首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Current methods for calculation of long-term probabilities for the recurrence of large earthquakes on specific fault segments are based upon models of the faulting process that implicitly assume constant stress rates during the interval separating earthquakes and instantaneous failure at a critical stress threshold. However, observations indicate that the process of stress recovery following an earthquake involves rate variations at all time scales in addition to stress steps caused by nearby earthquakes. Additionally, the existence of foreshocks, aftershocks and possible precursory processes suggest that there may be significant time dependence of the earthquake nucleation process. A method for determining the conditional probabilities for earthquake occurrence under conditions of irregular stressing is developed that could be useful at all time scales including those pertinent to short-and intermediate-term prediction. Used with models for earthquake occurrence at a stress threshold, the addition of variable stressing introduces a simple scaling of the conditional probabilities by stress level and stress rate. A model for the time-dependent nucleation of earthquake slip has been proposed recently that is based upon laboratory observations of fault strength. This failure criterion results in large but relatively short duration changes in the probability of earthquake recurrence particularly following stress steps. Applied to populations of earthquakes the models predicts a 1/t decay of seismicity following stress steps as observed for aftershocks and for frequency of foreshock-mainshock pairs. The model suggests that variations of seismicity rates of small earthquakes in the nucleation zone of the expected earthquake directly indicate variations in probability of recurrence of the large earthquake.  相似文献   

2.
—?We introduce a conceptual model for the in-plane physics of an earthquake fault. The model employs cellular automaton techniques to simulate tectonic loading, earthquake rupture, and strain redistribution. The impact of a hypothetical crustal elastodynamic Green's function is approximated by a long-range strain redistribution law with a r ?p dependance. We investigate the influence of the effective elastodynamic interaction range upon the dynamical behaviour of the model by conducting experiments with different values of the exponent (p). The results indicate that this model has two distinct, stable modes of behaviour. The first mode produces a characteristic earthquake distribution with moderate to large events preceeded by an interval of time in which the rate of energy release accelerates. A correlation function analysis reveals that accelerating sequences are associated with a systematic, global evolution of strain energy correlations within the system. The second stable mode produces Gutenberg-Richter statistics, with near-linear energy release and no significant global correlation evolution. A model with effectively short-range interactions preferentially displays Gutenberg-Richter behaviour. However, models with long-range interactions appear to switch between the characteristic and GR modes. As the range of elastodynamic interactions is increased, characteristic behaviour begins to dominate GR behaviour. These models demonstrate that evolution of strain energy correlations may occur within systems with a fixed elastodynamic interaction range. Supposing that similar mode-switching dynamical behaviour occurs within earthquake faults then intermediate-term forecasting of large earthquakes may be feasible for some earthquakes but not for others, in alignment with certain empirical seismological observations. Further numerical investigation of dynamical models of this type may lead to advances in earthquake forecasting research and theoretical seismology.  相似文献   

3.
One of the most challenging problems in the estimation of seismic hazard is the ability to quantify seismic activity. Empirical models based on the available earthquake catalogue are often used to obtain activity of source regions. The major limitation with this approach is the lack of sufficient data near a specified source. The non-availability of data poses difficulties in obtaining distribution of earthquakes with large return periods. Such events recur over geological time scales during which tectonic processes, including mantle convection, formation of faults and new plate boundaries, are likely to take place. The availability of geometries of plate boundaries, plate driving forces, lithospheric stress field and GPS measurements has provided numerous insights on the mechanics of tectonic plates. In this article, a 2D finite element model of Indo-Australian plate is developed with the focus of representing seismic activity in India. The effect of large scale geological features including sedimentary basins, fold belts and cratons on the stress field in India is explored in this study. In order to address long term behaviour, the orientation of stress field and tectonic faults of the present Indo- Australian plate are compared with a reconstructed stress field from the early Miocene (20 Ma).  相似文献   

4.
—There is growing evidence that some proportion of large and great earthquakes are preceded by a period of accelerating seismic activity of moderate-sized earthquakes. These moderate earthquakes occur during the years to decades prior to the occurrence of the large or great event and over a region larger than its rupture zone. The size of the region in which these moderate earthquakes occur scales with the size of the ensuing mainshock, at least in continental regions. A number of numerical simulation studies of faults and fault systems also exhibit similar behavior. The combined observational and simulation evidence suggests that the period of increased moment release in moderate earthquakes signals the establishment of long wavelength correlations in the regional stress field. The central hypothesis in the critical point model for regional seismicity is that it is only during these time periods that a region of the earth’s crust is truly in or near a "self-organized critical" (SOC) state, such that small earthquakes are capable of cascading into much larger events. The occurrence of a large or great earthquake appears to dissipate a sufficient proportion of the accumulated regional strain to destroy these long wavelength stress correlations and bring the region out of a SOC state. Continued tectonic strain accumulation and stress transfer during smaller earthquakes eventually re-establishes the long wavelength stress correlations that allow for the occurrence of larger events. These increases in activity occur over longer periods and larger regions than quiescence, which is usually observed within the rupture zone of a coming large event. The two phenomena appear to have different physical bases and are not incompatible with one another.  相似文献   

