首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
I. H. Urch 《Solar physics》1969,10(1):219-228
A steady state, inviscid, single fluid model of the solar win d in the equatorial plane is developed using magneto-hydrodynamics and including the heat equation wit h thermal conduction but no non-thermal heating (i.e. a conduction model). The effects of solar rotation and magnetic field are included enabling both radial and azimuthal components of the velocity and magnetic fields to be found in a conduction model for the first time.The magnetic field cuts off the thermal conduction far from the sun and leads to an increased temperature at 1 AU and relatively small changes to the radial velocity and density. Models have been found which fit the experimental electron densities in 2 R < r < 16 R . These models predict at 1 AU a radial velocity of 300–380 km·sec-1 and a density of 8 protons·cm-3. The latter velocity corresponds to a density profile obtained by Blackwell and Petford (1966) during the last sunspot minimum, and is about 100 km·sec-1 above that found in previous conduction models which fit the coronal electron densities. The radial velocities are now consistent with the mean quiet solar wind, as are the densities when the experimental values are averaged over a magnetic sector. However, the azimuthal velocity at 1 AU is only 1–2 km·sec-1 which is low compared to the experimental values, as found by previous authors.  相似文献   

2.
In this paper, we analyze the relations between photospheric vector magnetic fields, chromospheric longitudinal magnetic fields and velocity fields in a solar active region. Agreements between the photospheric and chromospheric magnetograms can be found in large-scale structures or in the stronger magnetic structures, but differences also can be found in the fine structures or in other places, which reflect the variation of the magnetic force lines from the photosphere to the chromosphere. The chromospheric superpenumbral magnetic field, measured by the Hline, presents a spoke-like structure. It consists of thick magnetic fibrils which are different from photospheric penumbral magnetic fibrils. The outer superpenumbral magnetic field is almost horizontal. The direction of the chromospheric magnetic fibrils is generally parallel to the transverse components of the photospheric vector magnetic fields. The chromospheric material flow is coupled with the magnetic field structure. The structures of the H chromospheric magnetic fibrils in the network are similar to H dark fibrils, and the feet of the magnetic fibrils are located at the photospheric magnetic elements.  相似文献   

3.
We study the linear stability of nondissipative flow of an electrically conducting fluid subject to non-axisymmetric disturbances in the following cases: (i) the radial flow of an incompressible fluid between two concentric porous circular cylinders in the presence of a radial magnetic field and (ii) axial flow of a compressible fluid between two concentric circular cylinders permeated by a helical magnetic field (0,B 0(r),B 0z) in a cylindrical coordinate system. It is shown that in case (i), the flow is stable if the Alfvén velocity based on the undisturbed radial magnetic field exceeds the radial velocity due to suction or injection at the cylinder surfaces. In case (ii), it is found that under certain conditions the complex wave speed for an unstable mode lies within a circle of diameterW max-W min, whereW max andW min are the maximum and minimum values of the axial velocity in the flow region. In the presence of a purely axial magnetic field, however, the complex wave speed for an unstable mode always lies within the above circle.  相似文献   

4.
Solar coronal loops are observed to be remarkably stable structures. A magnetohydrodynamic stability analysis of a model loop by the energy method suggests that the main reason for stability is the fact that the ends of the loop are anchored in the dense photosphere. In addition to such line-tying, the effect of a radial pressure gradient is incorporated in the analysis.Two-ribbon flares follow the eruption of an active region filament, which may lie along a magnetic flux tube. It is suggested that the eruption is caused by the kink instability, which sets in when the amount of magnetic twist in the flux tube exceeds a critical value. This value depends on the aspect ratio of the loop, the ratio of the plasma to magnetic pressure and the detailed transverse magnetic structure. For a force-free field of uniform twist the critical twist is 3.3, and for other fields it is typically between 2 and 6. Occasionally active region loops may become unstable and give rise to small loop flares, which may also be a result of the kink instability.  相似文献   

