首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
During the field cruises of the Indian Ocean Experiment (INDOEX) extensive measurements on the atmospheric chemical and aerosol composition are undertaken to study the long-range transport of air pollution from south and southeast Asia towards the Indian Ocean during the dry monsoon season in 1998 and 1999. The present paper discusses the temporal and spatial variations in aerosols and aerosol forcing during the winter monsoon season (January-March) for INDOEX first field phase (FFP) in 1998 and INDOEX intensive field phase (IFP) in 1999. An interactive chemistry/aerosol model (LMDZ.3.3) is used to investigate the variation in the spatial distribution of tropospheric sulphate aerosols during 1998 and 1999. The model results depict major enhancement in the sulphate aerosol concentrations, radiative forcing (RF) and optical depth over the Indian subcontinent and adjoining marine areas between INDOEX-FFP and IFP. A significant increase in transport of sulphate aerosols from the continents to the Indian Ocean region has also been simulated during the winter monsoon in 1999. The mean RF over INDOEX-FFP in 1998 is found to be ?1.2 Wm–2 while it increased to ?1.85 Wm–2 during INDOEX-IFP in 1999. Model results reveal a mean sulphate aerosol optical depth (AOD) of 0.08 and 0.14 over Indian subcontinent during 1998 and 1999, respectively. The model results suggest that elevated AOD downwind of source regions in India can significantly affect the regional air quality and adjoining marine environments.  相似文献   

2.
Mass concentration and mass size distribution of total (composite) aerosols near the surface are essential inputs needed in developing aerosol models for radiative forcing estimation as well as to infer the environment and air quality. Using extensive measurements onboard the oceanographic research vessel, Sagar Kanya, during its cruise SK223B in the second phase of the ocean segment of the Integrated Campaign for Aerosols, gases and Radiation Budget (ICARB), the spatial distribution of the mass concentration and mass size distribution of near-surface aerosols are examined for the first time over the entire Arabian Sea, going as far as 58°E and 22°N, within a span of 26 days. In general, the mass concentrations (M T ) were found to be low with the mean value for the entire Arabian Sea being 16.7 ± 7 μg m?3; almost 1/2 of the values reported in some of the earlier campaigns. Coarse mode aerosols contributed, on an average, 58% to the total mass, even though at a few pockets accumulation mode contribution dominated. Spatially, significant variations were observed over central and northern Arabian Sea as well as close to the west coast of India. In central Arabian Sea, even though the M T was quite low, contribution ofs accumulation aerosols to the total mass concentration was greater than 50%. Effective radius, a parameter important in determining scattering properties of aerosol size distribution, varied between 0.07 and 0.4 μm with a mean value of 0.2 μm. Number size distributions, deduced from the mass size distributions, were approximated to inverse power-law form and the size indices (ν) were estimated. It was found to vary in the range 3.9 to 4.2 with a mean value of 4.0 for the entire oceanic region. Extinction coefficients, estimated using the number-size distributions, were well-correlated with the accumulation mode mass concentration with a correlation coefficient of 0.82.  相似文献   

3.
Mass loading and chemical composition of atmospheric aerosols over the Arabian Sea during the pre-monsoon months of April and May have been studied as a part of the Integrated Campaign for Aerosols, gases and Radiation Budget (ICARB). These investigations show large spatial variabilities in total aerosol mass loading as well as that of individual chemical species. The mass loading is found to vary between 3.5 and 69.2 μg m?3, with higher loadings near the eastern and northern parts of Arabian Sea, which decreases steadily to reach its minimum value in the mid Arabian Sea. The decrease in mass loading from the coast of India towards west is estimated to have a linear gradient of 1.53 μg m?3/° longitude and an e?1 scale distance of ~2300 km. SO 4 2? , Cl? and Na+ are found to be the major ionic species present. Apart from these, other dominating watersoluble components of aerosols are NO 3 ? (17%) and Ca2+ (6%). Over the marine environment of Arabian Sea, the non-sea-salt component dominates accounting to ~76% of the total aerosol mass. The spatial variations of the various ions are examined in the light of prevailing meteorological conditions and airmass back trajectories.  相似文献   

