首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
2.
Globally, dissolved inorganic carbon (DIC) accounts for more than half the annual flux of carbon exported from terrestrial ecosystems via rivers. Here, we assess the relative influences of biogeochemical and hydrological processes on DIC fluxes exported from a tropical river catchment characterized by distinct land cover, climate and geology transition from the wet tropical mountains to the low‐lying savanna plains. Processes controlling changes in river DIC were investigated using dissolved organic carbon, particulate organic carbon and DIC concentrations and stable isotope ratios of DIC (δ13CDIC) at two time scales: seasonal and diel. The recently developed Isotopic Continuous Dissolved Inorganic Carbon Analyser was used to measure diel DIC concentration and δ13CDIC changes at a 15‐min temporal resolution. Results highlight the predominance of biologically mediated processes (photosynthesis and respiration) controlling diel changes in DIC. These resulted in DIC concentrations varying between 3.55 and 3.82 mg/l and δ13CDIC values ranging from ?19.7 ± 0.31‰ to ?17.1 ± 0.08‰. In contrast, at the seasonal scale, we observed wet season DIC variations predominantly from mixing processes and dry season DIC variations due to both mixing processes and biological processes. The observed wet season increases in DIC concentrations (by 6.81 mg/l) and δ13CDIC values of river water (by 5.4‰) largely result from proportional increases in subsurface inflows from the savanna plains (C4 vegetation) region relative to inflows from the rainforest (C3 vegetation) highlands. The high DIC river load during the wet season resulted in the transfer of 97% of the annual river carbon load. Therefore, in this gaining river, there are significant seasonal variations in both the hydrological and carbon cycles, and there is evidence of substantial coupling between the carbon cycles of the terrestrial and the fluvial environments. Recent identification of a substantial carbon sink in the savannas of northern Australia during wetter years in the recent past does not take into account the possibility of a substantial, rapid, lateral flux of carbon to rivers and back to the atmosphere. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
To better understand the mechanisms relating to hydrological regulations of chemical weathering processes and dissolved inorganic carbon (DIC) behaviours, high-frequency sampling campaigns and associated analyses were conducted in the Yu River, South China. Hydrological variability modifies the biogeochemical processes of dissolved solutes, so major ions display different behaviours in response to discharge change. Most ions become diluted with increasing discharge because of the shortened reactive time between rock and water under high-flow conditions. Carbonate weathering is the main source of major ions, which shows strong chemostatic behaviour in response to changes in discharge. Ions from silicate weathering exhibit a significant dilution effect relative to the carbonate-sourced ions. Under high temperatures, the increased soil CO2 influx from the mineralisation of organic material shifts the negative carbon isotope ratios of DIC (δ13CDIC) during the high-flow season. The δ13CDIC values show a higher sensitivity than DIC contents in response to various hydrological conditions. Results from a modified isotope-mixing model (IsoSource) demonstrate that biological carbon is a dominant source of DIC and plays an important role in temporal carbon dynamics. Furthermore, this study provides insights into chemical weathering processes and carbon dynamics, highlighting the significant influence of hydrological variability to aid understanding of the global carbon cycle.  相似文献   

4.
This study aimed to understand changes in the biogeochemical processing of organic matter (OM) in response to multiple stressors (e.g., littoral area expansion, wastewater input, and hydrological regulation) in East Dongting Lake (Central China) over the past 60 years, using analyses of total organic carbon (TOC), total nitrogen (TN), C/N ratios, δ13C, δ15N, and diatoms from 2 sediment cores collected from the littoral and central parts of the lake. OM mainly originated from phytoplankton and C3 plant‐derived soil OM based on the ranges of C/N ratios (from 7 to 11) and δ13C (between ?27‰ and ?23‰). Littoral area expansion due to siltation caused an increasing influx of terrestrial soil OM in the 1980s and the 1990s, subsequently lowering δ13C values and rising C/N ratios in both sediment cores. Meanwhile, higher δ15N was linked to a high influx of isotopically heavy nitrate from urban and agricultural wastewaters. After 2000, slight decreases in TOC and TN in the littoral area were attributable to reducing inputs of external OM, likely linked to declining sediment influx from the upper reaches resulting from the Three Gorges Dam impoundment. Contrasting increases in TOC, TN, and C/N ratios in the central part indicated a high influx of terrestrial soil OM due to the declining distance from the shoreline with littoral area expansion. Declining δ15N values after 2000 indicated an increase in N2‐fixing cyanobacteria with eutrophication. Changes in diatom assemblages in both the littoral and central zones reflected nutrient enrichment and hydrological alterations. These results indicate that littoral expansion, declining riverine influx, and anthropogenic nutrient inputs are potential driving forces for the biogeochemical processing of OM in floodplain lakes. This study provides sedimentary biogeochemical clues for tracking past limnological conditions of floodplain lakes that are subjected to increasing disturbances from hydrological regulation and eutrophication.  相似文献   