5.
During the total solar eclipse, 1965 May 30, a 25 cm aperturef/8.0 telescope and Fabry-Perot interferometer were operated aboard the USAF-AEC aircraft. High resolution spectra of the Fexiv emission line, 530.3 nm, were obtained. Deconvolved intensity vs wavelength profiles of the second order fringe overlay a helmet structure on the NM limb at out to 1.37R . The profiles yield coronal temperatures, absolute intensities and Doppler velocities in regions of apparently open magnetic field structure and within the closed field lines of the helmet. Together with white light intensities the observations are interpreted to provide temperatures and turbulent velocities in and around this coronal structure. Comparison is made with a model by Billings and Roberts. We suggest a model with radial flow (solar wind) velocities of 60 km s–1 satisfies the observations in the open field line region.Work performed under the auspices of the U.S. Atomic Energy Commission, and portions of the analysis at the National Center for Atmospheric Research, Boulder, Colo.  相似文献   

6.
The effect of a prevalent magnetic field on static and uniformly rotating self-gravitating cylinders of infinite length is examined. The magnetic field is assumed to consist ofH andH z components, which are taken to be functions of the radial coordinate alone. A variety of magnetic-field configurations are shown to be admissible solutions of equations of motion, from which some feasible cases are presented. A particular magnetic-field configuration having bothH andH z components is studied in detail. The configuration is such that the assumption of a polytropic equation of state reduces the equation governing the density function to a non-homogeneous cylindrical analogue of the Lane-Emden equation for spherical polytropes. The homogeneous case is also studied and shows interesting magnetic-field patterns.  相似文献   

7.
A model is constructed for the magnetic field of the star HD 2453, which has a very long rotation period (P=521d). It is found that the structure of the field corresponds to the model of a dipole shifted by r=0.09R from the center. The angle of inclination of the axis of the dipole to the axis of rotation, =5°; that is, the star is viewed almost from its equator of rotation and magnetic equator. This explains the low amplitude of the phase dependence of the magnetic field, Be(P), and the low amplitude of the photometric variability. The field at the magnetic poles is equal to Bp=+4400 and -7660 G. The magnetic field parameters turn out to be close to those obtained by Landstreet and Mathys assuming a dipole-quadrupole-octupole model. A Mercator map of the magnetic field distribution of HD 2453 is produced.  相似文献   

8.
H. Washimi  T. Sakurai 《Solar physics》1993,143(1):173-186
An axisymmetric solar wind structure including the solar rotation effect is studied by the method of MHD computer simulation. For the case of the radial magnetic field configuration, the simulation result is fairly well coincident with the steady-state solution. For the case of the dipole magnetic field configuration, the properties of the solution depend on the ratio of the gas pressure to the magnetic pressure-ratio) in the model. If the-ratio is small, a clearly defined stagnation region appears in the wind, in which the flow speed is very small and the azimuthal magnetic field is very weak because of the corotation of the plasma. If the-ratio is greater than 1, the plasma is not effectively trapped by the magnetic field so that the stagnation region is not clearly defined in the solution.  相似文献   

9.
Durney  Bernard R. 《Solar physics》2000,197(2):215-226
The integrals, Ii(t) = GL ui j × B i dv over the volume GL are calculated in a dynamo model of the Babcock–Leighton type studied earlier. Here, GL is the generating layer for the solar toroidal magnetic field, located at the base of the solar convection zone (SCZ); i=r, , , stands for the radial, latitudinal, and azimuthal coordinates respectively; j = (4)-1 × B, where B is the magnetic field; ur,u are the components of the meridional motion, and u is the differential rotation. During a ten-year cycle the energy cycle I(t)dt needs to be supplied to the azimuthal flow in the GL to compensate for the energy losses due to the Lorentz force. The calculations proceed as follows: for every time step, the maximum value of |B| in the GL is computed. If this value exceeds Bcr (a prescribed field) then there is eruption of a flux tube that rises radially, and reaches the surface at a latitude corresponding to the maximum of |B| (the time of rise is neglected). This flux tube generates a bipolar magnetic region, which is replaced by its equivalent axisymmetric configuration, a magnetic ring doublet. The erupted flux can be multiplied by a factor Ft, i.e., by the number of eruptions per time step. The model is marginally stable and the ensemble of eruptions acts as the source for the poloidal field. The arbitrary parameters Bcr and Ft are determined by matching the flux of a typical solar active region, and of the total erupted flux in a cycle, respectively. If E(B) is the energy, in the GL, of the toroidal magnetic field B = B sin cos , B (constant), then the numerical calculations show that the energy that needs to be supplied to the differential rotation during a ten-year cycle is of the order of E(Bcr), which is considerably smaller than the kinetic energy of differential rotation in the GL. Assuming that these results can be extrapolated to larger values of Bcr, magnetic fields 104 G, could be generated in the upper section of the tachocline that lies below the SCZ (designated by UT). The energy required to generate these 104 G fields during a cycle is of the order of the kinetic energy in the UT.  相似文献   