5.
The magnitude of shear stress in the lithosphere is bounded from below by the apparent stress and stress drop during intraplate earthquakes. Apparent stresses and stress drops for a number of mid-plate earthquakes are calculated from the earthquake magnitude, SH wave amplitude spectra, and estimates of the length of the fault zone. Apparent stresses vary between 0.1 and 2 bars, ifm b is used as a measure of seismic energy, and stress drops lie between 2 and 70 bars. There is no systematic difference in either apparent stress or stress drop between these intraplate events and typical plate boundary earthquakes. These bounds on intraplate shear stresses are consistent with the inference from current models of plate tectonic driving forces that regional stress differences in the plates are typically on the order of 100 bars. The highest stress drops measured for midplate earthquakes under this model represent nearly total release of local tectonic stress.  相似文献   

6.
Numerical simulations of complex earthquake cycles are conducted using a two-degree-of-freedom spring-block model with a rate- and state-friction law, which has been supported by laboratory experiments. The model consisted of two blocks coupled to each other and connected by elastic springs to a constant-velocity, moving driver. By widely and systematically varying the model parameters, various slip patterns were obtained, including the periodic recurrence of seismic and aseismic slip events, and several types of chaotic behaviour. The transition in the slip pattern from periodic to chaotic is examined using bifurcation diagrams. The model system exhibits typical period-doubling sequences for some parameter ranges, and attains chaotic motion. Simple relationships are found in iteration maps of the recurrence intervals of simulated earthquakes, suggesting that the simulated slip behaviour is deterministic chaos. Time evolutions of the cumulative slip distance in chaotic slip patterns are well approximated by a time-predictable model. In some cases, both seismic and aseismic slip events occur at a block, and aseismic slip events complicate the earthquake recurrence patterns.  相似文献   

7.
Mechanisms of seismic quiescences   总被引:7,自引:0,他引:7  
In the past decade there have been major advances in understanding the seismic cycle in terms of the recognition of characteristic patterns of seismicity over the entire tectonic loading cycle. The most distinctive types of patterns are seismic quiescences, of which three types can be recognized:post-seismic quiescence, which occurs in the region of the rupture zone of an earthquake and persists for a substantial fraction of the recurrence time following the earthquake,intermediate-term quiescences, which appear over a similar region and persist for several years prior to large plate-rupturing earthquakes, andshort-term quiescences, which are pronounced lulls in premonitory swarms that occur in the hypocentral region hours or days before an earthquake. Although the frequency with which intermediate-term and short-term quiescences precede earthquakes is not known, and the statistical significance of some of the former has been challenged, there is a need, if this phenomena is to be considered a possibly real precursor, to consider physical mechanisms that may be responsible for them.The characteristic features of these quiescences are reviewed, and possible mechanisms for their cause are discussed. Post-seismic quiescence can be readily explained by any simple model of the tectonic loading cycle as due to the regional effect of the stress-drop of the previous principal earthquake. The other types of quiescence require significant modification to any such simple model. Of the possibilities considered, only two seem viable in predicting the observed phenomena, dilatancy hardening and slip weakening. Intermediate-term quiescences typically occur over a region equal to or several times the size of the rupture zone of the later earthquake and exhibit a relationship between the quiescence duration and size of the earthquake: they thus involve regional hardening or stress relaxation and agree with the predictions of the dilatancy-diffusion theory. Short-term quiescences, on the other hand, are more likely explained by fault zone dilatancy hardening and/or slip weakening within a small nucleation zone. Because seismicity is a locally relaxing process, seismicity should follow a behaviour known in rock mechanics as the Kaiser effect, in which only a very slight increase in strength, due to dilatancy hardening or decrease in stress due to slip weakening, is required to cause quiescence. This is in contrast to other precursory phenomena predicted by dilatancy, which require large dilatant strains and complete dilatancy hardening.Lamont-Doherty Geological Observatory  相似文献   

