首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 177 毫秒
1.
为了研究煤体渗透率与压力梯度之间的关系,在考虑煤体吸附变形的基础上建立了煤体渗透率与瓦斯压力梯度的数学模型,并在恒温条件下进行同一压力梯度不同吸附平衡压力的条件下和同一吸附平衡压力不同压力梯度条件下的渗流实验。研究结果表明:在较低的孔隙压力条件下,煤体渗透率随着吸附平衡压力和压力梯度的增加而减小;建立的渗透率动态演化模型能够较好地描述煤层瓦斯抽采过程中瓦斯的流动规律。研究结果可以为我国煤矿瓦斯治理和抽采工作提供一定的理论支撑,具有一定的指导和实践意义。   相似文献   

2.
本文针对矿井煤层瓦斯抽放及防突中煤层透气性差,瓦斯抽放率低等问题,按照高压水射流技术应用的原理,设计了应用于抽放钻孔中切割煤体的高压水射击流装置,并在现场对喷嘴和射流器进行了试验。试验结果表明,水射流方向采用+100,喷嘴直径为1.5mm,切割速度为0.2m/min,泵压为30MPa时,水射流切割钻孔中煤体效果最佳;煤层采用高压水射流切割缝后,钻孔预抽瓦斯的抽放率提高了18.8%,抽放时间相对缩短90%以上。因此,该项技术对于煤层瓦斯抽放和防治煤与瓦斯突出具有重要作用。  相似文献   

3.
针对目前应用较多的瓦斯抽放半径测定方法——相对瓦斯压力测定法与实际情况偏差较大问题,以神华乌海能源公司平沟煤矿16号低透气性高瓦斯煤层为研究对象,在井下1606工作面施工瓦斯抽放试验钻孔,采用SF6气体示踪法测定工作面瓦斯的抽放半径,并比较了不同抽放半径的瓦斯抽放效果。实测结果表明,SF6气体示踪法所测定的瓦斯抽放半径使瓦斯抽采效率显著提高,该方法为煤层预抽瓦斯钻孔间距的设计提供了依据,可以在低透气性高瓦斯煤层的瓦斯抽放半径测定中推广使用。  相似文献   

4.
远程卸压瓦斯抽放数值模拟   总被引:1,自引:0,他引:1  
利用新近开发的含瓦斯煤岩破裂过程固气耦合作用的F-RFPA2D数值模拟工具,模拟了潘一矿在下煤层开采过程中上覆岩层的移动、垮落的全过程,以及由于下煤层开采所诱发的上煤层(主采煤层)透气性演化过程,并对采动影响下煤层瓦斯抽放时瓦斯的流动运移规律进行了初步的数值模拟研究。模拟结果同现场工程实际比较吻合,表明利用F-RFPA来研究煤矿开采所诱发的煤层透气性演化和瓦斯运移等工程实际问题是可行的。   相似文献   

5.
为提高煤层静态致裂井下作业效率,优化致裂布孔参数,以中煤华晋王家岭矿12316综采工作面胶带巷为实验背景,结合煤层变形破坏方程、瓦斯扩散渗流方程和煤层渗透率演化方程,构建煤层破坏及渗透率演化模型;采用FlAC3D-COMSOL Multiphysics对煤体静态致裂增透过程及影响因素进行数值模拟,揭示静态致裂作用下煤层应力分布、塑性扩展与瓦斯压力传递演化规律。通过优化选取致裂工艺参数开展现场试验,定量分析不同孔距下静态致裂过程中煤层瓦斯抽采量的变化特征。结果表明:静态致裂过程中膨胀应力在煤体内部沿致裂孔半径方向向四周均匀传递,单孔致裂过程中形成圆环状应力圈和塑性区;在双孔致裂条件下,两致裂孔内膨胀应力的水平叠加效果优于竖直叠加效果,使煤体水平方向破坏效果较竖直方向显著,且两致裂孔中间区域的煤层先于其他区域破坏。受静态致裂作用范围的限制,增透促抽后煤层内瓦斯压力大小与孔距呈正相关关系,煤层渗透率与孔距间呈负相关关系;现场试验表明,将孔距设为1.6 m以内进行静态致裂增透,在抽采负压为20 kPa条件下抽采30 d,测得致裂后瓦斯抽采纯量提升1倍左右,说明静态致裂对瓦...  相似文献   

