samples were collected with flume nets at three different stream orders (orders 2, 3 and 4+) along a marsh stream order gradient. Twenty-five species of fishes (5,610 individuals, 17.072 kg preserved wet weight) representing 13 families, and three species of invertebrates (19,570 individuals, 13.026 kg preserved wet weight) were collected. The most abundant species were grass shrimp (Palaemonetes pugio), mummichogs (Fundulus heteroclitus), banded killifish (F. diaphanus), inland silversides (Menidia beryllina), and blue crabs (Callinectes sapidus). Invertebrate catches (mostly grass shrimp and blue crabs) were not significantly different among stations. Total numbers of fishes were significantly greater at both headwater (order 2) and main creek (order 3) stations than river (order 4+) stations, but catches of headwater and main creek stations were not significantly different. The relationship between marsh stream order and fish abundance may partly be related to the distribution of submerged aquatic vegetation (SAV) within marsh tidal creeks. Submerged aquatic vegetation decreases in abundance with increasing stream order. Some species may use SAV as a refuge from predators or as a foraging area during low tide when the marsh surface is inaccessible. The presence of SAV in tidal creeks may enhance the habitat value of adjacent marshes.  相似文献   

19.
Patterns of nekton occurrence on the salt marsh surface at high tide and in an adjacent intertidal creek pool at low tide were used to investigate movements of nekton in an intertidal basin. Paired collections were made in North Inlet estuary, SC on 67 dates over 9 years. Comparisons of high- and low-tide total abundance indicated that what remained in the creek pool at low tide was representative of the nekton on the flooded marsh. Of the 64 taxa collected, the same 8 species ranked in the top 10 in both the high- and low-tide collections. Abundances of most resident species were positively correlated with the area of marsh flooded, but mummichog (Fundulus heteroclitus), the most abundant resident, was not. Abundances of young-of-the-year transient species were not related to the extent of tidal flooding. Some transient species used the flooded marsh but did not occupy the pool at low tide, and others found in the pool did not use the marsh. Differences in abundance, biomass, and length between the marsh and pool collections indicated differences in the tendency of species and life stages to retreat downstream of the pool to the subtidal channel. Proportionately more of the nekton that were present on the flooded marsh left the intertidal basin when large changes in temperature and salinity occurred between high and low tides. More transients left the basin following higher tides, but more residents did not. The results demonstrate a wide range of taxonomic and ontogenetic patterns among nekton using intertidal salt marsh basins and the underappreciated importance of intertidal creek pools as alternative low-tide refuges.  相似文献   

20.
Marsh creation has come into increasing use as a measure to mitigate loss of valuable wetlands. However, few programs have addressed the functional ecological equivalence of man-made marshes and their natural counterparts. This study addresses structural and functional interactions in a man-made and two natural marshes. This was done by integrating substrate characteristics and marsh utilization by organisms of two trophic levels. Sediment properties, infaunal community composition, andFundulus heteroclitus marsh utilization were compared for a man-madeSpartina salt marsh (between ages 1 to 3 yr) in Dills Creek, North Carolina, and adjacent natural marshes to the east and west. East natural marsh and planted marsh sediment grain-size distributions were more similar to each other than to the west natural marsh due to shared drainage systems, but sediment organic content of the planted marsh was much lower than in either natural marsh. This difference was reflected in macrofaunal composition. Natural marsh sediments were inhabited primarily by subsurface, deposit-feeding oligochaetes whereas planted marsh sediments were dominated by the tube-building, surface-deposit feeding polychaetesStreblospio benedicti andManayunkia aestuarina. Infaunal differences were mirrored inFundulus diets. Natural marsh diets contained more detritus and insects, because oligochaetes, though abundant, were relatively inaccessible. Polychaetes and algae were major constituents of the planted marshFundulus diet. Though naturalmarsh fish may acquire a potentially less nutritive, detritus-based diet relative to the higher animal protein diet of the planted marsh fish,Fundulus abundances were markedly lower in the planted marsh than in the natural marshes, indicating fewer fish were being supported. LowerSpartina stem densities in the planted marsh may have provided inadequate protection from predation or insufficient spawning sites for the fundulids. After three years, the planted marsh remained functionally distinct from the adjacent natural marshes. Mitigation success at Dills Creek could have been improved by increasing tidal flushing, thereby enhancing, access to marine organisms and by mulching withSpartina wrack to increase sediment organic-matter content and porosity. Results from this study indicate that salt marshes should not be treated as a replaceable resource in the short term. The extreme spatial and temporal variability inherent to salt marshes make it virtually impossible to exactly replace a marsh by planting one on another site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号