首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 570 毫秒
1.
The Minas Basin, the eastern end of the Bay of Fundy, is well known for its high tide ranges and strong tidal currents, which can be exploited to extract electricity power. The properties of the tidally-induced sediment transport in the Minas Basin, where significant changes in tidal processes may occur due to a recently proposed tidal power project, have been studied with a three-dimensional hydrodynamic model, an empirical bed load sediment transport model and surface sediment concentrations derived from the remotely-sensed images. The hydrodynamic model was evaluated against independent observational data, which include tidal elevation, tidal current (in the full water column and bottom layer), residual current profile and tidal asymmetry indicators. The evaluation shows that the model is in good agreement with the observations.The sediment transport includes two components, bed load and suspended particulate load. The bed load is calculated using the modelled bottom shear stress and the observed grain size data. The estimated features of bed load transport roughly agree with the observed patterns of the erosion and deposition in the Minas Basin and Cobequid Bay. The transport of the suspended load is estimated using the modelled velocity fields and the surface sediment concentration derived from remote-sensing images. The comparisons between the modelled results and the limited observations illustrate that the observed directions of suspended sediment transport are basically reproduced by the model. The modelled net suspended sediment input into the Minas Basin through Minas Passage is 2.4×106 m3 yr?1, which is comparable to the observed value of 1.6×106 m3 yr?1.The variations of the bed load and the suspended load in space and time are also presented. The total net transport, defined as the mean value of the sum of bed and suspended load transports during the tidal cycle, shows strong spatial variability. The magnitude of the transport flux ranges from 0.1 to 0.2 kg m?1 s?1 in Minas Channel and Minas Passage, 0.1 kg m?1 s?1 in Cobequid Bay, to 0.01 kg m?1 s?1 in the central Minas Basin and Southern Bight. In Minas Channel, the sediment transport follows the structure of the tidal residual circulation, which features a large anticlockwise gyre. The sediment in Minas Passage moves eastward and deposits into the central Minas Basin. However, the sediment from the eastern part of the Basin moves westward and deposits in the central Minas Basin as well. In the Cobequid Bay, sediment moves eastward and deposits in the upper bay.  相似文献   

2.
The echo-amplitude of a 23-m-deep bottom-mounted acoustic Doppler current profiler (ADCP) shows regular spikes up to 30 dB above background level when a ship passes nearby, due to deep penetration of bubble clouds. This is evidenced from regularly occurring spikes in echo-data that are simultaneous with ferry crossings in a narrow sea-strait. The bubbles can nearly reach the bottom and are comparable in magnitude to near-bottom scattering off suspended material in vigorous tidal currents exceeding 1 m s−1 in magnitude. The bubble clouds mask the sea surface from the echo-amplitude, which hampers the use of an ADCP for estimating atmospheric parameters and near-surface currents, under such conditions. The echo-spikes associated with the ferry are confirmed with coinciding dips in bottom pressure up to 1200 N m−2 and with deviations up to 10° in the ADCP's heading due to pressure waves and magnetic field disturbances from under the ferry and from its rear, respectively.  相似文献   

3.
Three sediment cores were sampled at Sepetiba Bay and four cores at Ribeira Bay, Rio de Janeiro State, Brazil. Sediment accumulation rates and chronologies were obtained from 210Pb activity-depth profiles. Sediment accumulation rates in Ribera Bay ranged from 1.2 mm y−1 in the inner bay to 2.6 mm y−1 close to its entrance. In Sepetiba Bay two sediment accumulation rates were observed: a lower rate of 0.35 cm y−1 before the 1960s and 0.76 cm y−1 since then. The cause of this change is due to the construction of the Santa Cecília impoundment (1955) that brings water from the Paraíba do Sul Basin into the Guandu River, which increased its flow from the original 20 m3 s−1 to 160 m3 s−1. Concentration of 44 elements was obtained by ICP-MS after total dissolution of samples from two selected cores. The relative differences between the concentrations of crustal elements, such as Al, Fe and Ti are only about 20% (p < 0.05). Cd and Zn are 15 and four times larger in Sepetiba Bay than in Ribeira Bay, respectively. Other major and minor elements show lower statistically significant differences. The enrichment factors and metal inventories show that Sepetiba Bay can be considered polluted with Bi, Cd, Cr, Cu, Sb and Zn. Particularly, Cd and Zn present concentrations three and four times higher than the Brazilian existing limits.  相似文献   