4.
Collocated measurements of the optical and physical properties of columnar and near-surface aerosols were carried out from Manora Peak, Nainital (a sparsely inhabited, high altitude location, ~2 km above mean sea level, in the Himalayas), during the Integrated Campaign for Aerosols, gases and Radiation Budget (ICARB) under the Geosphere Biosphere Programme of the Indian Space Research Organization (ISRO-GBP). Under this, observational data of spectral aerosol optical depths (AOD), mass concentration of aerosol black carbon (M B ), mass concentration (M T ) and number concentration (N t ) of composite (total) aerosols near the surface and meteorological parameters were collected during the period February 15 to April 30, 2006. Though very low (<0.1 at 500 nm) AODs were observed during clear days, as much as a four-fold increase was seen on hazy days. The Ångström exponent (α), deduced from the spectral AODs, revealed high values during clear days, while on hazy days α was low; with an overall mean value of 0.69 ± 0.06 for the campaign period. BC mass concentration varied between 0.36 and 2.87 μg m?3 and contributed in the range 0.7 to 1.8% to the total aerosol mass. Total aerosol number concentration and BC mass concentration showed diurnal variation with a midnight and early morning minimum and a late afternoon maximum; a pattern quite opposite to that seen in low altitude stations. These are attributed to the dynamics of the atmospheric boundary layer.  相似文献   

5.
Tibetan Plateau (TP) is the highest and most extensive plateau in the world and has been known as the roof of the world, and it is sensitive to climate change. The researches of CO2 fluxes (F C) in the TP region play a significant role in understanding regional and global carbon balance and climate change. Eddy covariance flux measurements were conducted at three sites of south-eastern TP comprising Dali (DL, cropland ecosystem), LinZhi (LZ, alpine meadow ecosystem) and Wenjiang (WJ, cropland ecosystem); amongst those DL and LZ are located in plateau region, while WJ is in plain region. Dynamics of F C and influences of vegetation, meteorological (air temperature, photosynthetically active radiation, soil temperature and soil water content) and terrain factors (altitude) were analysed on the basis of data taken during 2008. The results showed that, in the cool sub-season (March, April, October and December), carbon sink appeared even in December with fluxes of (?0.021 to ?0.05) mg CO2 m?2 s?1 and carbon source only in October (0.03 ± 0.0048) mg CO2 m?2 s?1 in DL and WJ site. In LZ site, carbon sink was observed in April: (?0.036 ± 0.0023) mg COm?2 s?1 and carbon sources in December and March (0.008–0.010 mg CO2 m?2 s?1). In the hot sub-season (May–August), carbon source was observed only in May with (0.011 ± 0.0022), (0.104 ± 0.0029) and (0.036 ± 0.0017) fluxes in LZ, DL and WJ site, respectively, while carbon sinks with (?0.021 ± 0.0041), (?0.213 ± 0.0007) and (?0.110 ± 0.0015) mg CO2 m?2 s?1 fluxes in LZ, DL, and WJ, respectively. Comparing with plain region (WJ), carbon sinks in plateau region (DL and LZ) lasted for a longer time, and the absorption sum was large and up to (–357.718 ± 0.0054) and (?371.111 ± 0.0039) g C m?2 year?1, respectively. The LZ site had the weakest carbon sink with (?178.547 ± 0.0070) g C m?2 year?1. Multivariate analysis of covariance showed that altitude (AL) as an independent factor explained 39.5 % of F C (P < 0.026). F C had a quadratic relationship with Normalized difference vegetation index (NDVI) (R 2 ranges from 0.485 to 0.640 for three sites), an exponential relationship with soil temperature at 5-cm depth (ST 5) at night time and a quadratic relationship with air temperature (T a) at day time. Path analysis indicated that photosynthetically active radiation (PAR), sensible heat fluxes (H) and other factors all had direct or indirect effects on F C in all of the three tested sites around the south-eastern TP.  相似文献   

