首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 187 毫秒
1.
沈博  吴蓉元 《物探与化探》1995,19(5):351-359
零位校正误差是重力仪除标定以外最主要的误差来源.本文根据作者数年来从事高精度重力勘探工作中所积累的资料,对此问题进行了较为全面客观的分析研究.(l)对Lacoste-Romberg重力仪的正常零位变化和零位突变特性提出了分析结论;(2)对实测资料采用动、静分高处理方法,分析了重力仪连续工作时(数日至数十日)由于零位非线性变化可能引起的零位校正误差;(3)通过对实测资料的分析计算,得到了零位突变对重力仪观测精度影响的参考值;(4)针对重力仪使用中的实际问题提出了改善零位移线性度的实施对策.  相似文献   

2.
零位校正误差是重力仪除标定以外最主要的误差来源。本文根据作者数年来从事高精度重力勘探工作中所积累的资料,对此问题进行了较为全面客观的分析研究。(l)对Lacoste-Romberg重力仪的正常零位变化和零位突变特性提出了分析结论;(2)对实测资料采用动、静分高处理方法,分析了重力仪连续工作时(数日至数十日)由于零位非线性变化可能引起的零位校正误差;(3)通过对实测资料的分析计算,得到了零位突变对重力仪观测精度影响的参考值;(4)针对重力仪使用中的实际问题提出了改善零位移线性度的实施对策。  相似文献   

3.
轴对称型金属弹簧海洋重力仪在动态测量中不可避免地要受到载体扰动加速度的影响,以中国科学院精密测量科学与技术创新研究院研制的CHZ-Ⅱ型海洋重力仪为例,在建立其测量模型的基础上,着重分析了载体垂向扰动对重力仪的电容微位移检测以及动态非线性误差的影响.结果 表明:载体垂向扰动加速度的大小直接影响电容微位移检测的输出,且垂向扰动加速度是海洋重力仪非线性误差的直接影响因素.这对提高海洋重力仪的动态测量精度有重要意义.  相似文献   

4.
通过对长宁6.0级地震前后经固体潮和零点位移改正后的重力静态观测数据、重力仪实时观测标准差(S.D.)和舍弃数量(REJ)数据的分析,认为发震时检测到的重力值变化往往是重力仪震动滤波功能失效,导致重力仪读数错误。长宁6.0级地震在地震波到达之前未能观测到有效的重力异常变化信号,这是因为当重力仪震动滤波功能开启时,大于4~6倍标准差的高频噪声将被自动拒绝,重力场的瞬时变化在重力静态观测数据中反映不出来,但是这种变化可以通过S.D.指标来反映。由于S.D.值包括了重力仪自身噪声和环境震动等重力高频干扰信号,它可以用来衡量信号噪声的大小。通过对地震发生时重力仪在不同时刻记录S.D.值与地震震级相关性分析认为,地震震级与重力仪记录S.D.值呈明显的正相关关系。在记录到的21次地震中,在发震前有2次重力仪记录S.D.值有明显突变,有1次在发震前8 min观测到REJ值的突变,因此可以根据S.D.值的突变并结合重力值和REJ值的变化来预报地震和判定单次地震活动持续时间。  相似文献   

5.
重力仪漂移系数对于观测数据的有效零漂改正,进而获得可靠重力观测数据具有重要意义。笔者提出利用模糊加权线性回归法进行重力仪漂移系数计算,通过对理论与实际的重力仪静态数据的试验、比较与分析,认为该方法具有计算自动化、有效压制干扰、计算结果稳定等特点,能够实现对重力仪漂移系数的有效计算,具有应用前景。  相似文献   

6.
航空重力仪测量传感器和地面重力仪测量单元类似,往往存在零点漂移现象,通常把这种漂移视为线性关系,用前、后校数据做零漂改正处理。但是航空重力仪结构复杂,造成传感器漂移的因素很多,最为关键的因素是环境温度变化带来的扰动,实际又无法避开航空重力仪在温差剧烈变化的夏、冬两季作业。笔者以航空重力仪静态数据为例,首先进行固体潮改正并使用最小二乘法做线性零漂改正,其次使用线性相关分析方法,获得了静态数据和仪器温控温度之间具有很强的相关性特征,最后建立线性回归方程计算得到最终改正后的重力静态数据,精度有了很大的提高。这种相关性分析方法对深入理解传感器零漂改正处理方法和应用于动态测量数据中的零漂改正预研究具有实际意义。  相似文献   

7.
2015年3月,由国防科技大学独立研发的SGA-WZ02重力仪在湖南长沙进行了一次车载重力测量试验,目的是为了检验、评估该重力仪应用于车载重力测量的可行性和精度水平。该重力仪系统主要由捷联惯性导航系统(SINS)、差分GNSS系统以及数据记录系统组成。试验路线为长沙市区东部的一条长约35 km的高速公路,测量过程中平均车速为40 km/h,本次试验共得到3条重复测线数据以进行内符合精度评估。为了评估重力异常外符合精度,使用CG-5高精度地面重力仪对该测线区域进行了测量,建立了外部重力参考数据库。本次车载试验结果表明,重复测线的内符合精度为1.64 m Gal/1.1 km,1.12 m Gal/1.7 km,外符合精度为2.33 m Gal/1.1 km,1.77 m Gal/1.7 km。  相似文献   