5.
Freshwater lichens of selected Carpathian streams were investigated to identify their diversity and distribution patterns. Lichens were investigated along six transects, each running across three different habitats (hydrological zones: submerged, splash and riparian), established in upper, middle and lower reaches of the streams and the data were a subject to statistical analyses. The studied mountain streams provided suitable habitats for a number of aquatic and semi-aquatic lichens and species richness in both streams was very similar. Overall, 52 species of lichens were identified from all sampling plots (γ diversity). Species number for a single plot (α diversity) ranged from 1 to 14 species and differences in species composition between the plots (β diversity) were high. Differences were mainly noted for typical terrestrial lichens occurring in riparian zones. The location along the stream reaches did not have a significant effect on species diversity and distribution. The hydrological zone appeared to be the most important predictor explaining the small-scale occurrence and diversity of lichens with species assembled into distinct, low-diversity communities in the transition from submerged to riparian habitats. The distinction among hydrological zones and their lichen biota were corroborated by nMDS analyses. The method of defined plots provides a way of recording baseline data for a particular river, which can be repeated (monitor) in the future.  相似文献   

6.
7.
We measured spatial and temporal variations in carbon concentrations, isotopic compositions and exports during a complete hydrological cycle in nine watercourses draining a lowland forested podzolized catchment, flowing into the Arcachon lagoon (France). In addition, integrated fluxes of CO2 across the water-atmosphere interface were estimated to assess the relative importance of CO2 evasion versus lateral carbon transport at the catchment scale. Watercourse similarities and specificities linked to the local catchment characteristics are discussed and compared with other riverine systems. Low concentrations of suspended particulate matter and particulate organic carbon (POC) were generally measured in all the watercourses (8.4 ± 3.4 and 1.6 ± 0.6 mg L?1, respectively), reflecting limited mechanical soil erosion. The generally high POC content in the suspended matter (20 %), low Chl a concentrations (1.3 ± 1.4 μg L?1) and the relatively constant δ13C-POC value (near ?28 ‰) throughout the year reveal this POC originates from terrestrial C3 plant and soil detritus. The presence of podzols leads to high levels of dissolved organic carbon (DOC; 6.6 ± 2.2 mg L?1). Similarly, high dissolved inorganic carbon (DIC) concentrations were measured in the Arcachon lagoon catchment (5.9 ± 2.2 mg L?1). The δ13C-DIC value around ?20 ‰ throughout the year in many small watercourses reveals the predominance of terrestrial carbon mineralisation and silicate rock weathering in soils as the major DIC source. With pCO2 between 1,000 and 10,000 ppmv, all watercourses were a source of CO2 to the atmosphere, particularly during the low river stage. Organic carbon parameters remained relatively stable throughout the year, whereas DIC parameters showed strong seasonal contrasts closely linked to the hydrological regime and hyporheic flows. In total, the carbon export from the Arcachon watershed was estimated at 15,870 t C year?1 or 6 t C km?2 year?1, mostly exported to the lagoon as DOC (35 %), DIC (24 %) and lost as CO2 degassing to the atmosphere (34 %).  相似文献   