6.
水力冲孔是实现"三软"煤层瓦斯高效抽采的有效途径之一。通过应力应变-煤体结构-渗透率的耦合实验,揭示了"三软"煤层渗透率随煤体结构和应力变化的演化规律,发现软煤在卸压后渗透率得到大规模提升。以Hoek-Brown准则为理论依据,通过数值模拟,发现水力冲孔出煤后的卸压增透范围显著增加。采用自主研发的"瓦斯抽采孔水力作业机",在郑煤集团大平煤矿21141底板抽放巷进行了水力冲孔试验,使得水力冲孔更加安全、高效,并使得老孔的修复成为现实。现场试验充分检验了装备的可靠性和理论分析的准确性,显著提高了煤层瓦斯的抽采效率。   相似文献   

7.
王宏图  黄光利  袁志刚 《岩土力学》2014,35(5):1377-1382
开采保护层是防治煤与瓦斯突出最有效的措施之一,其关键是保护范围的合理确定。针对急倾斜多煤层上保护层开采有效保护范围的划定问题,基于煤层瓦斯越流理论,根据煤岩层变形与瓦斯渗流的固-气耦合作用,建立了瓦斯渗流场方程和煤岩体变形场方程,得到了急倾斜上保护层开采瓦斯越流固-气耦合数学模型。以南桐矿区某矿上保护层开采为实例,通过多物理场耦合系统,建立了该矿上保护层开采瓦斯越流几何模型并进行数值计算,获得了上保护层工作面开采后被保护层瓦斯压力的分布规律,确定了上保护层开采的卸压保护范围。数值计算与现场考察试验结果具有一致性,由此验证了数值计算的合理性。研究结果可以对现场保护范围的划定及卸压瓦斯抽放等提供理论指导,具有实际工程意义。  相似文献   

8.
《岩土力学》2017,(6):1647-1656
利用自主研发的多场耦合煤层瓦斯抽采物理模拟试验系统,开展了不同吸附性气体抽采的物理模拟试验,探讨了煤层瓦斯抽采过程中煤储层气压、温度及煤层变形等参数的时空演化规律。结果表明:(1)煤储层气压在抽采前期下降较快并形成以钻孔为中心的气压等值面,距离抽采钻孔越远的区域煤层瓦斯流速越小,气压下降速率越低;(2)气体吸附性越强,抽采过程中的煤储层气压下降速率越低且持续时间越长;(3)煤储层温度的时间演化规律与气压基本一致,在抽采前期有显著的降低,在抽采后期受吸附态气体解吸吸热及热交换作用的影响,煤层温度出现先下降后小幅上升;(4)距离钻孔越近的区域气压下降量越大,煤层温度下降越明显,煤层所受有效应力越大,煤层变形量也越大;(5)抽采气体的吸附性越大,抽采所导致的煤层变形量越大。  相似文献   

9.
隐伏构造勘查与瓦斯异常区域预测研究是瓦斯灾害防治工程的基础。根据中国煤矿生产法律规章,开采具有瓦斯灾害危险的煤层前,必须实施瓦斯抽放工程。通常,地质异常区域即是瓦斯灾害危险区,构造应力场和采动应力场的叠加会扰动煤体并加压瓦斯。为精准定位地质异常区,评价其瓦斯致灾潜能,提出了一种基于瓦斯抽采工程进行瓦斯异常区域勘测的研究方法。该方法利用抽采钻孔参数和施工记录,采集钻孔数据并计算煤层顶底板控制点坐标,进而利用二维投影图件及三维应力场模型对隐伏地质构造(如小的断层、褶曲、局部煤厚异常变化等)进行勘查和预测;通过分析小型地质构造周围的附加应力场,并对瓦斯致灾潜能进行动态预测。应用该方法,可以对地质异常区进行精细调查,揭示采煤工作面瓦斯地质演化的一般规律。其研究结果为高瓦斯或突出煤层瓦斯灾害防治措施优化设计及有效实施提供科学依据。  相似文献   