8.
1982年以来,在四川西南地区建立Ⅱ级重力基点网和区域性长剖面工作中,分别采用了美国渥尔登重力仪和北京地质仪器厂生产的ZSM-Ⅳ型大测程恒温重力仪。现将观测结果和使用中应该注意的问题和建议综述如下。  相似文献   

9.
为检验我国自主研发的SAG-2M型海洋重力仪的技术性能,验证其获取重力数据的可靠性,选用德国KSS31M型海洋重力仪开展同船比测工作。按照海洋地质调查规范分别处理了2台重力仪的原始重力数据,对2台重力仪得到的自由空间重力异常数据的交点差、测线及网格数据进行了对比分析及相关性分析。数据对比分析结果表明,两种型号重力仪测量精度相当,数据异常形态及变化趋势一致,幅值基本吻合,两者数据高度线性相关。通过此次同船比测工作,认为我国自主研发的SAG-2M型海洋重力仪平台稳定,测量精度与德国KSS31M型海洋重力仪相当,该比测结果对今后SAG-2M型海洋重力仪的研发及测量工作具有重要参考价值。  相似文献   

10.
为研制高精度航空重力仪,开展了高精度航空重力仪分项指标设计与分析,为高精度航空重力测量系统设计提供依据。笔者基于航空重力测量的数学模型,归纳出影响航空重力测量的主要因素;结合航空重力测量的相关理论公式,使用理论模型,推导出各影响因素的误差模型;开展了各项误差的分析研究,并通过设定合理的分项指标精度来有效地控制分项误差,确保航空重力测量精度优于0.6×10-5m/s2。  相似文献   

11.
总结大测程重力仪的分段格值整理重力资料的几种情况   总被引:1,自引:0,他引:1  
对于大测程重力仪,当分段标定的格值相对变化大于1/1400时,应使用分段格值对重力资料进行整理.文中总结了如何使用重力仪的分段格值计算在不同测程段上观测点重力值可能出现的几种情况.  相似文献   

12.
范祥发 《贵州地质》2002,19(2):126-128
国产石英弹簧大测程重力仪分段标定的格值相对变化>1/1400时,文中总结分段格值计算单程观测(混合零点位移改正、固体潮改正、静掉格改正)的公式。  相似文献   

13.
本文从油气藏地质成因分析的基础资料入手,总结该项研究的主要内容包括:构造、储层和油气水分布特征等3方面.结合自身科研实践,认为油气藏地质成因分析方法主要包括:野外露头和现代沉积考察、岩心观察描述、显微镜下薄片观察鉴定、地球物理解释预测、地质统计学分析、分析测试、各种物理模拟和数值模拟、油气藏动态监测和生产动态等,并阐述了不同研究方法的优缺点.目前油气藏地质成因分析存在的主要问题包括:对油气藏地质成因分析重视程度不够、研究方法偏定性、地质成因分析和油气藏表征结合不紧密、油气藏表征精度制约了地质成因分析的准确度、油气藏地质成因分析综合性不强、特殊类型油气藏地质成因分析还存在诸多难题等.本文指出了该研究未来发展方向.主要包括:依靠油气藏地质成因分析解决油气田开发中的难题、通过各种模拟方法提高油气藏地质成因分析定量化水平、加强地质成因分析以提高油气藏表征水平、利用油气藏表征促进地质成因分析进步、拓展油气藏地质成因分析在油气田开发中应用的领域、特殊类型油气藏地质成因分析等.  相似文献   

14.
介绍了2001年诺贝尔物理学奖获得者康奈尔,韦曼,克特勒的科学研究成果,实验玻色-爱因斯坦凝聚(BEC)及其在理论上的意义和应用前景,讨论了BEC在研制高精度重力仪方面的应用问题,为此回顾了重力测量现状,朱棣文等研制的原子干涉重力仪和ClauserJ提出的物质波干涉重力仪,分析表明,如果利用BEC,则重力仪的测量精度在朱棣文等工作基础上将会有很大的提高。  相似文献   

15.
重力仪静态试验是重力勘探工作开始之前对仪器性能检查的必要环节,由于原理简单,其数据整理常不被人们重视,没有系统的方法,但整理的计算过程却又繁琐复杂,初学者在面对大量数据和多重目标时或顾此失彼,或重复计算,往往要耗费较多的工作时间。Excel电子表格具有强大的数学计算、图形显示功能,且应用广泛,易于操作,可系统整理CG-5型重力仪静态试验的原始观测记录,快速获取静态试验数据表、零点位移曲线及其拟合直线图等直观要素,同时计算得到静态零点位移曲线与直线偏差、平均零点位移率等结果参数,Excel的散点图趋势线功能也改进了静态零点位移校正参数漂移常量DRIFT的计算方法与准确度。这种静态试验数据的整理方法具有快速、准确和直观的优点。  相似文献   

16.
总结了大测程重力仪分段标定的格值相对变化大于/1400时,单程、三程循环重力观测值居于不同测程段内可能出现的8种计算公式.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号