首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigate the chemical and observational implications of repetitive transient dense core formation in molecular clouds. We allow a transient density fluctuation to form and disperse over a period of 1 Myr, tracing its chemical evolution. We then allow the same gas immediately to undergo further such formation and dispersion cycles. The chemistry of the dense gas in subsequent cycles is similar to that of the first, and a limit cycle is reached quickly (2–3 cycles). Enhancement of hydrocarbon abundances during a specific period of evolution is the strongest indicator of previous dynamical history. The molecular content of the diffuse background gas in the molecular cloud is expected to be strongly enhanced by the core formation and dispersion process. Such enhancement may remain for as long as 0.5 Myr. The frequency of repetitive core formation should strongly determine the level of background molecular enhancement.
We also convolve the emission from a synthesized dark cloud, comprised of ensembles of transient dense cores. We find that the dynamical history of the gas, and therefore the chemical state of the diffuse intercore medium, may be determined if a sufficient sample of cores is present in an ensemble. Molecular ratios of key hydrocarbons with SO and SO2 are crucial to this distinction. Only surveys with great enough angular resolution to resolve individual cores, or very small groupings, are expected to show evidence of repetitive dynamical processing. The existence of non-equilibrium chemistry in the diffuse background may have implications for the initial conditions used in chemical models. Observed variations in the chemistries of diffuse and translucent regions may be explained by lines of sight which intersect a number of molecular cloud cores in various stages of evolution.  相似文献   

2.
It is believed that the observed diffuse gamma-ray emission from the galactic plane is the result of interactions between cosmic rays and the interstellar gas. Such emission can be amplified if cosmic rays penetrate into dense molecular clouds. The propagation of cosmic rays inside a molecular cloud has been studied assuming an arbitrary energy and space dependent diffusion coefficient. If the diffusion coefficient inside the cloud is significantly smaller compared to the average one derived for the galactic disk, the observed gamma-ray spectrum appears harder than the cosmic ray spectrum, mainly due to the slower penetration of the low energy particles towards the core of the cloud. This may produce a great variety of gamma-ray spectra.  相似文献   

3.
The high-latitude cloud (HLC) MBM 7 has been observed in the 21 cm H I line and the 12CO(1-0) and 13CO(1-0) lines with similar spatial resolutions. The data reveal a total mass approximately 30 M solar for MBM 7 and a complex morphology. The cloud consists of a cold dense core of 5 M solar surrounded by atomic and molecular gas with about 25 M solar, which is embedded in hotter and more diffuse H I gas. We derive a total column density N(H I + 2H2) of 1 x 10(21) cm-2 toward the center and 1 x 10(20) cm-3 toward the envelope of MBM 7. The CO line indicates the existence of dense cores [n(H2) > or = 2000 cm-3] of size (FWHM) approximately 0.5 pc. The morphology suggests shock compression from the southwest direction, which can form molecular cores along the direction perpendicular to the H I distribution. The H I cloud extends to the northeast, and the velocity gradient appears to be about 2.8 km s-1 pc-1 in this direction, which indicates a systematic outward motion which will disrupt the cloud in approximately 10(6) yr. The observed large line widths of approximately 2 km s-1 for CO suggest that turbulent motions exist in the cloud, and hydrodynamical turbulence may dominate the line broadening. Considering the energy and pressure of MBM 7, the dense cores appear not to be bound by gravity, and the whole cloud including the dense cores seem to be expanding. The distance to HLCs suggest that they belong to the galactic plane, since the scale height of the cloud is < or approximately equal to 100 pc. Compared to the more familiar dense dark clouds, HLCs may differ only in their small mass and low density, with their proximity reducing the filling factor and enhancing the contrast of the core and envelope structure.  相似文献   

4.
We have determined the atomic hydrogen column density N HI toward all of the young stars from the Taurus-Auriga-Perseus star-forming complex for which the corresponding spectra are available in the Hubble Space Telescope archive (nine stars) by analyzing the Lyα line profile. We show that the stars studied, except DR Tau, lie not far from the edge of the gaseous cloud of the star-forming region closest to us or, more precisely, inside the outer H I shell of the cloud. This shell with a column density of N HI ? 6 × 1020 cm?2 surrounds the molecular gas of the cloud composed of a diffuse component (the so-called diffuse screen) in which dense, compact TMC-1 cores are embedded. The properties of the dust grains toward the stars that lie at the front edge of the cloud most likely differ only slightly from those of the interstellar dust outside star-forming regions. This casts doubt on the validity of the hypothesis that the extinction curve toward young stars has an anomalously low amplitude of the 2175 Å bump—such an extinction curve is observed for the field stars HD 29647 and HD 283809 toward which the line of sight passes through the TMC-1 core.  相似文献   