8.
Headwater streams are critical components of drainage systems, directly connecting terrestrial and downstream aquatic ecosystems. The amount of water in a stream can alter hydrologic connectivity between the stream and surrounding landscape and is ultimately an important driver of what constituents headwater streams transport. There is a shortage of studies that explore concentration–discharge (C‐Q) relationships in headwater systems, especially forested watersheds, where the hydrological and ecological processes that control the processing and export of solutes can be directly investigated. We sought to identify the temporal dynamics and spatial patterns of stream chemistry at three points along a forested headwater stream in Northern Michigan and utilize C‐Q relationships to explore transport dynamics and potential sources of solutes in the stream. Along the stream, surface flow was seasonal in the main stem, and perennial flow was spatially discontinuous for all but the lowest reaches. Spring snowmelt was the dominant hydrological event in the year with peak flows an order of magnitude larger at the mouth and upper reaches than annual mean discharge. All three C‐Q shapes (positive, negative, and flat) were observed at all locations along the stream, with a higher proportion of the analytes showing significant relationships at the mouth than at the mid or upper flumes. At the mouth, positive (flushing) C‐Q shapes were observed for dissolved organic carbon and total suspended solids, whereas negative (dilution) C‐Q shapes were observed for most cations (Na+, Mg2+, Ca2+) and biologically cycled anions (NO3?, PO43?, SO42?). Most analytes displayed significant C‐Q relationships at the mouth, indicating that discharge is a significant driving factor controlling stream chemistry. However, the importance of discharge appeared to decrease moving upstream to the headwaters where more localized or temporally dynamic factors may become more important controls on stream solute patterns.  相似文献   

9.
洞庭湖洲滩土壤种子库对土壤水分变化的响应   总被引:1,自引:1,他引:0  
陈明珠  靳朝  雷光春  阳俭  雷霆 《湖泊科学》2020,32(3):745-753
由于三峡大坝及上游水库群的运行,长江中下游水域水文节律随之发生了改变,导致洞庭湖枯水期提前,进而影响洞庭湖洲滩植被及其土壤种子库的分布格局.本研究在洞庭湖4个自然保护区内选取共11个典型洲滩湿地,沿由水到陆方向根据植被类型将洲滩分为泥沙洲滩、泥沙—湖草洲滩过渡带、湖草洲滩、湖草—南荻洲滩过渡带、南荻洲滩5种洲滩类型.通过样带—样方法调查和采样,并结合湿润和水淹两种条件下的土壤种子库萌发实验,分析了土壤水分变化对洲滩种子库萌发特征的影响及土壤种子库与地表植被的关系.结果显示:①土壤含水量沿水到陆方向由泥沙洲滩向南荻洲滩递减;②不同类型洲滩土壤种子库密度没有显著差异;③温室萌发实验中,水淹条件下土壤种子库物种丰富度和种子库密度显著降低,东洞庭湖自然保护区土壤种子库物种丰富度和种子库密度较高;④地表植被物种丰富度高于土壤种子库,泥沙洲滩土壤种子库与地表植被物种组成的Jaccard相似性指数最低.此外,虉草(Phalaris arundinacea)、芦苇(Phragmites communis)、南荻(Miscanthus sacchariflorus)等只在地表植被中存在,而陌上菜(Lindernia procumbens)、通泉草(Mazus japonicus)等只在种子库中存在.结果表明,在进行湿地植被恢复时,不能仅依靠种子库移植技术,还要考虑湖区季节性的水位变化以及个别物种的特异性,配合有针对性的水文调控机制及相关的人工措施恢复其原有植被.  相似文献   

10.
This study tested the hypothesis that the flood pulse affects the diet composition and the niche breadth of Moenkhausia forestii, a small characid fish inhabiting the littoral zone of lakes. To this end, we compared the diet composition (at the population and individual levels) between hydrological periods (high and low water phases) in a floodplain lake of the Upper Paraná River. PERMANOVA revealed differences in the diet between periods (pseudoF1,38 = 8.5; p < 0.001), with predominant consumption of chironomid larvae and Ephemeroptera (aquatic resources) in the low-water period and an increase in the contribution of terrestrial resources (Hymenoptera, Coleoptera, and Orthoptera) during the high-water period. Based on the PERMDISP results, inter-individual variability in M. forestii diet also differed between periods (F1,38 = 5.80; p = 0.02), with higher values during the high-water period resulting in a dietary niche expansion. During the low-water period, we observed the dominance of chironomid larvae in the diets of most individuals, resulting in lower inter-individual variability and thus narrower niche breadth. The diet of M. forestii was affected by the flood pulse at both the population and individual levels. The most important difference was found in the origin of food items; during the low-water period, the diet consisted mainly of aquatic resources, and during the high-water period, there was a large contribution of terrestrial resources. This variation is related to the increased availability of allochthonous resources in the high period, when terrestrial areas are flooded by the overflow of the river, thereby increasing the input of resources into the aquatic environment. The increased availability of food resources during this period allowed the expansion of the trophic niche of M. forestii, accompanied by the highest richness (19 items) and the highest evenness of food items. Our findings demonstrated that the flood pulse affected the composition of the M. forestii diet at both the population and individual levels. These results support the importance of the flood pulse, which connects aquatic and terrestrial ecosystems, in providing food resources for fish.  相似文献   

