首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Kelvin-Helmholtz instability of the interface separating two viscous rotating-conducting fluids has been studied in the presence of finite ion-Larmor radius (FLR) effects. Emloying the normal mode technique, the solutions have been obtained when the fluids are assumed to be permeated by a uniform horizontal magnetic field. For the case of two highly viscous fluids, the dispersion relation has been derived and solved numerically. It is found that the streaming velocity has a stabilizing influence on the potentially unstable arrangement of the fluids. The viscosity and FLR effects are also found to have a stabilizing influence while the Coriolis forces have a destabilizing influence on the system.  相似文献   

2.
The stability of the plane interface separating two viscous superposed partially-ionized plasmas of uniform densities has been studied. The whole system is assumed to be immersed in a uniform two-dimensional horizontal magnetic field and the stability analysis has been carried out through the normal mode technique. The dispersion relation has been derived for the case of two superposed plasmas of equal kinematic viscosities. The dispersion relation has been solved numerically for different values of the physical parameters involved. It is found that viscosity and collision frequency of ionized plasmas both have stabilizing influence on the growth rate of the unstable mode of disturbance.  相似文献   

3.
The Rayleigh-Taylor instability of the plane interface separating two superposed, partiallyionized, viscous plasmas of different densities has been studied to include the effects of finite Larmor radius. The solution of the relevant linearized perturbation equations has been developed by the Normal mode technique, taking the prevalent magnetic field to be uniform and horizontal. The potentially unstable case of a dense fluid superimposed on a lighter one has been considered. It is found that neutral gas friction, viscosity as well as finite Larmor radius all have stabilizing influence.On leave of absence from Department of Mathematics, University of Jodhpur, India.  相似文献   

4.
The instability of a stratified layer of a self-gravitating plasma has been studied to include jointly the effects of viscosity, Coriolis forces and the finite Larmor radius (FLR). For a plasma permeated by a uniform horizontal magnetic field, the stability analysis has been carried out for a transverse mode of wave propagation. The solution has been obtained through variational methods for the case when the direction of axis of rotation is along the magnetic field. The analysis for the case when the direction of rotation is transverse to the magnetic field has also been considered and the solutions for this case have been obtained through integral approach. The dispersion relations have been derived in both the cases and solved numerically. It is found that both the viscous and FLR effects have a stabilizing influence on the growth rate of the unstable mode of disturbance. Coriolis forces are found to have stabilizing influence for small wave numbers and destabilizing for large wave numbers.  相似文献   

5.
The instability of two superposed homogeneous fluids is discussed under gravitational force and uniform magnetic field. The perturbation propagation is taken simultaneously along and perpendicular to streaming motion in the horizontal plane z=0. The critical wave numberk * has been found and some special cases of interest are discussed.  相似文献   

6.
Instability of a stratified layer of a partially-ionized plasma has been investigated in the simultaneous presence of the effects of Hall currents, magnetic resistivity, finite Larmor radius (FLR), and viscosity. The ambient magnetic field is assumed to be uniform and acting along the vertical direction. The solution is shown to be characterized by a variational principle, based on it the solution has been obtained for a plasma in which the density is stratified exponentially along the vertical. It is found that the viscosity, friction with neutrals, and FLR have all stabilizing influence on the growth rate of the unstable mode of disturbance. Magnetic resistivity and Hall currents are, however, found to have a destabilizing influence.  相似文献   

7.
A discussion of gravitational instability of a finitely conducting medium with streams of variable velocity distribution is made in the presence of a uniform magnetic field. It is found that the variable streaming motion shows a destabilizing effect and affects the instability criterion only in the case of general wave propagation. For purely parallel propagation to the direction of the magnetic field and the streaming motion, the criterion is independent of the variation in the streaming motion and further the Jeans's criterion is found to remain unaffected in this case. For purely transverse propagation, the criterion is independent of any streaming motion and the Jeans's criterion remains unaffected. The criterion is further independent of the magnetic field and the finite conductivity except in the case of transverse propagation where the magnetic field exhibits a stabilizing influence in case of an infinitely conducting medium.  相似文献   