10.
Spectro-polarimetric observations at 2231 nm were made of NOAA 10008 near the west solar limb on 29 June 2002 using the National Solar Observatory McMath–Pierce Telescope at Kitt Peak and the California State University Northridge – National Solar Observatory infrared camera. Scans of spectra in both Stokes I and Stokes V were collected; the intensity spectra were processed to remove strong telluric absorption lines, and the Stokes V umbral spectra were corrected for instrumental polarization. The sunspot temperature is computed using the continuum contrast and umbral temperatures down to about 3700 K are observed. A strong Tii line at 2231.0 nm is used to probe the magnetic and velocity fields in the spot umbra and penumbra. Measurements of the Tii equivalent width versus plasma temperature in the sunspot agree with model predictions. Zeeman splitting measurements of the Stokes I and Stokes V profiles show magnetic fields up to 3300 G in the umbra, and a dependence of the magnetic field on the plasma temperature similar to that which was seen using Fei 1565 nm observations of the same spot two days earlier. The umbral Doppler velocity measurements are averaged in 16 azimuthal bins, and no radial flows are revealed to a limit of ±200 m s–1. A Stokes V magnetogram shows a reversal of the line-of-sight magnetic component between the limb and disk center sides of the penumbra. Because the Tii line is weak in the penumbra, individual spectra are averaged in azimuthal bins over the entire penumbral radial extent. The averaged Stokes V spectra show a magnetic reversal as a function of sunspot azimuthal angle. The mean penumbral magnetic field as measured with the Stokes V Zeeman component splitting is 1400 G. Several weak spectral lines are observed in the sunspot and the variation of the equivalent width versus temperature for four lines is examined. If these lines are from molecules, it is possible that lines at 2230.67, 2230.77, and 2231.70 nm originate from OH, while the line at 2232.21 nm may originate from CN.  相似文献   

11.
We extend Jokipii and Lerche's analysis of the turbulent structure of our Galaxy by means of a study of the rotation measure of extragalactic sources. Like them we use a simple, statistically homogeneous and isotropic disc model of the Galaxy and assume that the magnetic field has both an average component and a fluctuating one. We assume that the electron density is proportional to some power of the magnetic field (N eB n with 1n2). Using the rotation measure data on 242 extragalactic sources given by Vallée and Kronberg we consider both an exponential and a Gaussian two-point correlation function for the (Gaussian) fluctuating component of the magnetic field with a correlation lengthL. We find reasonable agreement between theory and observations for an average magnetic field of about 3 G, a fluctuating magnetic field component with an amplitude of about 2.6G, an average electron density of about 0.03 cm–3, a fluctuating density component of about 0.05 cm–3, and a correlation length of about 300 pc.  相似文献   