6.
The planet's radiation budget includes practically all energy exchange between the Sun, the Earth, and space, and so is a fundamental factor of climate. The terms of this budget, observable only from space, are determined from sampled direct measurements of the solar and terrestrial radiation fields. On the contrary, however, it should be remembered that energy exchange between the Earth's surface and its atmosphere involves not only radiative but also non-radiative energy fluxes. Nevertheless, only observations from space can provide satisfactory global coverage of the different energy fluxes that determine climate at the Earth's surface, by way of indirect retrievals of radiative fluxes at the surface and at different heights in the atmosphere. We describe the methods, applied to measurements made with a variety of instruments on board different artificial satellites, that have led to our present knowledge of the Earth's radiation budget (ERB) at the “top of the atmosphere”: global annual mean values of the ERB terms, its annual cycle, its geographical structure, and its variations. We know that solar irradiance, averaged over the globe and the year, varies by only 0.1% with the solar activity cycle; we also know that planetary (Bond) albedo is close to 0.3, that the global annual mean emission of thermal infrared radiation to space is close to 240 Wm?2, and that these terms exhibit a weak but well determined annual cycle. We also know that cloud cover plays a major role in the radiation budget, both in the “shortwave” domain (global SW “cloud radiative forcing” –50 Wm?2) and in the “longwave” domain (+20 Wm?2), thus a net forcing of –30 Wm?2. Successive satellite missions give consistent results for the shape, the phase, and the amplitude of the annual cycle of the planetary radiation balance. However, the different estimates of its annual mean absolute value remain uncertain, not differing significantly from zero, although generally excessively positive. We also rapidly review the methods used to determine the surface radiation budget as well as that of the atmosphere. For the planetary (TOA) radiation budget, we examine to what extent interannual variations and interdecadal trends have been or could be detected. We conclude with a review of projects under way. We also discuss priorities for future efforts, considering in particular, on the one hand (Ringer, 1997), the need to better quantify the factors that govern climate sensitivity to modifications of the atmosphere's radiative properties, on the other hand, the importance of monitoring the evolution of the present disequilibrium situation.  相似文献   

7.
Measurements of the broadening of pulsar pulses by scattering in the interstellar medium are presented for a complete sample of 100 pulsars with Galactic longitudes from 6° to 311° and distances to three kiloparsec. The dependences of the scattering on the dispersion measure (τ sc(DM) ∝ DMα), frequency (τ sc(v) ∝ v ?γ ), Galactic longitude, and distance to the pulsar are analyzed. The dependence of the scattering on the dispersion measure in the near-solar neighbourhood can be represented by the power law τ sc(DM) ∝ DM2.2±0.1). Measurements at the low frequencies 111, 60, and 40 MHz and literature data are used to derive the frequency dependence of the scattering (τ sc(v) ∝ V ?γ ) over a wide frequency interval (covering a range of less than 10: 1) with no fewer than five frequencies. The index for the frequency dependence, γ = 4.1 ± 0.3, corresponds to a normal distribution for inhomogeneities in the turbulence in the scattering medium. Based on an analysis of the dependence of the scattering on the distance to the pulsar and on Galactic longitude, on average, the turbulence level C n 2 is the same in all directions and at all distances out to about three kpc, testifying to the statistical homogeneity of the turbulence of the scattering medium in the near-solar region of the Galaxy.  相似文献   