4.
A sediment budget is constructed for the slope and narrow continental shelf off the Sepik River in order to estimate the relative importance of turbid plumes versus bottom gravity transport through a near-shore submarine canyon in the dispersal of sediment across this collision margin. 210Pb geochronology and inventories of Kasten cores are consistent with the northwestward dispersal of sediment from the river mouth via hypopycnal and possible isopycnal plumes. Sediment accumulation rates are 5 cm yr−1 on the upper slope just off of the Sepik mouth, decreasing gradually to 1 cm yr−1 toward the northwest, and decreasing abruptly offshore (<0.2 cm yr−1 at 1200 m water depth). A sediment budget indicates that only about 7–15% of the Sepik River sediment discharge accumulates on the adjacent open shelf and slope. The remainder presumably escapes offshore via gravity flows through a submarine canyon, the head of which extends into the river mouth. The divergent sediment pathways observed off the Sepik River (i.e., surface and subsurface plumes versus sediment gravity flows through a canyon) may be common along high-yield collision margins of the Indo–Pacific archipelago, and perhaps are analogous to most margins during Late Quaternary low sea-level conditions.  相似文献   

5.
The in situ records of a cruise in September 1995 off the Huanghe mouth and laboratory measurements indicate that the shear front off the river mouth results from the phase difference between the nearshore and offshore tides and plays significant role in the river-laden sediment dispersal. Two types of shear front, identified from the behaviors of currents inside and outside the shear front, alternate over tidal cycle, each of which lasts for ∼2–3 h. The dispersal patterns of suspended sediment at the stations inside and outside the shear front are distinctly different from each other. In addition, the gravity-driven hyperpycnal flow generated near the mouth is terminated within shallow water due to the barrier effect of shear front. A dispersal pattern of river-laden suspended sediment in the shear frontal zone is proposed to interpret the difference of sediment transport inside and outside the shear front. The fresh and highly turbid river effluents discharge to the sea during ebb tides and are transported northwestwards inside the shear front under the combined impacts of northward ebb currents, down-slope transport of hyperpycnal flow and confining action of shear front; after partially mixing with the ambient seawater the river effluents are then transported southeastwards outside the shear front along the flood currents, causing the intermittent increase in suspended sediment concentration and corresponding decrease in salinity outside the shear front. Over annual time scale the subaqueous slope has a geomorphological response to the ephemeral shear front. Most of the river-laden sediment deposit inside the shear front with a high accumulation rate, while erosion is dominant outside the shear front due to the lack of sediment supply.  相似文献   

6.
Tidal and residual currents in the Bransfield Strait,Antarctica   总被引:1,自引:0,他引:1  
During the 1992–1993 oceanographic cruise of the Spanish R/V Hespérides, recording equipment was deployed in the Bransfield Strait. Six Aanderaa RCM7 current meters and three Aanderaa WLR7 tide gauges were successfully recovered after an operation period of 2.5 months. Relevant features of the time series obtained are presented and discussed in this paper. The emphasis is placed on the tidal character of the currents and the relative importance of tidal flow in the general hydrodynamics of the strait. For these purposes a dense grid of hydrographic stations, completed during the BIOANTAR 93 cruise, is used. Preliminary geostrophic calculations relative to a 400 m depth, yield current velocities of around 0.20 m s−1 in the study area, whereas the magnitude of tidal currents is seen to be 0.30-0.40 m s−1.  相似文献   

7.
Radiotracer 210Pb and contaminant copper were used to estimate sediment accumulation rates in 4 cores from the Ajkwa River estuary and mangrove tidal channels in western Irian Jaya. Mass accumulation rates (4.5–13 kg dry wt m−2 yr−1) were within the envelope of expectations for a region of high rainfall, great river catchment relief, and rapid tectonic uplift of mountains. Copper accumulation rates were enhanced 40 fold in surface sediments, compared to pre-1950 sections of the sediment cores. These recent sediments with enhanced copper concentrations come from Freeport Indonesia mine tailings over the last 27 years. Variations in sediment core profiles of Al, Fe, and organic carbon were small, indicating no great change in bulk sediment composition. Sulfur concentrations decline toward the sediment surface, suggesting a decline in rates of microbial sulfate reduction. Enhanced sediment copper concentrations will be a useful tracer of sediment dispersal from the Ajkwa River estuary along this coast.  相似文献   