11.
Dissolved inorganic carbon (DIC) is the most important carbon component in karst aquatic system where fluid is highly transmissive, but has rarely been examined in the subtropical karst critical zone (K-CZ). In this study, concentrations of dissolved solutes and isotopic compositions of DIC (δ13CDIC) at 11 sites of a 73.4 km2 karstic catchment in Southwestern China were analysed monthly in order to uncover the spatiotemporal variations of both DIC and its dominant sources, and to identify relevant controlling factors. Both DIC concentrations and δ13CDIC were highly variable, ranging from 2.52 to 5.85 mmol l−1 and from −15.7 to −4.5‰, respectively. DIC in underground water (UGW) was higher in concentration and more depleted in 13C compared to surface water (SFS). DIC concentrations showed an inconsistent seasonal trend with other solutes, with higher values in the wet season at some sites. δ13CDIC values were lower in the wet season than in the dry season. The results of mixing model IsoSource revealed spatiotemporal patterns of DIC sources. During the dry season, carbonate weathering was the primary contributor to DIC in UGW (excluding in the middle reaches). However, during the wet season, soil CO2 was the dominant source of DIC in both UGW and SFS, and it was higher than in the dry season. Overall, there are significant spatiotemporal disparities and highly transmissive characteristics of both DIC and its sources in the K-CZ, which are controlled by multiple factors. This study also highlights that rainfall may play a crucial role in accelerating carbon dynamics in the K-CZ. High-frequency sampling campaigns in high-flow periods and deep analyses are needed in future work to elucidate the related processes and mechanisms. © 2019 John Wiley & Sons, Ltd.  相似文献   

12.
Widespread loss and degradation of riverine habitats due to dams, diversions, levees, and human development have led to an increase in river habitat enhancement projects in recent decades. These projects typically focus on improving either terrestrial (e.g., riparian vegetation) or aquatic (e.g., fish spawning and rearing) habitats, and do not commonly address the relationship between the two systems. However, there is abundant evidence that fundamental linkages exist between terrestrial and aquatic ecosystems, and anthropogenic impacts such as urban expansion, agricultural activities, and river impoundment can synergistically degrade both systems. This study examines the effects of adult and juvenile salmonid habitat restoration on recruitment, density, and composition of riparian vegetation in an area heavily impacted by mining and flow regulation. For a year following in-channel coarse sediment placement and floodplain construction in an area previously covered with coarse mine tailings, we compared the abundance, richness and diversity of vegetation across four treatments: the newly constructed floodplain, isolated mine tailings, mine tailings near an access road, and a remnant riparian area that was less impacted by mining. Richness and diversity were higher in the floodplain than in any of the other treatments; we identified a total of 15 plant families in the floodplain treatments, as compared to three to five families in the other treatments. We observed significant differences in plant assemblage composition between treatments, with higher richness of primarily obligate or facultative wetland plant taxa in the floodplain treatment. This study demonstrates that restoring hydrological linkages between aquatic and terrestrial habitats, and redistribution of sediment size classes altered by mining, can create conditions that promote rapid wetland plant colonization, enhancing biodiversity and improving ecosystem function.  相似文献   

13.
2019年春、秋两季,对江西省76个湖泊的底栖动物进行了调查,在分析其群落结构和多样性的基础上,探讨了多样性与环境因子间的关系,旨在确定影响大型底栖无脊椎动物多样性的重要环境因子,以期为江西省湖泊的精准化管理提供科学依据和技术支持。两次调查共检出140个分类单元,以水生昆虫和软体动物为主,摇蚊类物种数占水生昆虫物种数的53.62%。富营养指示种(长足摇蚊属一种和摇蚊属一种)为春、秋两季的优势分类单元,湖沼典型种(长足摇蚊属一种、摇蚊属一种、石田螺属一种、苏氏尾鳃蚓和霍甫水丝蚓)的丰度变化导致了群落结构的季节变化。大型底栖无脊椎动物α多样性水平较低,基于PLSR和PLS-SEM的分析结果表明,影响大型底栖无脊椎动物多样性指标的环境因子既与藻类种群动态密切相关,也与水质状态有关。大型底栖无脊椎动物多样性与藻类种群状态存在稳定的联系,不受季节因素的影响,过高的藻类丰度不利于大型底栖无脊椎动物多样性的提高,而较好的水质状况有利于大型底栖无脊椎动物多样性的提高。为保护江西省湖泊大型底栖无脊椎动物资源,应在具有渔业养殖功能的湖泊和城镇湖泊中进行水生植物的修复工作,使藻型湖泊向草型湖泊方向演化;对一...  相似文献   

