首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
The effect of carbon dioxide (CO2) cooling on trends of hmF2 and NmF2 are investigated using a coupled thermosphere and ionosphere general circulation model. Model simulations indicate that CO2 cooling not only causes contraction of the upper atmosphere and changes of neutral and ion composition but also changes dynamics and electrodynamics in the thermosphere/ionosphere. These changes determine the altitude dependence of ionospheric trends and complex latitudinal, longitudinal, diurnal, seasonal, and solar cycle variations of trends of hmF2 and NmF2. Under the CO2 cooling effect, trends of NmF2 are negative with magnitude from 0% to −40% for doubled CO2, depending on location, local time, season, and solar activity. The corresponding trends of hmF2 are mostly negative with a magnitude from 0 to −40 km, but can be positive with a magnitude from 0 to 10 km at night, with maximum positive trends occurring after midnight under solar minimum conditions.  相似文献   

2.
The oxygen minimum zones (OMZs) are recognized as intense sources of N2O greenhouse gas (GHG) and could also be potential sources of CO2, the most important GHG for the present climate change. This study evaluates, for one of the most intense and shallow OMZ, the Chilean East South Pacific OMZ, the simultaneous N2O and CO2 fluxes at the air–sea interface. Four cruises (2000–2002) and 1 year of monitoring (21°–30°–36°S) off Chile allowed the determination of the CO2 and N2O concentrations at the sea surface and the analysis of fluxes variations associated with different OMZ configurations. The Chilean OMZ area can be an intense GHG oceanic local source of both N2O and CO2. The mean N2O fluxes are 5–10 times higher than the maximal previous historical source in an OMZ open area as in the Pacific and Indian Oceans. For CO2, the mean fluxes are also positive and correspond to very high oceanic sources. Even if different coupling and decoupling between N2O and CO2 are observed along the Chilean OMZ, 65% of the situations represent high CO2 and/or N2O sources. The high GHG sources are associated with coastal upwelling transport of OMZ waters rich in N2O and probably also in CO2, located at a shallow depth. The integrated OMZ role on GHG should be better considered to improve our understanding of the past and future atmospheric CO2 and N2O evolutions.  相似文献   

3.
Taking Huanglong Ravine and Kangding, Sichuan, and Xiage, Zhongdian, Yunnan, as examples, the authors summarize the hydrogeochemical and carbon stable isotopic features of the geothermal CO2-water-carbonate rock system and analyze the CO2 sources of the system. It was found that the hydrogeochemical and carbon stable isotopic features of such a system are different from those of shallow CO2-water-carbonate rock system, which is strongly influenced by biosphere. The former has higher CO2 partial pressure, and is rich in heavy carbon stable isotope. In addition, such a geothermal system is also different from that developed in igneous rock. The water in the latter system lacks Ca2+, and thus, there are few tufa deposits on ground surface, but it is rich in light carbon stable isotope. Further analysis shows that CO2 of the geothermal CO2-water-carbonate rock system is a mixture of metamorphic CO2 and magmatic CO2.  相似文献   

4.
Summary The variations of the initialh E s height are investigated in the solar cycle 1957–1968, deriving the regressive dependency:h E s =121.4–6·10–2 R referring to the median monthly values at a solar zenith angle =75°. The similar variations ofh E s (R) during the day and night are interpreted as a domination of the sporadic layer formation from a redistribution of the day-time ionization and secondary participation of nightly ionizing sources. The analogous cyclich E s andh E variations confirm this conclusion while the seasonal variations in the state of the sporadic layer show outlined dynamical effects. The comparatively not big cyclic variation in the spatial state of theE-region are considered to confirm the predominating ionizing action of the ultraviolet range (933–1038 Å) in the lower part of theE-region, while the soft X-radiation influences mainly the near maximum part of this region.  相似文献   