8.
The recurrence interval statistics for regional seismicity follows a universal distribution function, independent of the tectonic setting or average rate of activity (Corral, 2004). The universal function is a modified gamma distribution with power-law scaling of recurrence intervals shorter than the average rate of activity and exponential decay for larger intervals. We employ the method of Corral (2004) to examine the recurrence statistics of a range of cellular automaton earthquake models. The majority of models has an exponential distribution of recurrence intervals, the same as that of a Poisson process. One model, the Olami-Feder-Christensen automaton, has recurrence statistics consistent with regional seismicity for a certain range of the conservation parameter of that model. For conservation parameters in this range, the event size statistics are also consistent with regional seismicity. Models whose dynamics are dominated by characteristic earthquakes do not appear to display universality of recurrence statistics.  相似文献   

9.
Spatial distribution of sources of strong and large earthquakes on the Xiaojiang fault zone in eastern Yunnan is studied according to historical earthquake data. 7 segments of relatively independent sources or basic units of rupture along the fault zone have been identified preliminarily. On every segment, time intervals between main historical earthquakes are generally characterized by “time-predictable” recurrence behavior with indetermination. A statistic model for the time intervals between earthquakes of the fault zone has been preliminarily established. And a mathematical method has been introduced into this paper to reckon average recurrence interval between earthquakes under the condition of having known the size of the last event at a specific segment. Based on these, ranges of the average recurrence intervals given confidence have been estimated for events of various sizes on the fault zone. Further, the author puts forward a real-time probabilistic model that is suitable to analyze seismic potential for individual segments along a fault zone on which earthquake recurrence intervals have been characterized by quasi-time-predictable behavior, and applies this model to calculate conditional probabilities and probability gains of earthquake recurring on the individual segments of the Xiaojiang fault zone during the period from 1991 to 2005. As a consequence, it has shown that two parts of this fault zone, from south of Dongchuan to Songming and from Chengjiang to Huaning, have relatively high likelihoods for strong or large earthquake recurring in the future. The Chinese version of this paper appeared in the Chinese edition ofActa Seismologica Sinica,15, 322–330, 1993.  相似文献   

10.
The long-term earthquake prediction from 2021 to 2030 is carried out by researching the active tectonic block boundary zones in the Chinese mainland. Based on the strong earthquake recurrence model, the cumulative probability of each target fault in the next 10 years is given by the recurrence period and elapsed time of each fault, which are adopted from relevant studies such as seismological geology, geodesy, and historical earthquake records. Based on the long-term predictions of large earthquakes throughout the world, this paper proposes a comprehensive judgment scheme based on the fault segments with the seismic gap, motion strongly locked, sparse small-moderate earthquakes, and apparent Coulomb stress increase. This paper presents a comprehensive analysis of the relative risk for strong earthquakes that may occur in the coming 10 years on the major faults in the active tectonic block boundary zones in the Chinese mainland. The present loading rate of each fault is first constrained by geodetic observations; the cumulative displacement of each fault is then estimated by the elapsed time since the most recent strong earthquake.  相似文献   

11.
Seismic events that occurred during the past half century in the Tellian Atlas, North Africa, are used to establish fundamental seismic empirical relations, tying earthquake magnitude to source parameters (seismic moment, fault plane area, maximal displacement along the fault, and fault plane length). Those empirical relations applied to the overall seismicity from 1716 to present are used to transform the magnitude (or intensity) versus time distribution into (1) cumulative seismic moment versus time, and (2) cumulative displacements versus time. Both of those parameters as well as the computed seismic moment rate, the strain rate along the Tellian Atlas strike, and various other geological observations are consistent with the existence, in the Tellian Atlas, of three distinct active tectonic blocks. These blocks are seismically decoupled from each other, thus allowing consideration of the seismicity as occurring in three different distinct seismotectonic blocks. The cumulative displacement versus time from 1900 to present for each of these tectonic blocks presents a remarkable pattern of recurrence time intervals and precursors associated with major earthquakes. Indeed, most major earthquakes that occurred in these three blocks might have been predicted in time. The Tellian Atlas historical seismicity from the year 881 to the present more substantially confirms these observations, in particular for the western block of the Tellian Atlas. Theoretical determination of recurrence time intervals for the Tellian Atlas large earthquakes using Molnar and Kostrov formalisms is also consistent with these observations. Substantial observations support the fact that the western and central Tellian Atlas are currently at very high seismic risk, in particular the central part. Indeed, most of the accumulated seismic energy in the central Tellian Atlas crust has yet to be released, despite the occurrence of the recent destructive May 2003 Boumerdes earthquake (M w = 6.8). The accumulated seismic energy is equivalent to a magnitude 7.6 earthquake. In situ stress and geodetic measurements, as well as other geophysical field data measurements, are now required to practically check the validity of those observations.  相似文献   