10.
针对硬煤层瓦斯抽采衰减快,抽采周期长、效率低等问题,提出了中硬煤层顺层长钻孔分段压裂增加煤层透气性瓦斯强化抽采技术。以陕西彬长矿区4号煤层为研究对象,在实验室采用SEM高分辨率电子显微镜对比分析了水力压裂前后煤体微观孔隙结构变化特征;利用Abaqus软件模拟了封隔器受力特征及钻孔的稳定性;在彬长矿区大佛寺煤矿井下4号煤层进行水力压裂工业性试验。结果表明:煤层在加载压力15 MPa,保压48 h,煤体的孔隙、裂隙数量增多,孔径尺寸增大,且连通性增强,裂隙间的连通性明显提升。压裂过程中,封隔器同时受到内压和外压载荷产生膨胀变形,内压15 MPa、外压10 MPa时,可保持硬煤钻孔结构完整同时,产生最大的封隔摩擦力。工程试验完成3个顺煤层定向长钻孔分段压裂施工,孔深540~568 m,每孔分8 段压裂,单孔注液量910~1 154 m3,累计注液量3 011 m3;压裂后,利用孔内瞬变电磁测试确定压裂影响半径34~46 m。压裂钻孔平均瓦斯抽采纯量0.72~1.73 m3/min,平均抽采瓦斯体积分数42.60%~67.48%;对比试验区常规钻孔,瓦斯抽采体积分数提高1.20~2.49 倍,百米钻孔瓦斯抽采纯量是3.93~10.03 倍,实现了试验区域瓦斯超前增透和预抽,该工艺技术为类似地质条件大区域瓦斯超前治理提供技术借鉴。   相似文献   

11.
谭强  高明忠  谢晶  李圣伟  邱治强 《岩土力学》2016,37(12):3553-3560
低透煤层增透效果的定量描述和评价一直处于盲目状态,使得煤矿瓦斯治理中致裂措施、瓦斯抽采不能因地制宜。增透率可反映采动或人工增透措施对煤岩体渗透特性的改变,并可定量评价煤层增透效果,其分布和演化规律可精准圈定瓦斯富集区域,指导瓦斯抽采钻孔的合理布置。在简化钻孔和裂隙模型基础上,求解了采动条件下钻孔的体积应变,提出了针对单孔的增透率计算方法;依托同煤矿塔山矿8212采面,开展现场裂隙探测试验,研究了工作面前方采动裂隙网络发育演化及卸压增透变化规律,并分析了单孔增透率随回采面推进的演化特征。结果表明:裂隙网络呈现“从无到有、从短变长、从窄变宽、不断贯通”的趋势,煤岩体单孔增透率随回采面推进呈现先逐渐上升后保持平稳的趋势,该成果有望直接优化煤矿现场瓦斯抽采孔的布置设计。  相似文献   

12.
From the viewpoint of interaction mechanics of solid and gas, a coupled mathematical model is presented for solid coal/rock‐mass deformation and gas leak flow in parallel deformable coal seams. Numerical solutions using the strong implicit procedure (SIP) method to the coupled mathematical model for double parallel coal seams are also developed in detail. Numerical simulations for the prediction of safety range using protection layer mining are performed with experimental data from a mine with potential danger of coal/gas outbursts. Analyses show that the numerical simulation results are consistent with the measured data on the spot. The coupled model shows a positive future for applications in a wide range of gas‐leak‐flow‐related problems in mining engineering, gas drainage engineering and mining safety engineering. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

13.
Although it is a well-accepted belief in the petroleum industry that horizontal well productivity can be limited by the pressure drop within the wellbore, little has been reported regarding how this pressure drop affects gas extraction from a coal seam and its further effects on mitigating coal and gas outburst dangers in coal. One of the major reasons for this scarcity is that the pressure-drop distribution in horizontal drainage boreholes is difficult to obtain. In this study, measurements of pressure drops in 54 drainage boreholes were performed in the No. 21 coal seam, which is the primary mining layer of Jiulishan Mine and poses a strong danger of coal and gas outbursts. Next, a coupled governing finite-element model, which includes the pressure drop in the borehole, Darcy flow in fractures, gas diffusion in the matrix blocks, and the dynamic evolution of the permeability of coal, was developed and implemented using a finite-element method to quantify the pressure-drop effects. Field tests of the pressure drops indicate that the pressure increases in a parabolic form with the increasing depth of the borehole, and lower outer end pressure is associated with larger pressure increments. The numerical results indicate that the pressure drop does affect the coal seam gas extraction, the pressure around the borehole increases with increasing borehole depth, and the increment of the pressure becomes larger when the borehole’s drainage effect is enhanced. However, the impact is small and can be ignored in engineering.  相似文献   