14.
江湖联通状况对湖泊生态系统有着重要影响,但是由于缺乏长期的生态水文监测数据,湖泊系统对其响应的过程与机理仍缺乏认识.本研究选择长江中下游地区典型湖泊——涨渡湖,结合该湖一沉积短柱的210Pb、137Cs年代测试,通过高分辨率的多指标分析(硅藻、元素地球化学和粒度),揭示近200年来湖泊生态系统对该湖与长江之间联通关系改变的响应过程.与历史文献记载一致,古湖沼学记录揭示出该湖与长江的联通状况经历了3个阶段.1)江湖联通期(1954年以前):该湖与长江自然相通,江湖水体交换频繁,丰富的贫营养浮游种Cyclotella bodanica表明该湖长期处于低营养及湖泊水位相对较高的状态.2)江湖隔绝期(1954 2005年):随着湖坝的兴建,江湖联通关系被隔绝,湖泊换水周期变长,透明度降低,喜好扰动环境的Aulacoseria granulata大量生长.相应地,富营养硅藻的增加、高TOC含量以及较高的沉积物TP、TN浓度表明,该湖营养水平逐渐升高.特别是近20年来,较高含量的富营养硅藻种——C.meneghinena、A.alpigena、Nitzschia palea、Surirella minuta和地球化学记录,包括TOC含量和沉积物TP、TN浓度,表明该湖富营养化程度加剧.3)江湖季节性联通期(2005年后):硅藻以附生种、底栖种为主,但仍有一定含量的富营养化属种,且TOC含量以及沉积物TP、TN浓度仍然保持较高水平,表明富营养程度有所缓解.古湖沼学和历史记录都揭示了自该湖与长江无连通后其生态状况的快速退化、重新联通后生态状况有所好转.因此,在长江中下游洪泛平原区,江湖关系的重新联通将是减轻湖泊生态压力的有效手段.  相似文献   

15.
Lower Cretaceous C-isotope records show intermittent negative/positive spikes, and consistent patterns of coeval chemostratigraphic curves thus document shifts that signal simultaneous responses of temporal changes in the global carbon reservoir. The standard pattern registered by the δ 13Corg and δ 13Ccarb in Lower Aptian sediments includes distinct isotope segments C1 to C8 (Menegatti et al., 1998). In the El Pui section, Organyà Basin, Spain, C-isotope segment C2 is the longest interval preceding segments C3–C6 associated with oceanic anoxic event 1a (OAE 1a), and reveals a distinct negative shift of ~1.8‰ to ~2.23‰ defining the C-isotope pattern within that interval. Total inorganic carbon (TIC), total organic carbon (TOC), δ 13Corg, microfacies, n-alkanes show no difference before, during, or after the negative inflection. The biomarkers indicate that organic matter (OM) mainly originates from algal/microbial sources because short-chain length homologues (≤nC19) dominate. nC20 through nC25 indicate some contribution from aquatic vegetation, but little from higher plants (>nC25), as also suggested by the terrestrial/aquatic ratio of n-alkanes or (TAR) = [(nC27+nC29+nC31)/(nC15+nC17+nC19)] (averages 0.085). We suggest that conjoint pulses of contemporaneous LIPs (Ontong Java) and massive explosive volcanism in northeast Asia, the Songliao Basin (SB-V), best conform to plausible causes of the negative intra-C2 carbon isotopic excursion (CIE) at that time. Because of its apparent common occurrence the intra-C2 inflection could be a useful marker harbinger to the more pronounced CIE C3, the hallmark of OAE1a.  相似文献   