8.
The flux of suspended particulate material across the mouth of a well-mixed estuary was measured over 12 months. Samples were taken over one neap and one spring tidal cycle each month and analysed for total suspended particulate material, inorganic and organic particulates, particulate organic carbon and particulate organic nitrogen. Water volume transport at discrete time-steps were determined by means of a one-dimensional hydrodynamic model, calibrated for each tidal cycle sampled. Net transport varied between tidal cycles with regard to direction (import or export) and magnitude. Annual budgets revealed a net export of 5306 tonne of total suspended particulate material (3900 tonne of inorganic particulates, 1286 tonne of particulate organic carbon and 120 tonne of particulate organic nitrogen). The sources of particulate organic carbon are mainly from saltmarshes (194 g POC m2y1) and from intertidal invertebrate production (586 g POC m−2y−1).  相似文献   

9.
This paper describes measurements of suspended sediment fluxes at a total of 32 stations situated on four reference sections in the turbid estuary of Chignecto Bay, Bay of Fundy, Canada. The purpose of the study was to determine the sediment budget (sources, transport paths and sinks) and the seasonal variations in particulate fluxes. The major sources of sediment are the eroding cliffs surrounding the bay (1.0 × 106 m3 y−1) and the seabed (6 × 106 m3 y−1. There are no present-day sinks within the estuary; sediment is principally moved in suspension to the wider part of the Bay of Fundy. Residuals in sediment mass transport are strongly affected by storms. These disrupt the logarithmic longitudinal sediment concentration profile which is normally present, and cause sediment to be transported out of the estuary. Well-defined turbid ribbons occur which meander unpredictably through the sampling sites; estimates of sediment mass transport are thus dubious.  相似文献   

10.
The vertical distribution of Hg and Pb were determined in a sediment core collected from the Sagua estuary (North Cuba) that receives input from the Sagua river, one of the most polluted rivers discharging into the Cuban coastal environment. Depth profiles of metal concentrations were converted to time-based profiles using the 210Pb dating method and confirmed with the 137Cs fallout peak. The mean mass accumulation rate was estimated to be 0.17 ± 0.04 g cm−2 y−1 (mean sediment accumulation rate 0.52 ± 0.13 cm y−1) and the core bottom was estimated to date back about 130 years. The historical sedimentary record showed a strong enrichment of mercury concentrations in the past decades, caused by the incomplete treatment of industrial wastes from a chlor-alkali plant with mercury-cell technology in the Sagua river basin. Lead fluxes to sediments showed a gradual increase from the 1920s to present, which agrees with a population increase in Sagua la Grande City. Fluxes of both metals have increased the past 25 years, with values reaching a maximum of 0.5 and 3.9 μg cm−2 y−1 for Hg and Pb, respectively.  相似文献   

11.
Understanding the fate of freshwater runoff and corresponding nutrient and pollution loads is of critical importance for the development of accurate predictive models and coastal management tools. A key element of such studies is the identification and understanding of the interaction between stratification and current structure. This paper presents a new series of measurements made in the Liverpool Bay region of freshwater influence (ROFI) during spring 2004 where freshwater-maintained horizontal density gradients and strong tidal currents interact to produce strain-induced periodic stratification (SIPS). During stratification, tidal current profiles are significantly modified such that the tidal flow deviates from the otherwise rectilinear E–W axis generating counter rotating upper and lower mixed layers. This feature has often been reported for the Rhine ROFI but not previously identified in Liverpool Bay despite previous investigation at this site. Investigation of an ongoing long-term dataset collected nearby reveals this process to be a common feature throughout the year. Liverpool Bay is shown to maintain three different regimes, long term mixed, long term stratified, and a transitional state when SIPS occurs. The phase of SIPS relative to the tide results in a residual flow away from the Welsh coastline in the upper water column of 2.3–3.6 cm s−1 with a counterflow in the lower layer of 2.8–3.1 cm s−1 towards the coast.  相似文献   