5.
The δ13c values of soil CO2 are less than that of atmosphere CO2 in the karst area. On the soil-air interface, the δ13c vlaues of soil CO2 decrease with the increase in soil depth; below the soil-air interface, the δ13c values of soil CO2 are invariable. The type of vegetation on the land surface has an influence on the δ13C values of soil CO2. Due to the activity of soil microbes, the δ13C values of soil CO2 are variable with seasonal change in ps. Isotopic tracer indicates that atmosphere CO2 has a great deal of contribution to soil CO2 at the lower parts of soil proflie. Project supported by the National Natural Science Foundation of China (Grant Nos. 49703048 and 49833002)  相似文献   

6.
Emissions of CO2 have been known for more than a hundred years as fumarolic activity at the terminal crater of El Teide volcano and as diffuse emissions at numerous water prospection drillings in the volcanic island of Tenerife. Large concentrations of CO2 (>10% in volume) have been found inside galleries, long horizontal tunnels excavated for water mining. However, CO2 concentrations of only 2900 ppm have been observed at the surface of the central region of the island (Las Cañadas del Teide caldera). In this work we analysed CO2 concentrations in the subsurface of Las Cañadas caldera, in an attempt to study the vertical distribution of carbon dioxide and, in particular, the low emissions at the surface. This has been done through a series of 17 vertical profiles in two deep boreholes excavated in the Caldera. We found high levels of CO2, varying in time from 13 vol% up to 40 vol% in different profiles directly above the water table, while no significant concentrations were detected above the thermal inversion that takes places in both boreholes at approximately 100 m from the water table. Water analyses also showed high dissolved CO2 levels in equilibrium with the air, and an average 13C value in DIC of +4.7 (PDB), apparently induced by fast CO2 degassing in the bicarbonated water.  相似文献   

7.
A series of large hydrothermal eruptions occurred across the Waiotapu geothermal field at about the same (prehistoric) time as the ~AD1315 Kaharoa rhyolite magmatic eruptions from Tarawera volcano vents, 10–20 km distant. Triggering of the Waiotapu hydrothermal eruptions was previously attributed to displacement of the adjacent Ngapouri Fault. The Kaharoa rhyolite eruptions are now recognised as primed and triggered by multiple basalt intrusions beneath the Tarawera volcano. A ~1000 t/day pulse of CO2 gas is recorded by alteration mineralogy and fluid inclusions in drill core samples from Waiotapu geothermal wells. This CO2 pulse is most readily sourced from basalt intruded at depth, and although not precisely dated, it appears to be associated with the Waiotapu hydrothermal eruptions. We infer that the hydrothermal eruptions at Waiotapu were primed by intrusion of the same arrested basalt dike system that drove the rhyolite eruptions at Tarawera. This dike system was likely similar at depth to the dike that generated basalt eruptions from a 17 km-long fissure that formed across the Tarawera region in AD1886. Fault ruptures that occurred in the Waiotapu area in association with both the AD1886 and ~AD1315 eruptions are considered to be a result, rather than a cause, of the dike intrusion processes.Editorial responsibility: J. Donnelly-Nolan  相似文献   

8.
The Timiskaming earthquake, which occurred near the Quebec-Ontario border at the northwest end of the Western Quebec seismic zone in 1935, is one of the five largest instrumentally recorded southeastern Canadian earthquakes. Previous studies of this earthquake concentrated on modeling teismograms recorded at regional distances, a better constrained focal mechanism is obtained. The waveforms indicate thrust faulting on a moderately dipping northwest striking plane at a depth of 10 km. TheM w of 6.1 determined in this study is in good agreement with previous magnitude estimates (m b 6.1,M s 6.0, andm bLg 6.2–6.3). The focal mechanism is similar to those of many recent small to moderate earthquakes in the region, and the inferred (from theP axis) acting stress of northeast compression is consistent with the overall eastern North American stress field. The Lake Timiskaming Rift Valley in which the earthquake occurred, comprises several northwest striking faults consistent with the strike of the 1935 event. Thus, the 1935 earthquake appears to be a result of faulting on the reactivated Timiskaming graben.  相似文献   