16.
The Nyangqu River, the largest right bank tributary of the Yarlung Zangbo River in the Qinghai–Tibet Plateau, was representative of an alpine riverine carbon cycle experiencing climate change. In this study, dissolved inorganic carbon (DIC) spatial and seasonal variations, as well as their carbon isotopic compositions (δ13CDIC) in river water and groundwater were systematically investigated to provide constraints on DIC sources, recharge and cycling. Significant changes in the δ13CDIC values (from −2.9‰ to −23.4‰) of the water samples were considered to be the result of different contributions of two dominant DIC origins: soil CO2 dissolution and carbonate weathering. Three types of rock weathering (dissolution of carbonate minerals by H2CO3 and H2SO4, and silicate dissolution by H2CO3) were found to control the DIC input into the riverine system. In DIC cycling, groundwater played a significant role in delivering DIC to the surface water, and DIC supply from tributaries to the main stream increased from the dry season to the wet season. Notably, the depleted δ13CDIC ‘peak’ around the 88.9° longitude, especially in the September groundwater samples, indicated the presence of ‘special’ DIC, which was attributed to the oxidation of methane from the Jiangsa wetland located nearby. This wetland could provide large amounts of soil organic matter available for bacterial degradation, producing 13C-depleted methane. Our study provided insights regarding the role of wetlands in riverine carbon cycles and highlighted the contribution of groundwater to alpine riverine DIC cycles.  相似文献   

17.
Evaluating the role of fluvial transfer of terrestrial organic carbon (OC) and subsequent burial in the global carbon cycle requires the sources and fluxes of fluvial OC to be assessed, which remains poorly constrained in the Huanghe (Yellow River). Here, we report the elemental, stable isotopic, and radiocarbon activity of particulate organic carbon (POC) sampled at the outlet of Huanghe in 2012–2013. We show that the Huanghe riverine POC can be explained by binary mixing of fossil (POCfossil) and non‐fossil (POCnon‐fossil) components, the former may reach ~40% of the total POC. The Huanghe POCnon‐fossil is mostly sourced from C3 plants, with a mean residence time of c. 2200 years. The current human‐controlled hydrological regime strongly influenced the POC sources, transport modes, and fluxes. In 2012–2013, the Huanghe delivered 0.73 Tg (1 Tg = 1012 g) of POC to the sea, and about 28% of the annual POC flux occurred within a short human induced flood event. Globally, the Huanghe should be one of the largest rivers in the transfer and re‐burial of fossil OC. However, the fate of Huanghe fossil OC is still unconstrained and needs to be further investigated. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
王朝  周立志  戴秉国  古辰  蒋忠冠 《湖泊科学》2019,31(5):1403-1414
水位的洪枯变化通过江湖连通影响泛滥平原湖泊鱼类的组成和分布,因而江湖过渡带是反映泛滥平原生态系统鱼类交流和多样性变动的关键区域.尽管如此,针对江湖过渡带鱼类群落随水位洪枯变化的研究十分匮乏.本研究以菜子湖江湖过渡带为例,分别在洪水和枯水期选取包括静水和流水生境的样点对鱼类群落进行系统的调查采样,探讨水位洪枯变化对菜子湖江湖过渡带鱼类物种和功能多样性的影响.共采集到鱼类6目12科37属52种,其中,洪水期和枯水期物种数差异显著,分别采集到鱼类50和42种,而静水生境和流水生境物种数差异不明显,分别采集到鱼类47和48种.与洪水期相比,枯水期山溪河流性鱼类的物种数、重量、尾数和优势度百分比分别减少了7.3%、6.3%、14.4%和12.0%;与静水生境相比,流水生境山溪河流性鱼类的物种数、重量、尾数和优势度百分比分别增加了5.3%、14.6%、18.0%和22.3%.SIMPER分析结果显示,麦穗鱼(Pseudorasbora parva)、蛇鮈(Saurogobio dabryi)、(Hemiculter leucisculus)、鲤(Cyprinus carpio)、鲫(Carassius auratus)、短颌鲚(Coilia brachygnathus)、似鳊(Pseudobrama simoni)、翘嘴鲌(Culter ilishaeformis)、达氏鲌(Culter dabryi)、光唇蛇鮈(Saurogobio gymnocheilus)和无须鱊(Acheilognathus gracilis)是引起水位洪枯变化以及不同生境类型鱼类群落结构差异的主要物种.优势度分析结果表明枯水期和静水生境的优势种鱼类相似,重要值较高的优势种鱼类为鲤、鲫、和似鳊;而洪水期和流水生境的优势种鱼类同样相似,重要值较高的优势种鱼类为麦穗鱼、蛇鮈、光唇蛇鮈和短颌鲚.通过双因素方差分析解析了水位洪枯变化和不同生境类型对鱼类物种和功能多样性的影响.发现洪枯水位变化仅对物种多样性指数中的物种数(Richness)产生显著差异,而对功能多样性的3个指数(功能丰富度指数(FRic)、功能离散指数(FDiv)和功能分散指数(FDis))均有显著影响.洪水期鱼类的Richness、FRicFDivFDis指数均显著高于枯水期.同时,静水生境条件下的FRic指数要显著高于流水生境.本研究发现,与传统的物种多样性相比,基于功能性状的功能多样性对水位的洪枯变动更为敏感,河流周期性洪泛是泛滥平原生态系统中鱼类功能补充的重要方式.  相似文献   