5.
The cluster of galaxies A754 is undergoing a merger of several large structural units. X-ray observations show the nonequilibrium state of the central part of the cluster, in which a cloud of cold plasma ~500 kpc in size was identified amid the hotter cluster gas. The X-ray image of A754 exhibits a brightness discontinuity, which can be interpreted as a shock wave in front of a moving cloud of dense gas. The shock parameters are determined from the jump in intergalactic gas density using the ROSAT image. The estimated Mach number is M1 = 1.71 ?0.24 +0.45 at a 68% confidence level.  相似文献   

6.
Charge‐transfer is the main process linking neutrals and charged particles in the interaction regions of neutral (or partly ionized) gas with a plasma. In this paper we illustrate the importance of charge‐transfer with respect to the dynamics and the structure of neutral gas‐plasma interfaces. We consider the following phenomena: (1) the heliospheric interface ‐ region where the solar wind plasma interacts with the partly‐ionized local interstellar medium (LISM) and (2) neutral interstellar clouds embedded in a hot, tenuous plasma such as the million degree gas that fills the so‐called “Local Bubble”. In (1), we discuss several effects in the outer heliosphere caused by charge exchange of interstellar neutral atoms and plasma protons. In (2) we describe the role of charge exchange in the formation of a transition region between the cloud and the surrounding plasma based on a two‐component model of the cloud‐plasma interaction. In the model the cloud consists of relatively cold and dense atomic hydrogen gas, surrounded by hot, low density, fully ionized plasma. We discuss the structure of the cloud‐plasma interface and the effect of charge exchange on the lifetime of interstellar clouds. Charge transfer between neutral atoms and minor ions in the plasma produces X‐ray emission. Assuming standard abundances of minor ions in the hot gas surrounding the cold interstellar cloud, we estimate the X‐ray emissivity consecutive to the charge transfer reactions. Our model shows that the charge‐transfer X‐ray emission from the neutral cloud‐plasma interface may be comparable to the diffuse thermal X‐ray emission from the million degree gas cavity itself (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
We investigate the chemistry of a transient density fluctuation, with properties similar to those of a dense core within a molecular cloud. We run a multipoint chemical code through a core's condensation from a diffuse medium to its eventual dispersion, over a period of ∼1 Myr. We find a significant enhancement of the chemical composition of the core material on its return to diffuse conditions, whilst the expansion of the core as it disperses moves this material out to large distances from the core centre. This process transports molecular species formed in the high-density regions out into the diffuse medium. Chemical enrichment of the cloud as a whole also occurs, as other cores of various sizes, life-spans and separations evolve throughout. Enrichment is strongly affected by freeze-out on to dust grains, which takes place in high-density, high visual extinction regions. As the core disperses after reaching its peak density and the visual extinction drops below a critical value, grain mantles are evaporated back into the gas phase, initiating more chemistry. The influence of the sizes, masses and cycle periods of cores will be large both for the level of chemical enrichment of a dark cloud and ultimately for the low-mass star formation rate. We also consider the case of a self-gravitating core, by holding its peak density conditions for a further 0.4 Myr. We find that the differences are generally small, and the resultant column densities do not provide definitive criteria for detection of this condition. However, increases in fractional abundances due to reinjection of mantle-borne species may provide a criterion for a negative detection.  相似文献   

8.
Measurements of the strengths of the diffuse interstellar bands at 4430, 5780 and 5797 Å show that the bands tend to be week with respect to extinction in dense interstellar clouds. Data on 10 stars in the ? Ophiuchi cloud complex show further that the diffuse band-producing efficiency of the grains decreases systematically with increasing grain size. It is concluded that the diffuse bands are not formed in the mantles which accrete on the grains in interstellar clouds, but that they could be produced in the cores of grains or in some molecular species.  相似文献   

9.
The evolution of the different chemical species are followed in a model of contracting interstellar cloud. The central density increases from n = 10 cm–3 diffuse initial cloud model to a dense cloud with central density number of n >- 105 cm–3 after a time of 1.2 × 107 yr. A network of 622 reactions has been involved. The chemistry of the cloud is integrated simultaneously with the hydrodynamic equations of contraction.The results predict that the different molecular species increase in abundance as the contraction proceeds. The species which enhance significantly are CO, HCO, CS and NO. The fractional abundances of many of the other molecular species increase distinctly with contraction, e.g. CH, C2H, CN, SO2, CO2, H2O, C2, NH3, HCN, SO, OCS and SN. The transformation of the initial diffuse cloud model with small abundances of molecular species to a dense molecular cloud with enhancement of the different molecular species is confirmed. The results predict good agreements of our results with both the observations and other theoretical studies.  相似文献   