9.
Surface partial pressure of CO2 (pCO2), temperature, salinity, nutrients, and chlorophyll a were measured in the East China Sea (ECS; 31°30′–34°00′N to 124°00′–127°30′E) in August 2003 (summer), May 2004 (spring), October 2004 (early fall), and November 2005 (fall). The warm and saline Tsushima Warm Current was observed in the eastern part of the survey area during four cruises, and relatively low salinity waters due to outflow from the Changjiang (Yangtze River) were observed over the western part of the survey area. Surface pCO2 ranged from 236 to 445 μatm in spring and summer, and from 326 to 517 μatm in fall. Large pCO2 (values >400 μatm) occurred in the western part of the study area in spring and fall, and in the eastern part in summer. A positive linear correlation existed between surface pCO2 and temperature in the eastern part of the study area, where the Tsushima Warm Current dominates; this correlation suggests that temperature is the major factor controlling surface pCO2 distribution in that area. In the western part of the study area, however, the main controlling factor is different and seasonally complex. There is large transport in this region of Changjiang Diluted Water in summer, causing low salinity and low pCO2 values. The relationship between surface pCO2 and water stability suggests that the amount of mixing and/or upwelling of CO2-rich water might be the important process controlling surface pCO2 levels during spring and fall in this shallow region. Sea–air CO2 flux, based on the application of a Wanninkhof [1992. Relationship between wind speed and gas exchange over the ocean. Journal of Geophysical Research 97, 7373–7382] formula for gas transfer velocity and a set of monthly averaged satellite wind data, were −5.04±1.59, −2.52±1.81, 1.71±2.87, and 0.39±0.18 mmol m−2 d−1 in spring, summer, early fall, and fall, respectively, in the northern ECS. The ocean in this study area is therefore a carbon sink in spring and summer, but a weak source or in equilibrium with the atmosphere in fall. If the winter flux value is assumed to have been the mean of autumnal and vernal values, then the northern ECS absorbs about 0.013 Pg C annually. That result suggests that the northern ECS is a net sink for atmospheric CO2, a result consistent with previous studies.  相似文献   

10.
Expeditions during the summers of 2002 and 2003 implemented continuous monitoring of near-surface (2 m height) atmospheric CO2 and H2O concentrations at the 4500 m elevation on Muztagata. The resultant data sets reveal a slight decrease of CO2 concentrations (of about 5 μmol·mol-1) and changes in the diurnal variations from the end of June to the middle August. The daily maximum CO2 concentrations occur between 02:30-05:30 AM (local time) and the minimum levels occur between 12:00-15:30 PM. The atmospheric CO2 concentrations in the summer of 2002 were around 5 μmol·mol-1 lower than those during the same period of 2003, whereas the diurnal amplitude was higher. In contrast, we found that the daily mean atmospheric H2O content in 2003 was much lower than that in 2002 and there exists a striking negative correlation between CO2 and H2O concentrations. We therefore suggest that the near-surface atmospheric CO2 concentration is affected not only by photosynthesis and respiration, but also by the air H2O content in the glaciated region around Muztagata.  相似文献   

11.
A numerical simulation was conducted to predict the change of pCO2 in the ocean caused by CO2 leaked from an underground aquifer, in which CO2 is purposefully stored. The target space of the present model was the ocean above the seafloor. The behavior of CO2 bubbles, their dissolution, and the advection-diffusion of dissolved CO2 were numerically simulated. Here, two cases for the leakage rate were studied: an extreme case, 94,600 t/y, which assumed that a large fault accidentally connects the CO2 reservoir and the seafloor; and a reasonable case, 3800 t/y, based on the seepage rate of an existing EOR site. In the extreme case, the calculated increase in ΔpCO2 experienced by floating organisms was less than 300 ppm, while that for immobile organisms directly over the fault surface periodically exceeded 1000 ppm, if momentarily. In the reasonable case, the calculated ΔpCO2 and pH were within the range of natural fluctuation.  相似文献   