12.
Z. Shi  H. J. Zhou 《水文研究》2004,18(15):2877-2892
Theoretical and experimental studies were undertaken to gain insight into physical parameters controlling the flocculation and settling properties of mud flocs in the Changjiang Estuary, China. The Rouse equation is applied to vertical profiles of suspended sediment concentration to determine the bulk mean settling velocity (ws) of sediment suspended in the Changjiang Estuary. Both in situ point‐sampled and acoustically measured profiles of suspended mud concentrations were fit selectively. The calculated settling velocities ws mainly ranged from 0·4 to 4·1 mm s?1 for the point‐sampled data set, and from 1·0 to 3·0 mm s?1 for the acoustically measured data set. Furthermore, the settling velocities of mud flocs increased with mean concentration (C?) of mud flocs in suspension and were proportional to increasing bottom shear stress (τb) of tidal flow. The best equation for the field settling velocity of mud flocs in the Changjiang Estuary can be expressed by the power law: ws = mC?n (m, 1·14–2·37; n, 0·84–1·03). It is suggested that C? and τb were the dominant physical parameters controlling the flocculation and ws of mud flocs in suspension. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

13.
This work presents the first synthesis of secular to millenary morphological evolutions and stratigraphy of a wave-dominated estuary, the Arcachon lagoon, from a combination of unpublished bathymetric maps (1865 and 2001), core results and high-resolution seismic profiles recorded for the first time in this lagoon. The Arcachon lagoon is located on the Atlantic coast of France, facing the wave-dominated shelf of the Bay of Biscay. It is a mesotidal semi-enclosed environment of about 160 km2.The sediment budget of the Arcachon lagoon was computed by subtracting the 1865 bathymetric map from that of 2001. The computed volume difference is low (?9.9±35×106 m3 in 136 yrs) and is the result of the balance between erosion and accretion that occurs within tidal channels and tidal flats, respectively. This morphological evolution pattern is explained by low sediment supply and also by the tidal distortion resulting from the morphology of the lagoon. Deep channels connected to the inlet are dominated by ebb currents inducing erosion. Tidal flats and transverse channels display weak or flood-dominated tidal currents leading to the deposition of silts. The areas of tidal flat siltation locally correlate with the presence of oyster farms, suggesting the influence of Man on the lagoon sediment-fill. Transverse channel-infill is related to weak tidal currents resulting from the hydraulically inefficient orientation of these channels which served as an ancient drainage network.Evidence for tidal channel-infill and channel abandonment are also provided by seismic profiling and cores. The upper stratigraphic succession of the lagoon (about 10 m thick) includes four main stratigraphic units dominated by channel-fills. The two lower units (around 7500–2800 yrs BP) display tabular-shape sandy channels interpreted to be records of the open estuarine phase of the Arcachon lagoon. The two upper units (around 2800 yrs BP to present-day) display U-shaped mixed sand-and-mud channel-fills interpreted to be records of the closure of the lagoon. Given that the basal estuarine units are transgressive and the upper lagoonal units are regressive, the main stratigraphic change at around 2800 yrs BP is interpreted as being the maximum flooding surface (MFS). This late MFS is explained by the low sediment supply. It is proposed that the transition from the estuarine to the lagoonal phase is related to the development of the Cap-Ferret spit in response to an increase in the ratio between wave power to tide power. This change in wave-to-tide ratio may be triggered by wave power increase following the Subboreal/Subatlantic climate instability or a decrease in tide power following a decrease in tidal prism related to the lagoon sediment-fill.Thus, the evolution of the Arcachon lagoon over the last millenaries was mainly controlled by its spit development, leading to a wave-dominated estuary in terms of its geomorphology. Once it was partially closed, extensive mud flats developed in the lagoon which became ebb-dominated.  相似文献   

14.
Western Port, Victoria, Australia is a tide-dominated embayment with an unusual and complex shape. Bottom currents and circulation and their effects on sediment processes were examined using instrumented tripods to measure currents, tides and wave activity, and to estimate sediment transport at nine locations in the bay. Overall bottom water movement patterns were determined by use of seabed drifters. The characteristics of the bay reflect a small catchment and low freshwater and sediment input. A complex system of channels is flanked by extensive intertidal areas. Tidal range varies up to more than 3 m, generating bottom currents up to 70cm s?1. Flow directions generally conform to channel alignments but major deviations are important. Net circulation in the bay is clockwise around the large central island. The ratio of tidal range to half-tidal period (ΔHT) when compared with measured currents gave a method of prediction of the annual frequency distribution of maximum bottom current velocities. Determination of threshold current velocities enabled prediction of annual frequency of bedload movement (generally 50–100 per cent of tide cycles). Bedload mass transport for all observed tide cycles was calculated, and estimates of annual mass transport capacity (between 102 and 106 g cm?1 a?1( were obtained from a relationship between predicted tidal conditions and mass transport. Seabed drifters delineated the major bottom water movements in the bay and adjacent Bass Strait, and also detailed circulation patterns. This linked the data from the tripod stations, in particular patterns of ebb- and flood-dominance. A coherent picture of the processes operating in Western Port is presented by integrating these studies with corroborative studies of sediment distribution and morphology, hydrochemistry, and mathematical modelling. Some morphological characteristics related to tide-dominance are discussed.  相似文献   