10.
Some two decades ago, Hoyle and Wickramasinghe (1976) proposed that the physical conditions inside dense molecular clouds favour the formation of amino acids and complex organic polymers. There now exists both astronomical and laboratory evidence supporting this idea. Recent millimeter array observations have discovered the amino acid glycine (NH2CH2COOH) in the gas phase of the dense star-forming cloud Sagittarius B2. These observations would pose serious problems for present-day theories of molecule formation in space because it is unlikely that glycline can form by the gas-phase reaction schemes normally considered for dense cloud chemistry. Several laboratory experiments suggest a new paradigm in which amino acids and other large organic molecules are chemically manufactured inside the bulk interior of icy grain mantles photoprocessed by direct and scattered ultraviolet starlight. Frequent chemical explosions of the processed mantles would eject large fragments of organic dust into the ambient cloud. Large dust fragments break up into smaller ones by sputtering and ultimately by photodissociation of individual molecules. Hence, a sizeable column density (N≈ 1010−1015 cm-2) of amino acids would be present in the gaseous medium as a consequence of balancing the rate of supply from exploding mantles with the rate of molecule destruction. Exploding mantles can therefore solve the longstanding molecule desorption problem for interstellar dense cloud chemistry. A sizeable fraction of the organic dust population can survive destruction and seed primitive planetary systems throughout our galaxy with prebiological organic molecules needed for proteins and nucleic acids in living organisms. This possibility provides fresh grounds for a new version of the old panspermia hypothesis first introduced by Anaxagoras. It is shown that panspermia is more important than asteroid and cometary organic depositions onto primitive Earth. Furthermore, no appeal to Miller-Urey synthesis in a nonoxidizing atmosphere of primitive Earth is then needed to seed terrestrial life. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
HI observations of high-velocity clouds(HVCs) indicate that they are interacting with their ambientmedium. The question on the dynamical and thermal stabilization of a cold dense neutral cloud in a hot, thin, and magnetized ambient halo plasma is investigated by plasma-neutral gas simulations.The simulations show the formation of a comet-likehead-tail structurecombined with a magnetic barrier whichexerts a stabilizing pressure on the cloud and hindershot plasma from diffusing into the cloud.  相似文献   

12.
We construct a steady analytic accretion flow model for a finite rotating gas cloud that accretes material to a central gravitational object. The pressure gradients of the flow are considered to be negligible, and so the flow is ballistic. We also assume a steady flow and consider the particles at the boundary of the spherical cloud to be rotating as a rigid body, with a fixed amount of inwards radial velocity. This represents a generalization to the traditional infinite gas cloud model described by Ulrich. We show that the streamlines and density profiles obtained deviate largely from the ones calculated by Ulrich. The extra freedom in the choice of the parameters on the model can naturally account for the study of protostars formed in dense clusters by triggered mechanisms, where a wide variety of external physical mechanisms determine the boundary conditions. Also, as expected, the model predicts the formation of an equatorial accretion disc about the central object with a radius different from the one calculated by Ulrich.  相似文献   

13.
M.L Marconi 《Icarus》2003,166(2):410-424
Quite generally, the atmosphere of a planet has an escaping component that forms a gas cloud in its circumplanetary space. This gas cloud is frequently detectable and its observation provides important information about both the source and the circumplanetary environment. As a result, there is a strong motivation to investigate the nature of such gas clouds. Up to now, attention has been directed almost exclusively to the case of collisionless clouds, i.e., the collision time is much longer than the lifetime of the cloud constituents. In this study, we consider the relatively unexplored case of a quasi-collisional cloud, i.e., the self-collision time is much longer than the orbital period and much shorter than the lifetime of the cloud constituents. A slightly modified version of the traditional DSMC approach is applied to the case of the hydrogen torus of Triton, which is an example of a spatially axisymmetric quasi-collisional cloud that is generated from a source orbiting a central planet. A large number of calculations were performed for different models, primarily with different source velocity distributions. The results for two models that bracket the full span of these calculations are presented in detail and compared. The spatial structure and temporal evolution is discussed for these systems. The effect of lifetime processes and radiation pressure is also discussed.  相似文献   

14.
We have surveyed a ∼0.9 square degree area of the W3 giant molecular cloud (GMC) and star-forming region in the 850-μm continuum, using the Submillimetre Common-User Bolometer Array on the James Clerk Maxwell Telescope. A complete sample of 316 dense clumps were detected with a mass range from around 13 to  2500 M  . Part of the W3 GMC is subject to an interaction with the H  ii region and fast stellar winds generated by the nearby W4 OB association. We find that the fraction of total gas mass in dense, 850-μm traced structures is significantly altered by this interaction, being around 5–13 per cent in the undisturbed cloud but ∼25–37 per cent in the feedback-affected region. The mass distribution in the detected clump sample depends somewhat on assumptions of dust temperature and is not a simple, single power law but contains significant structure at intermediate masses. This structure is likely to be due to crowding of sources near or below the spatial resolution of the observations. There is little evidence of any difference between the index of the high-mass end of the clump mass function in the compressed region and in the unaffected cloud. The consequences of these results are discussed in terms of current models of triggered star formation.  相似文献   