8.
Arsenic (As) and fluoride (F?) in groundwater are increasing global water quality and public health concerns. The present study provides a deeper understanding of the impact of seasonal change on the co-occurrence of As and F?, as both contaminants vary with climatic patterns. Groundwater samples were collected in pre- and post-monsoon seasons (n = 40 in each season) from the Brahmaputra flood plains (BFP) in northeast India to study the effect of season on As and F? levels. Weathering is a key hydrogeochemical process in the BFP and both silicate and carbonate weathering are enhanced in the post-monsoon season. The increase in carbonate weathering is linked to an elevation in pH during the post-monsoon season. A Piper diagram revealed that bicarbonate-type water, with Na+, K+, Ca2+, and Mg2+ cations, is common in both seasons. Correlation between Cl? and NO3 ? (r = 0.74, p = 0.01) in the post-monsoon indicates mobilization of anthropogenic deposits during the rainy season. As was within the 10 µg L?1 WHO limit for drinking water and F? was under the 1.5 mg L?1 limit. A negative correlation between oxidation reduction potential and groundwater As in both seasons (r = ?0.26 and ?0.49, respectively, for pre-monsoon and post-monsoon, p = 0.05) indicates enhanced As levels due to prevailing reducing conditions. Reductive hydrolysis of Fe (hydr)oxides appears to be the predominant process of As release, consistent with a positive correlation between As and Fe in both seasons (r = 0.75 and 0.73 for pre- and post-monsoon seasons, respectively, at p = 0.01). Principal component analysis and hierarchical cluster analysis revealed grouping of Fe and As in both seasons. F? and sulfate were also clustered during the pre-monsoon season, which could be due to their similar interactions with Fe (hydr)oxides. Higher As levels in the post-monsoon appears driven by the influx of water into the aquifer, which drives out oxygen and creates a more reducing condition suitable for reductive dissolution of Fe (hydr)oxides. An increase in pH promotes desorption of As oxyanions AsO4 3? (arsenate) and AsO3 3? (arsenite) from Fe (hydr)oxide surfaces. Fluoride appears mainly released from F?-bearing minerals, but Fe (hydr)oxides can be a secondary source of F?, as suggested by the positive correlation between As and F? in the pre-monsoon season.  相似文献   

9.
Aerosols are one of the important atmospheric constituents and exert indirect impact on climate through the modification of microphysical and radiative properties of clouds that in turn perturb the precipitation pattern. Thus, the long term quantification of changes in aerosol and cloud characteristics and their interactions on both temporal as well as spatial scale will provide a crucial information for the better assessment of future climate change. In present study, 18 years (2003–2020) MODerate Resolution Imaging Spectro-radiometer (MODIS) derived aerosol-cloud dataset over the Northern Indian Ocean (NIO) were analysed to assess climatology and trend of aerosol, cloud characteristics and their correlation. We found a strong heterogeneity in spatio-temporal variation of aerosol and cloud parameters over the NIO that are more prominent for the coastal region. The climatological mean of aerosol loading is found high (AOD ≥ 0.5) over the outflow region along the Indian sub-continent and low (AOD ≤ 0.2) over the northern equatorial open ocean. The climatological mean of cloud properties shows dominance of optically thicker deep convective (CTP < 600 hPa and CTT < 260 K) clouds over the southern Bay of Bengal (BoB) and thinner shallow (CTP > 700 hPa and CTT > 273 K) over the northwestern Arabian Sea (AS). Similarly, bigger effective radii (>17 µm) observed along the equatorial open ocean whereas smaller CER (<17 µm) were found over Indian sub-continental coastline and western AS. Further, trend analysis reveals an increasing pattern in AOD (0.002 yr?1), CER (0.051 µm yr?1), LWP (0.033 gm?2 yr?1) and CF (0.002 yr?1) while COD, CTT and CTP show negative trend in order of ?0.005 yr?1, ?0.094 K yr?1 and ?1.160 hPa yr?1, respectively. We also perform similar analysis for seven sub-region of interest (R1 to R7) across the NIO and results show a decreasing pattern in AOD (?0.001 yr?1) at R4 against maximum mean AOD (0.44 ± 0.03). However, coastal sub-regions R1 and R5 illustrate maximum increase in aerosol loading (>0.003 yr?1) suggesting a significant impact of sub-continental outflow over the regions. The spatial correlation of cloud properties with respect to AOD shows a positive slope for CER (0.14) and CF (0.48) and a negative for COD (?0.19), LWP (?0.18), CTT (?0.37), CTP (?0.41). The present study provides in-depth information about the aerosol-cloud characteristics for a long term scale over NIO and could be useful in regional aerosol-cloud interaction induced climate forcing estimation.  相似文献   