12.
The properties of wave propagation in a perfectly electrically conducting, plane-stratified, inviscid, compressible atmosphere premeated by a horizontal magnetic field which varies with height are investigated. It is shown that a diagnostic diagram can be constructed through a generalization of the propagation equation to account for the presence of a magnetic field.The effect of the magnetic field on the oscillations in solar plages around the temperature minimum is studied and compared with the non-magnetic case based on the Bilderberg Continuum Atmosphere. Due to the joint action of ionization and the magnetic field, a potential well for internal gravity waves is formed. The properties of the trapped waves are in qualitative agreement with the observations.The Brunt-Väisälä frequencies in the presence (N) and absence (N 0) of the magnetic field around the temperature minimum are shown to obey the relation N/N 0 (1 + 2)–1/2, where is the ratio between the Alfvén and the sonic speeds. The modified Brunt-Väisälä frequency (N) is decreased as the strength of the magnetic field increases. The magnetic effect makes the potential well shallower, thus shrinking the domain for the trapped gravity modes.  相似文献   

13.
The problems of fragmentation, angular momentum, and magnetic flux during star formation are reviewed briefly. Then the resolution of the angular momentum problem through magnetic braking is studied rigorously.A disk-like interstellar cloud of uniform density cl is given an initial angular velocity o about its axis of symmetry, which isaligned with an initially uniform, frozen-in magnetic field. Torsional Alfvén waves transport angular momentum from the cloud to the external medium, which has a uniform density ext . The angular velocity of the cloud ( cl ) is determined analytically as a function of space and time for different ratios cl / ext (the only free parameter in the equations), representing different stages of contraction. Despite dissimilar transient response of the cloud (or fragment) structure to different initial conditions, the characteristic time for magnetic braking of the rotation of the cloud (or fragment) as a whole is remarkably insensitive to the initial conditions and independent of the stage of contraction. The latter conclusion is in agreement with an approximate result obtained recently (Mouschovias, 1978; 1979a).A cylindrical cloud (or fragment) of uniform density is also imparted an initial angular velocity about its axis of symmetry with respect to the external medium. The frozen-in magnetic field is now initially radial andperpendicular to the axis of symmetry. In this case magnetic braking becomes more efficient upon contraction. It is more efficient than the aligned rotator case typically by one order of magnitude. The angular momentum problem can be resolved in about 106 yr during the early stages of cloud contraction. Planetary systems, such as the Sun-Jupiter pair, become dynamically possible. A stage exists in which a cloud (or fragment) is in retrograde rotation with respect to its surroundings. This provides the first and only observable prediction of magnetic braking in action. It also constitutes a natural explantation of retrograde rotation in stellar and planetary systems.This work was supported in part by the National Science Foundation under grant NSF AST-77-23568.Paper presented at the European Workshop on Planetary Sciences, organised by the Laboratorio di Astrofisica Spaziale di Frascati, and held between April 23–27, 1979, at the Accademia Nazionale del Lincei in Rome, Italy.  相似文献   

14.
Photoelectric polarisation measurements in a stable sunspot (type H) with a particularly dark umbra carried out with the Capri magnetograph have been evaluated in terms of Unno's (1956) theory to give the value and direction of the magnetic field vector. A linear increase of the inclination angle with distance from the spot centre up tor 1.2R s results, as originally found by Hale and Nicholson (1938) with a different procedure. The field strength decreases from the maximum value (about 3300) to about 15% at the penumbral border, still continuously decreasing outside the spot. The projected field direction deviates considerably from the radial symmetry in several parts of the spot region, but it is in good agreement with that of the overlaying chromospheric structures.Mitteilungen aus dem Fraunhofer Institut Nr. 97.  相似文献   