15.
当具有各向同性速度分布的相对论电子穿过稠密气体区,或者轰击稠密气体区的表面时,切仑科夫效应将会产生1种特殊的原子或离子发射线,称做切仑科夫线状发射.这一预言在光学波段已由实验室的实验所证实.研究指出了切仑科夫线状辐射在类星体和赛弗特1星系的宽发射线研究中的重要性,利用此新机制有可能解决类星体研究中的一些重大且长期没有解决的疑惑.例如宽氢线之间存在的反常强度比,特别是反常Lyα/Lyβ强度比的问题.并且进一步估计了相对论电子穿过宇宙气体时所产生的各种效应的能耗的数量级,并对各种能耗进行比较,证实了切仑科夫线状发射机制在类星体和塞弗特1型星系中的有效性.  相似文献   

16.
When the thermal relativistic electrons with isotropic distribution of velocities move through a dense gas region or impinge upon the surface of a cloud of dense gas, the Cerenkov effect will produce peculiar atomic or ionic emission lines, which we call the “Cerenkov line-like radiation”. This prediction has been verified by the laboratory experiments in optical waveband. In this paper, the importance of the Cerenkov line-like radiation in the exploration of broad emission lines in quasars and Syf1 s is pointed out. By using this mechanism, some long standing and significant puzzles in the study of quasars could be solved. Furthermore, the magnitude orders of energy losses of various effects of a relativistic electron in cosmic gas are estimated and compared with each other to prove the effectiveness of this new mechanism in quasars.  相似文献   

17.
We present spectropolarimetry of the solid CO feature at 4.67 μm along the line of sight to Elias 16, a field star background to the Taurus dark cloud. A clear increase in polarization is observed across the feature with the peak of polarization shifted in wavelength relative to the peak of absorption. This shows that dust grains in dense, cold environments (temperatures ∼20 K or less) can align and produce polarization by dichroic absorption. For a grain model, consisting of a core with a single mantle, the polarization feature is best modelled by a thick CO mantle, possibly including 10 per cent water-ice, with the volume ratio of mantle to bare grain of ∼5. Radiative torques could be responsible for the grain alignment provided the grain radius is at least 0.5 μm. This would require the grain cores to have a radius of at least 0.3 μm, much larger than grain sizes in the diffuse interstellar medium. Sizes of this order seem reasonable on the basis of independent evidence for grain growth by coagulation, as well as mantle formation, inside dense clouds.  相似文献   

18.
We present results from observations of H110 α recombination-line emission at 4.874 GHz and the related 4.8-GHz continuum emission towards the Carina nebula using the Australia Telescope Compact Array. These data provide information on the velocity, morphology and excitation parameters of the ionized gas associated with the two bright H  ii regions within the nebula, Car I and Car II. They are consistent with both Car I and Car II being expanding ionization fronts arising from the massive star clusters Trumpler 14 and Trumpler 16, respectively. The overall continuum emission distribution at 4.8 GHz is similar to that at lower frequencies. For Car I, two compact sources are revealed that are likely to be young H  ii regions associated with triggered star formation. These results provide the first evidence of ongoing star formation in the northern region of the nebula. A close association between Car I and the molecular gas is consistent with a scenario in which Car I is currently carving out a cavity within the northern molecular cloud. The complicated kinematics associated with Car II point to expansion from at least two different centres. All that is left of the molecular cloud in this region are clumps of dense gas and dust which are likely to be responsible for shaping the striking morphology of the Car II components.  相似文献   

19.
The interaction of the isotropic stellar wind with the rotating isothermal cloud surrounding the young star is investigated. The density distribution of the cloud is taken as that for the equilibrium state of the rotating isothermal cloud modified by adding the rarefied interstellar gas in the polar region. The development of the shock envelope and the structure of the shell induced by the stellar wind are obtained. It is shown that the envelope of the shock front elongates and opens to the polar direction with half opening angle of about 20 degrees resulting the bipolar flow which is able to reproduce well the observed properties for the outflow in the bipolar sources.  相似文献   

20.
We have investigated the basic physical properties of the outflow that is created by a supersonic jet in a dense molecular cloud. We show that the dynamics of the interaction is strongly controlled by the rapid cooling of the post-shock gas at the head of the jet. The velocity of the gas is high in the vicinity of the jet head, but decreases rapidly as more material is swept-up. This type of outflow produces extremely high velocity clumps of post-shock gas which resemble the features seen in outflows. We also show that momentum transfer in bow shocks is more important than entrainment in high Mach number jets, as found in the protostellar environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号