14.
晋煤集团赵庄矿3号煤层为高瓦斯煤层,瓦斯抽采难度大,存在煤与瓦斯突出的安全隐患,防治水方面还存在底板带压开采问题,严重制约了矿井安全高效生产。通过提出保护层开采方案,先期开采下伏8-1号薄煤层,释放3号煤层应力,增加煤层透气性,同时制定8-1号煤带压开采的防治水技术策略,最终实现了3号煤瓦斯安全疏放抽采,防治水工作顺利开展,对同时存在高瓦斯和承压水上采煤问题的类似矿井具有指导意义。   相似文献   

15.
Based on the new viewpoint of interaction mechanics for solid and gas, gas leakage in parallel deformable coal seams can be understood. That is, under the action of varied geophysical fields, the methane gas flow in a double deformable coal seam can be essentially considered to be compressible with time-dependent and mixed permeation and diffusion through a pore-cleat deformable, heterogeneous and anisotropic medium. From this new viewpoint, coupled mathematical models for coal seam deformation and gas leak flow in parallel coal seams were formulated and the numerical simulations for slow gas emission from the parallel coal seams are presented. It is found that coupled models might be close to reality. Meanwhile, a coupled model for solid deformation and gas leak flow can be applied to the problems of gas leak flow including mining engineering, gas drainage engineering and mining safety engineering in particular the prediction of the safe range using protective layer mining where coal and gas outbursts can efficiently be prevented. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
渗透率是表征瓦斯流动的重要参数,为保证煤矿瓦斯安全高效抽采,有必要探究距抽采井筒不同位置处煤层瓦斯渗流演化特征。然而,瓦斯抽采过程中伴随有效应力、煤基质对瓦斯的吸附/解吸能力以及煤储层温度的不断变化,甚至出现抽采损伤,使得煤层瓦斯运移行为异常复杂。为探究抽采过程的煤层瓦斯渗流特性,在圆柱坐标系下,考虑压力场与温度场变化对煤储层渗透率的影响,构建温度影响的孔隙压力时空演化函数,据此建立应力与温度作用下的煤储层渗透率模型。结果表明:建立的模型能合理描述沿抽采井筒孔隙压力的演化规律以及瓦斯的运移特性,即在恒定外应力的条件下,随抽采时间增加,不同位置处孔隙压力先降低后变化平缓,煤储层渗透率先降低后升高;此外,同一煤储层位置处,考虑温度比不考虑温度的渗透率计算值更低;通过讨论发现,随抽采时间增加,根据裂隙压缩与基质收缩对渗透率演化的不同效应,设置合理的负压抽采方式可提高瓦斯抽采量。   相似文献   

17.
为了提高煤层气井合层排采效果,需要合理划分排采阶段并制定与之对应的管控措施。基于贵州六盘水地区以往煤层气勘查与试采工作,分析该区二叠系龙潭组煤层气地质条件和煤储层特征,对比分析两口煤层气井合层排采管控制度及其效果。结果表明:研究区具有煤层层数多、单层厚度薄、含气量高、储层压力大、煤层渗透率低、局部构造煤发育等煤层气地质特点,使煤层气井排采过程中压敏效应和贾敏效应较明显,储层伤害较严重,煤层气井高产时间较短,产气量较低。应该优选厚度较大、含气性好的原生结构煤层或煤组进行射孔压裂。在合层排采过程中,对排采阶段进行合理划分,并根据排采阶段控制流压、套压、流压降幅、套压降幅和液面高度等参数,可有效减小压敏效应、贾敏效应、速敏效应等储层伤害。合理的合层排采管控有助于实现控制产气量稳定平稳上升、煤层气井长期稳产与高产的目标。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号