8.
A study has been made of the problem of the Rayleigh-Taylor instability of a hydromagnetic plasma of varying density to investigate the influence of the simultaneous presence of the effects of compressibility and viscosity. The solution is shown to be characterized by a variational principle. Based on the variational principle proper solutions have been obtained for a semi-infinite plasma, in which the density has a one-dimensional gradient along the direction of a uniform vertical magnetic field, confined between two planes. Both the viscosity and magnetic field are found to have a stabilizing influence. The effect of compressibility is found to be destabilizing.  相似文献   

9.
The stability of a self-gravitating streaming fluid cylinder acting upon the electromagnetic force ambient with a tenuous medium of negligible inertia but pervaded by a transverse varying fields, has been developed. The stability criterion is derived, discussed analytically and the results are verified numerically. The cylinder is purely self-gravitating unstable in small axisymmetric domain and stable in all the rest states. modes while the transverse field exterior the cylinder is stabilizing or destabilizing according to restrictions in the asymmetric modes and purely destabilizing in the symmetric one. The streaming has a strong destabilizing influence and that influence is independent of the kind of the perturbation and wavelengths. Both the streaming and the electromagnetic influences increase the gravitational axisymmetric unstable domain and shrink those of stability in the axisymmetric and non-axisymmetric perturbations. Moreover, the stabilizing character of the Lorentz force of some states, is physicaly interpreted, will not be able to suppress the gravitational instability because the gravitational instability of sufficiently long waves will persist.  相似文献   

10.
The problem of Rayleigh-Taylor instability of superposed viscous magnetized fluids through porous medium is investigated in a partially-ionized medium. The fluid has ionized and neutralized particle components interacting with collisions. The effect of surface tension on R-T instability is also included in the present problem. The magnetohydrodynamic equations are modified for finite-Larmor radius corrections which is in the form of tensor. The equations of problem are linearized and using appropriate boundary condition, general dispersion relation is derived for two superposed fluids separated by horizontal boundary. The first part of the dispersion relation gives stable mode and condition is investigated using Hurwitz conditions. The second part of the dispersion relation shows that the growth rate of unstable system is reduced due to FLR corrections, viscosity, and collisional frequency of the neutrals. The role of surface tension on the system is also discussed.  相似文献   

11.
The problem of instability arising in a composite system consisting of an infinitely conducting hydromagnetic fluid interacting through gravitational forces with one or more than one neutral gas, is investigated, allowing for a possible relative streaming between the component fluids. Instability criteria are derived for special cases of a two-component (static or relatively streaming) system and for a three-component system consisting of two gases contra-streaming in the presence of a stationary background gas. It is found that for a static system only one unstable mode exists for wave numbers less than a critical value given by the square root of the sum of the squares of the Jeans's wave numbers for individual gases. However, for a configuration, where components are endured with characteristic streaming speeds, there are present simultaneously more than one unstable modes.  相似文献   

12.
The hydromagnetic Kelvin-Helmholtz instability of two superposed fluids of different densities is studied. One of the fluids is assumed to be static with finite-resistivity and another fluid is streaming and nonconducting. The equations of the problem are linearized and the dispersion relation using relevant boundary conditions has been derived. It is found that the ratio of densities of the fluids () modifies the condition of ideal-plasma modes. The influence of on stable and unstable regions as compared to the case when is unity has been investigated and illustrated. Further, the combined effect of small finite-resistivity and different densities of the fluids is analyzed. It has been found that merely changes the constant of proportionality of the growth rate, which is obtained for the fluids of the same densities.  相似文献   

13.
The effect of finite conductivity on the Rayleigh-Taylor instability of an incompressible, viscous rotating fluid through a porous medium has been studied in the presence of a two-dimensional horizontal magnetic field. It has been shown that the solution is characterized by a variational principle. By making use of the existence of the variational principle, proper solutions have been obtained for a semi-infinite fluid in which density has a one-dimensional (exponential) vertical stratification. The dispersion relation has been derived and solved numerically. It is found that finite resistivity and porosity have a destabilizing effect on the Rayleigh-Taylor instability while rotation has a stabilizing effect.  相似文献   