15.
In this paper an excitation of waves is considered during the time interval in which the undisturbed magnetic field changes its direction. If this interval is taken to be 2 years, which is shorter than the 11-year cycle, then the undisturbed components of the magnetic field may be linearly dependent on time and independent of the coordinates. The excitation of waves is due to the undisturbed stationaryV 0 flow with divV 0 = 0 and with (V 0 rot0) = constant.We use the local Cartesian coordinate system, which is immovable towards the solar centre, and consider the case when the toroidal component of the undisturbed magnetic field changes its sign simultaneously with one of the axial components. The third component does not change its direction.The efficiency of the enhancement of the magnetic field and velocity disturbances depends on the Alfvén wave frequency, A. When A = 0, the component of the disturbed velocity, which is directed along the constant component of the undisturbed magnetic field, increases. In this case the shear waves excite the carrier (high) frequency (KV 0), whereK is the wave vector. Due to the shear instability the amplitude of the velocity increases during 1 year before the moment of reversal of the global magnetic field polarity (RGMFP) for an arbitrary latitude. It reaches a maximum at RGMFP and decreases in the next year. When A > 0, then the amplitudes of the disturbed values reach maxima before the moment of RGMFP, and when A < 0, they reach maxima after it.We argue that the shear waves propagate from middle latitudes to the pole and equator. Using the results of the analytical solutions and leaning on the evidence of the observational data (Gigolashvili and Japaridze, 1992), we derive the result that the component of the undisturbed magnetic field, which is perpendicular to the solar surface, changes its sign simultaneously with the toroidal component.  相似文献   

16.
Taking into account magneto-optical effects, we have obtained numerical solutions of the transfer equations for the Stokes parameters, calculated the linearly polarized intensity (U) and constructed its monochromatic images of unipolar sunspots. By comparison with the observational material of the vector magnetograph of the Marshall Space Flight Center, Huntsville (Alabama), we have found that the model of radial magnetic fields may give rise to U monochromatic images close to those observed. The same conclusion has been obtained previously by Landi Degl'Innocenti (1979), although his analysis was performed with the Milne-Eddington approximation instead of a detailed sunspot model. Moreover, we have shown that the model of spiral magnetic fields leads to results in contrast with observations.  相似文献   

17.
Yihua Yan 《Solar physics》1995,159(1):97-113
In this paper, a formulation describing a force-free magnetic field with constant, either 0 or = 0, with finite energy content in semi-infinite space,z > 0, above the Sun is proposed and solved uniquely by a numerical method: the boundary element method (BEM). The method is effective and convenient in extrapolating the magnetic field above the solar surface, , directly from the measured magnetogram. Meanwhile, no additional data treatment is needed. Based on the existence of such a field, the uniqueness of the solution in the present formulation is proved and some useful properties are obtained. The validity is also demonstrated by its application to the magnetic field computation in the chromosphere from observed magnetogram data. The practical feasibility is thus discussed and further confirmed.  相似文献   

18.
T. J. Bogdan 《Solar physics》1986,103(2):311-315
Previous efforts to construct solar coronal fields using surface magnetograph data have generally employed a least squares minimization technique in order to determine the spherical harmonic expansion coefficients of the magnetic scalar potential. Provided there is no source surface high up in the corona, we show that knowledge of the line-of-sight component of the surface magnetic field, B i = B r sin + B cos , is sufficient to uniquely determine the potential coronal magnetic field by an explicit construction of the magnetic scalar potential for an arbitrary B l (, ).The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

19.
J. J. Aly  N. Seehafer 《Solar physics》1993,144(2):243-254
Models of the magnetic field in the solar chromosphere and corona are still mainly based on theoretical extrapolations of photospheric measurements. For the practical calculation of the global field, the so-called source-surface model has been introduced, in which the influence of the solar wind is described by the requirement that the field be radial at some exterior (source) surface. Then the assumption that the field is current-free in the volume between the photosphere and this surface allows for its determination from the photospheric measurement. In the present paper a generalization of the source-surface model to force-free fields is proposed. In the generalized model the parameter( = ×B·B/B 2)must be non-constant (or vanish identically) and currents are restricted to regions with closed field lines. A mathematical algorithm for computing the field from boundary data is devised.  相似文献   

20.
The source positions of solar radio bursts of spectral types I, III(U) and III(J) and V observed by the Culgoora radioheliograph are found to lie almost radially above soft X-ray loops on pictures taken by the S-056 telescope aboard Skylab. The radio source positions and the X-ray loops occur near magnetic loops on computed potential field maps. However, the magnetic induction required to explain the radio observations is much greater than the computed potential field value at that height. Dense current-carrying magnetic flux tubes emanating from active regions on the Sun and extending to 1.5R above the photosphere provide a satisfactory model for the radio bursts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号