15.
Field observations of flow and sediment transport in a tributary channel through intertidal mudflats indicate that suspended sediment was closely linked to advection and dispersion of a tidal salinity front. During calm weather when tidal forcing was dominant, high concentrations of suspended sediment advected up the mudflat channel in the narrow region between salty water from San Francisco Bay and much fresher runoff from the small local watershed. Salinity and suspended sediment dispersed at similar rates through each tidal inundation, such that during receding ebbs the sediment pulse had spread spatially and maximum concentrations had decreased. Net sediment transport was moderately onshore during the calm weather, as asymmetries in stratification due to tidal straining of the salinity front enhanced deposition, particularly during weaker neap tidal forcing. Sediment transport by tidal forcing was periodically altered by winter storms. During storms, strong winds from the south generated wind waves and temporarily increased suspended sediment concentrations. Increased discharge down the tributary channels due to precipitation had more lasting impact on sediment transport, supplying both buoyancy and fine sediment to the system. Net sediment transport depended on the balance between calm weather tidal forcing and perturbations by episodic storms. Net transport in the tributary channel was generally off-shore during storms and during calm weather spring tides, and on-shore during calm weather neap tides.  相似文献   

16.
《Continental Shelf Research》2007,27(3-4):489-505
Sediment accumulation over the past century on the continental shelf near the Po delta varies with distance from the most active distributary channels. Near the Pila and Goro distributaries, sediment accumulation is rapid (1–4 cm yr−1) and occurs in pulses. In these areas, the seabed is dominated by physical sedimentary structures that can be related to flood sedimentation. Between the two distributaries and in the southern portion of the dispersal system, sediment accumulation is slower (rates reach a minimum of 0.23 cm yr−1 at ∼50 km from the Pila mouth) and steady-state, reflecting more continuous dispersal of sediment during non-flood periods. Sedimentary strata in these locations are composed of finer (clayey silt), mottled sediment. The similarity in the spatial distribution of long-term (100-yr) sediment accumulation to deposition resulting from the 2000 flood event suggests that the Po shelf is flood-dominated.About half of the sediment delivered by the Po River on a 100-yr time scale can be accounted for in the seabed deposit within ∼50 km of the Pila mouth. The remaining sediment is likely transported southward by the prevailing circulation, and this sediment coalesces with inputs from the Apennine Rivers.  相似文献   

17.
PCB (polychlorinated biphenyls) contamination and its relationship to SPM (suspended particulate material) have been studied in the Seine Estuary, which is heavily polluted by these persistent and hydrophobic man-made chemicals. Two sampling cruises have been performed during different freshwater discharge conditions. PCB and SPM concentrations, as well as grain-size distributions in the particulate material have been determined. Water samples have been collected at fixed positions during a tidal cycle, and along transects within the estuary.PCB concentrations vary from 2 ng 1−1 in the marine zone to 250 ng 1−1 within the estuary, and reach 1.3 × 103 ng 1−1 in the turbidity maximum zone. During a tidal cycle, low PCB concentrations are observed at high water, and are in the same range in February as in July. High PCB contamination is observed at low water, but PCB concentrations are about five times higher in February. SPM and PCB variations are well correlated in both periods of observations. Higher PCB contamination during February is explained by higher SPM inputs, mainly due to particles of riverine origin. The transport of PCB within the estuary depends on the quantity and the grainsize composition of suspended material, which varies according to freshwater discharge and tidal amplitude.  相似文献   