12.
The northwestern flank of the Colli Albani, a Quaternary volcanic complex near Rome, is characterised by high pCO2 values and Rn activities in the groundwater and by the presence of zones with strong emission of gas from the soil. The most significant of these zones is Cava dei Selci where many houses are located very near to the gas emission site. The emitted gas consists mainly of CO2 (up to 98 vol%) with an appreciable content of H2S (0.8–2%). The He and C isotopic composition indicates, as for all fluids associated with the Quaternary Roman and Tuscany volcanic provinces, the presence of an upper mantle component contaminated by crustal fluids associated with subducted sediments and carbonates. An advective CO2 flux of 37 tons/day has been estimated from the gas bubbles rising to the surface in a small drainage ditch and through a stagnant water pool, present in the rainy season in a topographically low central part of the area. A CO2 soil flux survey with an accumulation chamber, carried out in February–March 2000 over a 12 000 m2 surface with 242 measurement points, gave a total (mostly conductive) flux of 61 tons/day. CO2 soil flux values vary by four orders of magnitude over a 160-m distance and by one order of magnitude over several metres. A fixed network of 114 points over 6350 m2 has been installed in order to investigate temporal flux variations. Six surveys carried out from May 2000 to June 2001 have shown large variations of the total CO2 soil flux (8–25 tons/day). The strong emission of CO2 and H2S, which are gases denser than air, produces dangerous accumulations in low areas which have caused a series of lethal accidents to animals and one to a man. The gas hazard near the houses has been assessed by continuously monitoring the CO2 and H2S concentration in the air at 75 cm from the ground by means of two automatic stations. Certain environmental parameters (wind direction and speed; atm P, T, humidity and rainfall) were also continuously recorded. At both stations, H2S and CO2 exceeded by several times the recommended concentration thresholds. The highest CO2 and H2S values were recorded always with wind speeds less than 1.5 m/s, mostly in the night hours. Our results indicate that there is a severe gas hazard for people living near the gas emission site of Cava dei Selci, and appropriate precautionary and prevention measures have been recommended both to residents and local authorities.  相似文献   

13.
三峡水库澎溪河消落区土-气界面CO2和CH4通量初探   总被引:1,自引:0,他引:1  
李哲  张利萍  王琳  郭劲松  高旭  方芳  蒋滔 《湖泊科学》2013,25(5):674-680
水库近岸湿地(消落区)温室气体(CO2、CH4)产汇是水库温室气体效应问题的重要组成部分.本文以三峡水库支流澎溪河的白家溪、养鹿两处大面积消落区为研究对象,于2010年6 9月水库低水位运行期间,对近岸消落区土-气界面CO2、CH4通量进行监测.白家溪消落区土-气界面CO2通量均值为12.38±2.42 mmol/(m2·h);CH4通量均值为0.0112±0.0064 mmol/(m2·h).养鹿消落区CO2、CH4通量均值分别为10.54±5.17、0.14±0.16 mmol/(m2·h).总体上,6 9月土-气界面CO2通量呈增加趋势,而CH4通量水平呈现显著的递减趋势.消落区土地出露后植被恢复,在一定程度上促进了土壤有机质含量的增加,使得6 9月CO2释放通量的总体趋势有所增加.消落区退耕后,其甲烷氧化菌的活性得到恢复,加之在土地出露曝晒过程中土壤透气性增强,使得消落区土壤对大气中CH4吸收氧化潜势增强.尽管如此,仍需进一步的研究以明晰消落区土-气界面CO2、CH4产汇的主要影响因素.  相似文献   