19.
韩翠红  孙海龙  魏榆  鲍乾  晏浩 《湖泊科学》2020,32(6):1683-1694
耦联水生光合作用的碳酸盐风化碳汇是全球碳循环的重要组成部分,而生物碳泵效应是稳定碳酸盐风化碳汇的关键机制.河流筑坝后,生物碳泵效应的变化、控制因素及对水化学影响的研究甚少.本研究对2个喀斯特筑坝河流平寨水库和红枫湖进行系统采样,以研究河流筑坝后生物碳泵效应的变化、控制因素及对水化学的影响.研究结果表明,入库河流的水化学变化不明显,而2个水库的水化学则表现出显著的季节变化特征,具体表现为水库的水温和pH均呈现出夏季高、冬季低的变化特征,而电导率(EC)、HCO3-浓度和pCO2则表现出夏季低、冬季高的季节变化特征.以叶绿素a(Chl.a)浓度和溶解氧(DO)饱和度指代的生物碳泵效应则是在夏季最强、冬季最弱.生物碳泵效应利用溶解性无机碳(DIC),形成有机质并释放出氧气,是造成夏季水库pH值和DO饱和度升高,电导率(EC)、HCO3-浓度和pCO2降低的主要因素.空间上,水库的Chl.a浓度及DO饱和度均大于河水,EC、HCO3-浓度和pCO2均小于河水,这表明河流筑坝后,由于水库的“湖泊化”导致水库的生物碳泵效应显著提高.通过对Chl.a与碳、氮和磷浓度及化学计量比的相关性分析发现,平寨水库和红枫湖的生物碳泵效应受到碳施肥的影响.平寨水库和红枫湖水库生物碳泵效应碳施肥机制的发现,表明在喀斯特地区,生物碳泵效应不仅受到氮磷元素的控制,也受到碳元素的控制,因此在富营养化湖泊治理时,也应考虑碳的影响.  相似文献   

20.
Revealing of the sources and distributions of sedimentary organic matter in the East China Sea (ECS) is important for understanding its carbon cycle, which has significant temporal and spatial variability due to the influences of recent climate changes and anthropogenic activities. In this study, we report the contents of both terrestrial and marine biomarkers including ∑C27+C29+C31n-alkanes (38.6-580 ng/g), C37 alkenones (5.6-124.6 ng/g), brassicasterol (98-913 ng/g) and dinosterol (125-1521 ng/g) from the surface sediments in the Changjiang River Estuary (CRE) and shelf areas of the ECS. Several indices based on biomarker contents and ratios are calculated to assess the spatial distributions of both terrestrial and marine organic matter in the ECS surface sediments, and these results are compared with organic matter distribution patterns revealed by the δ13C (−20.1‰ to −22.7‰) and C/N ratio (5-7.5) of total organic matter. The contents of terrestrial biomarkers in the ECS surface sediments decrease seaward, controlled mostly by Changjiang River (CR) inputs and surface currents; while higher contents of the two marine biomarkers (brassicasterol and dinosterol) occur in upwelling areas outside the CRE and in the Zhejiang-Fujian coastal zone, controlled mostly by marine productivity. Four proxies, fTerr(δ13C) (the fraction of terrestrial organic matter in TOC estimated by TOC δ13C), odd-alkanes (∑C27+C29+C31n-alkanes), 1/Pmar-aq ((C23+C25+C29+C31)/(C23+C25) n-alkanes) and TMBR (terrestrial and marine biomarker ratio) (C27+C29+C31n-alkanes)/((C27+C29+C31) n-alkanes+(brassicasterol+dinosterol+alkenones)), reveal a consistent pattern showing the relative contribution of terrestrial organic matter (TOM) is higher in the CRE and along the Zhejiang-Fujian coastline, controlled mostly by CR inputs and currents, but the TOM contribution decreases seaward, as the influences of the CR discharge decrease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号