14.
The occurrence of oscillatory mode for magnetized fluid in the presence of vertical and horizontal temperature gradients has been studied. In both the cases (highly viscous and low-viscosity fluids) the occurrence of oscillatory solutions to the Bénard problem has been investigated as a function of Prandtl number, magnetic number, resistivity number and the ratio of applied temperature gradients. It is clear that the high Prandtl numbers completely change the character of instability and of the solutions as compared to those appropriate for low Prandtl-number fluids. It has also been shown that small horizontal temperature gradient readily generate oscillatory modes only for real frequencies. The critical Rayleigh number is higher than the critical Rayleigh number of non-magnetized fluid in both the cases-i.e., highly viscous fluid and one of moderate viscosity.  相似文献   

15.
16.
The Rayleigh-Taylor instability of the plane interface separating the two partially-ionized superposed fluids through porous medium is analysed. The effect of variable horizontal magnetic field, surface tension and rotation along the vertical axis are also incorporated. The relevant linearized perturbation equations are taken and using normal mode analysis the general relation is obtained from which the dispersion relation for two superposed fluids of different densities is derived. It is found that the surface tension and horizontal magnetic field have the stabilizing effect on the R-T-instability. The condition of instability remains unaffected by the permeability of porous medium, presence of neutral particles in the fluids and rotation.It is concluded that the system is unstable only for those positive wave numbers which are less than certain critical value in case of an adverse density gradient.  相似文献   

17.
The one-dimensional non-linear equations for a viscous fluid with finite thermal conductivity are solved to get an exact solution for a steady vertical flow. The stability of such a steady flow is examined to find that the viscosity has a very pronounced stabilizing influence on convective and acoustic modes.  相似文献   

18.
The stability of ballooning modes in coronal arcades is studied using linear visco-resistive MHD. Rigid wall conditions are adopted for modelling the photospheric line-tying of the magnetic field. The full Braginskii viscosity stress tensor is used and particular attention is given to the effect of the viscosity coefficient 3 which was left out of an earlier investigation by Van der Linden, Goossens, and Hood (1987, 1988). The numerical results for shearless arcades show that the coefficient 3 has a stabilizing effect. However, for realistic values of the equilibrium quantities the stabilizing effect by 3 can be neglected in comparison with the strong stabilizing effect of the perpendicular viscosity. The effect of magnetic field strength and mode number on stability are determined. In particular it is found that there exists a critical field strength for every mode number such that the mode is stable for weaker fields and unstable for stronger fields.  相似文献   

19.
We numerically study the tidal instability of accretion discs in close binary systems using a two-dimensional SPH code. We find that the precession rate of tidally unstable, eccentric discs does not only depend upon the binary mass ratio q . Although the (prograde) disc precession rate increases with the strength of the tidal potential, we find that increasing the shear viscosity ν also has a significant prograde effect. Increasing the disc temperature has a retrograde impact upon the precession rate.   We find that motion relative to the binary potential results in superhump-like, periodic luminosity variations in the outer reaches of an eccentric disc. The nature and location of the luminosity modulation are functions of ν. Light curves most similar to observations are obtained for ν values appropriate for a dwarf nova in outburst.   We investigate the thermal–tidal instability model for superoutburst. A dwarf nova outburst is simulated by instantaneously increasing ν, which causes a rapid radial expansion of the disc. Should the disc encounter the 3: 1 eccentric inner Lindblad resonance and become tidally unstable, then tidal torques become much more efficient at removing angular momentum from the disc. The disc then shrinks and M d increases. The resulting increase in disc luminosity is found to be consistent with the excess luminosity of a superoutburst.  相似文献   

20.
The gravitational instability of an incompressible, infinitely conducting plasma layer of finite thickness surrounded a non-conducting matter has been investigated taking into account the effect of the finite Larmor radius. The magnetic field is assumed to be directed parallel to the interfaces. Only the perturbations transverse to the magnetic field are considered, though both the symmetric and asymmetric nature of the perturbations are taken into account. Using the normal mode technique, dispersion relations are obtained.It is found that the finite larmor radius has, in general, a stabilizing influence on the configuration. Even when the system is thoroughly unstable, it has been shown that there exists a critical value of the wave-number, such that the motion is stabilized for wave-numbers of perturbations exceeding this critical value.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号