12.
中国构造应力场与大震复发周期关系的数值模拟   总被引:6,自引:0,他引:6       下载免费PDF全文
由古地震资料推算得到的中国境内各活动断裂带上大震复发周期值存在很大差异,对于这种差异可从构造应力产生的弹性应变能分布去探讨其原因。经过对中国及邻区边界条件和受力方式进行较详细的分析后,先以最大主压应力方向为判据,用有限元数值模拟方法反演中国及邻区的板块边界力和区内的构造应力场,然后分析计算应变能随离板块边界的距离增大所呈现的衰减规律,由此换算出要达到相同应变能(一次地震)各地所需的积累时间,并将其与用古地震方法得到的一些已知断层带大震复发周期进行对比。结果表明用应力衰减图象能解释不同地区大震复发周期的显著差异  相似文献   

13.
14.
鲜水河断裂带的应力积累与释放   总被引:1,自引:1,他引:1       下载免费PDF全文
黄福明  杨智娴 《地震学报》1987,9(2):128-142
本文根据历史地震(Ms6.0)的资料,研究了鲜水河断裂带的地震活动性,并利用断层的位错模式进一步研究该断裂带的应力积累和释放过程.结果表明,该断裂带的强震活动大致以道孚为界,形成北西和南东两个活动地段,呈现南北交替活动的特征.地震能量的这种交替释放似具有准周期性质,Ms7.0级地震的平均复发周期为27.6年.给出该断裂带在三个不同时间段(1700-1811,1816-1967,1816-1982)强震断层作用引起的应力释放图象,讨论了前两个时间段地震应力场对其后发生的第一个大地震的重要影响.计算了1893年以来在断裂带南东段(相对闭锁段)的应力积累,示出相应的最大剪应力和流体静应力等值线图.最后,根据应力积累、附加应力变化、地震活动规律和应变释放曲线特征,估计了鲜水河断裂带的地震趋势.认为在本世纪末,在断裂带南东段的(1)康定-磨西段或(2)道孚-乾宁段或(3)乾宁-康定段将可能发生 Ms=7.40.3地震.   相似文献   

15.
The Xianshuihe Fault, the boundary of Bayan Har active tectonic block and Sichuan-Yunnan active tectonic block, is one of the most active fault zones in the world. In the past nearly 300 years, 9 historical earthquakes of magnitude ≥ 7 have been recorded. Since 2008, several catastrophic earthquakes, such as Wenchuan MS8 earthquake, Yushu MS7.1 earthquake and Lushan MS7 earthquake, have occurred on the other Bayan Har block boundary fault zones. However, only the Kangding MS6.3 earthquake in 2014 was documented on the Xianshuihe Fault. Thus, the study of surface deformation and rupture behavior of large earthquakes in the late Quaternary on the Xianshuihe Fault is of fundamental importance for understanding the future seismic risk of this fault, and even the entire western Sichuan region. On the basis of the former work, combined with our detailed geomorphic and geological survey, we excavated a combined trench on the Qianning segment of Xianshuihe fault zone which has a long elapse time. Charcoal and woods in the trench are abundant. 30 samples were dated to constrain the ages of the paleoseismic events. Five events were identified in the past 9  000 years, whose ages are:8070-6395 BC, 5445-5125 BC, 4355-4180 BC, 625-1240 AD and the Qianning earthquake in 1893. The large earthquake recurrence behavior on this segment does not follow the characteristic earthquake recurrence model. The recurrence interval is 1000~2000 years in early period and in turn there is a quiet period of about 5 000 years after 4355-4180 BC event. Then it enters the active period again. Two earthquakes with surface rupture occurred in the past 1000 years and the latest two earthquakes may have lower magnitude. The left-lateral coseismic displacement of the 1893 Qianning earthquake is about 2.9m.  相似文献   

16.
在考虑地震失稳的滑动-弱化特征后,研究了估计大地震重复间隔的问题,建议了一种计算大地震重复间隔的方法,给出了计算复发间隔的公式。同时,应用这个方法计算了海原断裂带、华山山前断裂带、贺兰山东麓断裂带和小江西支断裂带的8级大震复发间隔,它们分别为3466年、2043年、2688年和975年。这些数值与古地震研究给出的实际古地震复发间隔甚为一致,说明建议的计算方法可以应用于活动断裂地震复发时间和地震危险性的估计。  相似文献   