14.
In the summer of 2005, continuous surface water measurements of fugacity of CO2 (fCO2sw), salinity and temperature were performed onboard the IB Oden along the Northwest Passage from Cape Farwell (South Greenland) to the Chukchi Sea. The aim was to investigate the importance of sea ice and river runoff on the spatial variability of fCO2 and the sea–air CO2 fluxes in the Arctic Ocean. Additional data was obtained from measurements of total alkalinity (AT) by discrete surface water and water column sampling in the Canadian Arctic Archipelago (CAA), on the Mackenzie shelf, and in the Bering Strait. The linear relationship between AT and salinity was used to evaluate and calculate the relative fractions of sea ice melt water and river runoff along the cruise track. High-frequency fCO2sw data showed rapid changes, due to variable sea ice conditions, freshwater addition, physical upwelling and biological processes. The fCO2sw varied between 102 and 678 μatm. Under the sea ice in the CAA and the northern Chukchi Sea, fCO2sw were largely CO2 undersaturated of approximately 100 μatm lower than the atmospheric level. This suggested CO2 uptake by biological production and limited sea–air CO2 gas exchange due to the ice cover. In open areas, such as the relatively fresh water of the Mackenzie shelf and the Bering Strait, the fCO2sw values were close to the atmospheric CO2 level. Upwelling of saline and relatively warm water at the Cape Bathurst caused a dramatic fCO2sw increase of about 100 μatm relative to the values in the CAA. At the southern part of the Chukchi Peninsula we found the highest fCO2sw values and the water was CO2 supersaturated, likely due to upwelling. In the study area, the calculated sea–air CO2 flux varied between an oceanic CO2 sink of 140 mmol m−2 d−1 and an oceanic source of 18 mmol m−2 d−1. However, in the CAA and the northern Chukchi Sea, the sea ice cover prevented gas exchange, and the CO2 fluxes were probably negligible at this time of the year. Assuming that the water was exposed to the atmosphere by total melting and gas exchange would be the only process, the CO2 undersaturated water in the ice-covered areas will not have the time to reach the atmospheric CO2 value, before the formation of new sea ice. This study highlights the value of using high-frequency measurements to gain increased insight into the variable and complex conditions, encountered on the shelves in the Arctic Ocean.  相似文献   

15.
内陆水体是大气CO2收支估算的重要组成部分。农业流域分布着大量池塘景观水体,且具备蓄洪抗旱、消纳污染、水产养殖等多种功能。但是,农业流域不同功能的小型池塘CO2排放特征尚不清楚。本研究以极具农业流域代表性的烔炀河流域为研究对象,选取流域中用于水产养殖(养殖塘)、生活污水承纳(村塘)、农业灌溉(农塘)、蓄水(水塘)的4个功能不同的景观池塘,基于为期1年的野外实地观测,以明确农业流域小型池塘CO2排放特征。结果表明,不同功能池塘水体CO2排放差异显著,受养殖活动、生活污水输入和农田灌溉等人类活动影响,养殖塘((80.37±100.39) mmol/(m2·d))、村塘((48.69±65.89) mmol/(m2·d))和农塘((13.50±15.81) mmol/(m2·d))是大气CO2的热点排放源,其CO2排放通量分别是自然蓄水塘((4.52±23.26) mmol/(m2·d))的18、11和3倍。统计分析也表明,该流域池塘CO2排放变化总体上受溶解氧、营养盐等因素驱动。4个不同景观池塘CO2排放通量全年均值为(37.31±67.47) mmol/(m2·d),是不容忽视的CO2排放源,其中养殖塘和村塘具有较高的CO2排放潜力,在未来研究中需要重点关注。  相似文献   

16.
Step heating experiments on ultra-high pressure (UHP) mcks from the Dabie Mountain shows a majority of CO2 in fluid inclusion (excluding H2O); CO is also a significant component, with a small content of N2 and CH4. Carbon isotopic composition of CO2 in fluid of metamorphic climax stage (-25%0- -30%0) is different from that of mantle carbon, indicating that UHP rocks did not experience obvious transformation by mantle fluids despite their subduction depth. CO2 was derived from carbon matter in the pmtoliths of UHP rocks in a relatively confined system, showing that the UHP rocks subsided quickly and uplifted quickly from the mantle. Current organization: Research Institute of Petroleum Exploration and Development, Beijing 100083, China.  相似文献   