18.
The 1975 sub-terminal activity was characterised by low effusion rates (0.3–0.5 m3 s−1) and the formation of a compound lava field composed of many thousands of flow units. Several boccas were active simultaneously and effusion rates from individual boccas varied from about 10−4 to 0.25 m3s−1. The morphology of lava flows was determined by effusion rate (E): aa flows with well-developed channels and levees formed when E > 2 × 10−3 m3 s−1, small pahoehoe flows formed when 2 × 10−3 m3 s−1 >E > 5 > 10−4 m3 s−1 and pahoehoe toes formed when E < 5 × 10−4 m3 s−1. There was very little variation with time in the effusion temperature, composition or phenocryst content of the lava.New boccas were commonly formed at the fronts of mature lava flows which had either ceased to flow or were moving slowly. These secondary boccas developed when fluid lava in the interior of mature aa flows either found a weakness in the flow front or was exposed by avalanching of the moving flow front. The resulting release of fluid lava was accompanied by either partial drainage of the mature flow or by the formation of a lava tube in the parent flow. The temperature of the lava forming the new bocca decreased with increasing distance from the source bocca (0.035°C m−1). It is demonstrated from the rate of temperature decrease and from theoretical considerations that many of the Etna lavas still contained a substantial proportion of uncooled material in their interior as they came to rest. The formation of secondary boccas is postulated to be one reason why direct measurements of effusion rates tend, in general, to overestimate the total effusion rates of sub-terminal Etna lava fields.  相似文献   

19.
The Selenga River delta (Russia) is a large (>600 km2) fluvially dominated fresh water system that transfers water and sediment from an undammed drainage basin into Lake Baikal, a United Nations Educational, Scientific, and Cultural Organization World Heritage Site. Through sedimentation processes, the delta and its wetlands provide important environmental services, such as storage of sediment‐bound pollutants (e.g., metals), thereby reducing their input to Lake Baikal. However, in the Selenga River delta and many other deltas of the world, there is a lack of knowledge regarding impacts of potential shifts in the flow regime (e.g., due to climate change and other anthropogenic impacts) on sedimentation processes, including sediment exchanges between deltaic channels and adjacent wetlands. This study uses field measurements of water velocities and sediment characteristics in the Selenga River delta, investigating conditions of moderate discharge, which have become more frequent over the past decades (at the expense of peak flows, Q > 1,350 m3 s?1). The aims are to determine if the river system under moderate flow conditions is capable of supporting sediment export from the main distributary channels of the delta to the adjacent wetlands. The results show that most of the deposited sediment outside of the deltaic channels is characterized by a large proportion of silt and clay material (i.e., <63 μm). For example, floodplain lakes function as sinks of very fine sediment (e.g., 97% of sediment by weight < 63 μm). Additionally, bed material sediment is found to be transported outside of the channel margins during conditions of moderate and high water discharge conditions (Q ≥ 1,000 m3 s?1). Submerged banks and marshlands located in the backwater zone of the delta accumulate sediment during such discharges, supporting wetland development. Thus, these regions likely sequester various metals bound to Selenga River sediment.  相似文献   

20.
The Amazon Macrotidal Mangrove Coast (AMMC) is a large (~7500 km2) contiguous mangrove fringe eastwards from the Amazon River mouth. It encompasses dozens of interconnected bays intercalated with mangrove peninsulas. Mud accumulates on the mangrove flats, whereas the bed of the bays and channels is generally sandy. In this study we investigated the circulation, sediment transport and deposition in a central site at one of these mangrove peninsulas. The study was undertaken during the dry period, when there is no influence of the Amazon River plume and minimum local freshwater inflow. Current and suspended-sediment concentration were monitored in a feeder channel on the mangrove flat along a ~1000 m section oriented along the peninsula axis. Sediment deposition was also measured on the flat. Our results show there was a strong exchange between the neighboring bays. Channel currents were flood dominant, reaching up to >1 m s−1, with residual water and sediment transport westwards. Suspended sediment concentration (SSC) in the channel was directly related to velocity magnitude, ranging between 50 and 350 mg L−1. The flat was flooded in a way that indicated the tidal wave evolves westwards, nearly parallel to the AMMC shoreline. Currents on the flats were much slower than those in the channel and showed slight ebb dominance. However, SSC was higher during the flood than ebb, clearly indicating settling during the current deceleration and limited erosion during the following ebb–flow acceleration. The net sediment transport across the section was 60 tons westwards for the period of the experiment (~4 days). The mean deposition rate was 0.006 kg m−2 s−1 (or 1.4 kg m−2 per tide), which was higher than rates from other reported assessments in mangroves. The set of results indicate very large internal sediment reworking in the AMMC. © 2019 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号