17.
板内大震原地准周期复发间隔的概率分布   总被引:7,自引:1,他引:6       下载免费PDF全文
以中国大陆大震原地复发资料为基础,采用比较合理的方法确定了板内大震在其活跃期内原地准确周期复发的概率密度函数,所得结果表明,板内大震在重复行为上具有板间特征地震相类似的分布特征,两者的差异在于,板内大震复发间隔的变分系数COV为0.26,而板间特征地震的该值为0.215,即板内大震的重复间隔相对稍显离散。  相似文献   

18.
加卸载响应比与震前应力积累模式研究   总被引:1,自引:0,他引:1       下载免费PDF全文
余怀忠  程佳  万永革 《地震学报》2010,32(5):517-528
加卸载响应比是一种中短期地震预测方法.按照该方法,通常在大地震发生之前加卸载响应比时间序列会出现明显的异常高值.早先的研究发现,震前临界区域的选择对加卸载响应比的计算有很大影响.我们发展了一种使用震前应力积累区域取代传统圆形区域计算加卸载响应比的算法,提高了加卸载响应比的地震预测能力,其震前库仑应力场分布采用地震断层位错模型将同震滑移量反向滑移的方法计算.美国南加州近20年来发生的4次M6.5地震以及2008年中国汶川MS8.0地震的研究事实表明,使用库仑应力算法得到的加卸载响应比时间序列,前兆变化相对于圆形区域算法更为明显,且对目标地震的位置、震级预测更为明确.库仑应力算法的这一独特性质,使我们可以针对不同地区的活动构造特征对未来地震发生的地点和大小提供信息和约束.  相似文献   

19.
定量研究地震滑坡物质河流卸载时间对理解地震与造山带地貌演化之间的关系有着十分重要的意义.本文以青藏高原东缘龙门山构造带内岷江流域为例,定量估算了2008年汶川大地震滑坡物质的河流卸载时间.研究结果表明,如果以位于龙门山构造带内的岷江河段现有搬运能力计算,并且岷江可以有效地搬运汶川地震滑坡物质,地震滑坡物质至少在3100 yr内被岷江卸载出龙门山.而龙门山构造带中段类似2008年汶川Ms8.0级大地震的复发周期约为3000 yr左右,暗示大地震所产生的滑坡物质量可以在大地震复发周期内基本上被侵蚀和剥蚀所平衡,并被卸载出龙门山构造带. 因此,我们推断:除了周期性大地震造成的地表抬升的累积外,龙门山地区地震及其它地表过程所产生的剥蚀物质通过河流快速卸载驱动了地壳均衡反弹和深部物质上涌,形成了青藏高原东缘的高陡地形梯度带. 相关的地球物理证据表明在青藏高原东缘可能存在由地表快速剥蚀(或侵蚀)所引发的地球深部地幔软流圈物质上涌.  相似文献   

20.
Because of the viscoelastic behaviour of the earth, accumulation of elastic strain energy by tectonic loading and release of such energy by earthquake fault slips at subduction zones may take place on different spatial scales. If the lithospheric plate is acted upon by distant tectonic forces, strain accumulation must occur in a broad region. However, an earthquake releases strain only in a region comparable to the size of the rupture area. A two-dimensional finite-element model of a subduction zone with viscoelastic rheology has been used to investigate the coupling of tectonic loading and earthquake fault slips. A fault lock-and-unlock technique is employed so that the amount of fault slip in an earthquake is not prescribed, but determined by the accumulated stress. The amount of earthquake fault slip as a fraction of the total relative plate motion depends on the relative sizes of the earthquake rupture area and the region of tectonic strain accumulation, as well as the rheology of the rock material. The larger the region of strain accumulation is compared to the earthquake rupture, the smaller is the earthquake fault slip. The reason for the limited earthquake fault slip is that the elastic shear stress in the asthenosphere induced by the earthquake resists the elastic rebound of the overlying plate. Since rapid permanent plate shortening is not observed at subduction zones, there must be either strain release over a large region or strain accumulation over a small region over earthquake cycles. The former can be achieved only by significant aseismic fault slip between large subduction earthquakes. The most likely mechanism for the latter is the accumulation of elastic strain around isolated locked asperities of the fault, which requires significant aseismic fault slip between asperities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号