17.
内陆水域二氧化碳(CO2)排放是全球碳平衡的重要组成部分,全球CO2排放通量估算通常有很大不确定性,一方面源于CO2排放数据观测的时空离散性,另一方面也是缺少水文情景与CO2排放通量关联性的研究.本文观测了2018年洪泽湖不同水文情景表层水体CO2排放通量特征,并探讨其影响因素.结果表明,洪泽湖CO2排放通量为丰水期((106.9±73.4) mmol/(m2·d))>枯水期((18.7±13.6) mmol/(m2·d))>平水期((5.2±15.5) mmol/(m2·d)),且碳通量由丰(310.2~32.0 mmol/(m2·d))、枯(50.8~2.2 mmol/(m2·d))、平(-17.3~39.8 mmol/(m2·d))3种水文情景的交替表现出湖泊碳源到弱碳汇的转变,空间上CO2排放通量总体呈现北部成子湖区低、南部过水湖区高的分布趋势.洪泽湖CO2排放对水文情景响应敏感,特别是上游淮河流域来水量的改变,是主导该湖CO2排放时空分异的重要因子.丰水期湖泊接纳了淮河更多有机和无机碳的输入,外源碳基质的降解和矿化显著促进了水体CO2的生产与排放,同时氮、磷等营养物质的大量输入,加剧了水体营养化程度,进一步提高CO2排放量,间接反映出人类活动对洪泽湖CO2变化的深刻影响.平、枯水期随着上游淮河来水量的减少,驱动水体CO2排放的因素逐渐由外源输入转变为水体有机质的呼吸降解.此外,上游河口区DOM中陆源类腐殖质的累积与矿化能够促进CO2的排放,而内源有机质组分似乎并没有直接参与CO2的排放过程.研究结果揭示了水文情景交替对湖库CO2排放的重要影响,同时有必要进行高频观测以进一步明晰湖泊的碳通量变化及其控制因素.  相似文献   

18.
The southern Yellow Sea (SYS), located to the north of the East China Sea (ECS), was considered part of the ECS when Tsunogai et al. (1999) proposed the “continental shelf pump” (CSP) hypothesis. However, the original CSP carbon dioxide (CO2) uptake flux (2.9 mol C m−2 yr−1) appears to have been overestimated, primarily due to the differences between the SYS and the ECS in terms of their CO2 system. In this paper, we estimated air-sea CO2 fluxes in the SYS using the surface water partial pressure of CO2 (pCO2) measured in winter, spring, and summer, as well as that estimated in fall via the relationship of pCO2 with salinity, temperature, and chlorophyll a. The results indicate that overall, the entire investigated area was a net source of atmospheric CO2 during summer, winter, and fall, whereas it was a net sink during spring. Spatially, the nearshore area was almost a permanent CO2 source, while the central SYS shifted from being a CO2 sink in spring to a source in the other seasons of the year. Overall, the SYS is a net source of atmospheric CO2 on an annual scale, releasing ∼7.38 Tg C (1 Tg=1012 g) to the atmosphere annually. Thus, the updated CO2 uptake flux in the combined SYS and ECS is reduced to ∼0.86 mol C m−2 yr−1. If this value is extrapolated globally following Tsunogai et al. (1999), the global continental shelf would be a sink of ∼0.29 Pg C yr−1, instead of 1 Pg C yr−1 (1 Pg=1015 g).The SYS as a net annual source of atmospheric CO2 is in sharp contrast to most mid- and high-latitude continental shelves, which are CO2 sinks. We argue that unlike the ECS and the North Sea where carbon on the shelf could be exported to the open ocean, the SYS lacks the physical conditions required by the CSP to transport carbon off the shelf effectively. The global validity of the CSP theory is thus questionable.  相似文献   

19.
We present an uncertainty analysis of ecological process parameters and CO2 flux components (R eco, NEE and gross ecosystem exchange (GEE)) derived from 3 years’ continuous eddy covariance measurements of CO2 fluxes at subtropical evergreen coniferous plantation, Qianyanzhou of ChinaFlux. Daily-differencing approach was used to analyze the random error of CO2 fluxes measurements and bootstrapping method was used to quantify the uncertainties of three CO2 flux components. In addition, we evaluated different models and optimization methods in influencing estimation of key parameters and CO2 flux components. The results show that: (1) Random flux error more closely follows a double-exponential (Laplace), rather than a normal (Gaussian) distribution. (2) Different optimization methods result in different estimates of model parameters. Uncertainties of parameters estimated by the maximum likelihood estimation (MLE) are lower than those derived from ordinary least square method (OLS). (3) The differences between simulated Reco, NEE and GEE derived from MLE and those derived from OLS are 12.18% (176 g C·m−2·a−1), 34.33% (79 g C·m−2·a−1) and 5.4% (92 g C·m−2·a−1). However, for a given parameter optimization method, a temperature-dependent model (T_model) and the models derived from a temperature and water-dependent model (TW_model) are 1.31% (17.8 g C·m−2·a−1), 2.1% (5.7 g C·m−2·a−1), and 0.26% (4.3 g C·m−2·a−1), respectively, which suggested that the optimization methods are more important than the ecological models in influencing uncertainty in estimated carbon fluxes. (4) The relative uncertainty of CO2 flux derived from OLS is higher than that from MLE, and the uncertainty is related to timescale, that is, the larger the timescale, the smaller the uncertainty. The relative uncertainties of Reco, NEE and GEE are 4%−8%, 7%−22% and 2%−4% respectively at annual timescale. Supported by the National Natural Science Foundation of China (Grant No. 30570347), Innovative Research International Partnership Project of the Chinese Academy of Sciences (Grant No. CXTD-Z2005-1) and National Basic Research Program of China (Grant No. 2002CB412502)  相似文献   

20.
Hydrochemical (major and some minor constituents), stable isotope ( and , δ13CTDIC total dissolved inorganic carbon) and dissolved gas composition have been determined on 33 thermal discharges located throughout Sicily (Italy) and its adjacent islands. On the basis of major ion contents, four main water types have been distinguished: (1) a Na-Cl type; (2) a Ca-Mg > Na-SO4-Cl type; (3) a Ca-Mg-HCO3 type and (4) a Na-HCO3 type water. Most waters are meteoric in origin or resulting from mixing between meteoric water and heavy-isotope end members. In some samples, δ18O values reflect the effects of equilibrium processes between thermal waters and rocks (positive 18O-shift) or thermal waters and CO2 (negative 18O-shift). Dissolved gas composition indicates the occurrence of gas/water interaction processes in thermal aquifers. N2/O2 ratios higher than air-saturated water (ASW), suggest the presence of geochemical processes responsible for dissolved oxygen consumption. High CO2 contents (more than 3000 cc/litre STP) dissolved in the thermal waters indicate the presence of an external source of carbon dioxide-rich gas. TDIC content and δ13CTDIC show very large ranges from 4.6 to 145.3 mmol/Kg and from –10.0‰ and 2.8‰, respectively. Calculated values indicate the significant contribution from a deep source of carbon dioxide inorganic in origin. Interaction with Mediterranean magmatic CO2 characterized by heavier carbon isotope ratios ( value from -3 to 0‰ vs V-PDB (CAPASSO et al., 1997, GIAMMANCO et al., 1998; INGUAGGIATO et al., 2000) with respect to MORB value and/or input of CO2-derived from thermal decomposition of marine carbonates have been inferred.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号