10.
Extensive measurements of aerosol optical and microphysical properties made at a remote island, Minicoy in southern Arabian Sea for the period (February 2006–March 2007) are used to characterize their temporal variability and Black Carbon (BC) mass mixing ratio. Large decrease in aerosol BC (from ~800 ng m?3 to ~100 ng m?3) was observed associated with change in airmass characteristics and monsoon rains. The total aerosol mass varied between ~80 and 20 μg m?3. Though the total mass fell drastically, a slight increase in super micron mass was observed during the June–August period associated with high winds. The mass fraction of Black Carbon aerosols during the prevalence of continental airmass is found to be ~1.2% of the composite aerosols, which is much lower than the values reported earlier for this region.  相似文献   

11.
The dependence of the durations of millisecond narrow-band solar radio spikes τ on the frequency f at which they are emitted is studied. A regression analysis of available experimental data at 0.3–3 GHz yields the relationship τf ?1.29±0.08, refining the known Güdel-Benz law. This relationship differs at a statistically significant level from the intuitive expectation τf ?1; this requires a physical interpretation. The frequency dependences of the pulse durations for various modes of cyclotron maser emission near the first, second, and third harmonics of the electron cyclotron frequency have been modeled. The model relationships for different cyclotron maser emission modes are different; only the results of the model for the second harmonic of the extraordinary wave are consistent with the observed behavior. Thus, this wave is a probable candidate for the dominant mode in spike bursts.  相似文献   

12.
论大气二氧化碳温室效应的饱和度   总被引:4,自引:0,他引:4  
利用最新版本的大气分子吸收光谱资料HITRAN2000,用精确的逐线积分算法,计算了大气CO2浓度变化后产生的辐射强迫。在此基础上,研究了CO2温室效应的饱和度以及影响CO2辐射强迫的各种因子。主要结论如下:地面温度愈高,一般辐射强迫也愈大,但辐射强迫并不完全取决于地面温度,它还受大气温度廓线的强烈影响;研究的 6种模式大气中,吸收带重叠对热带大气的CO2辐射强迫影响最大,对亚极冬季大气的影响最小;与长波辐射强迫相比,短波辐射强迫的贡献很小;CO2的温室效应在15μm带中心等波段确实已经达到饱和,但在其它(15μm带两翼,10μm,5.2μm带等)波段远未达到饱和,在最近的将来也不会达到饱和。  相似文献   

13.
Large areas of natural coastal wetlands have suffered severely from human-driven damages or conversions (e.g., land reclamations), but coastal carbon flux responses in reclaimed wetlands are largely unknown. The lack of knowledge of the environmental control mechanisms of carbon fluxes also limits the carbon budget management of reclaimed wetlands. The net ecosystem exchange (NEE) in a coastal wetland at Dongtan of Chongming Island in the Yangtze estuary was monitored throughout 2012 using the eddy covariance technique more than 14 years after this wetland was reclaimed using dykes to stop tidal flooding. The driving biophysical variables of NEE were also examined. The results showed that NEE displayed marked diurnal and seasonal variations. The monthly mean NEE showed that this ecosystem functioned as a CO2 sink during 9 months of the year, with a maximum value in September (?101.2 g C m?2) and a minimum value in November (?8.2 g C m?2). The annual CO2 balance of the reclaimed coastal wetland was ?558.4 g C m?2 year?1. The ratio of ecosystem respiration (ER) to gross primary production (GPP) was 0.57, which suggests that 57 % of the organic carbon assimilated by wetland plants was consumed by plant respiration and soil heterotrophic respiration. Stepwise multiple linear regressions suggested that temperature and photosynthetically active radiation (PAR) were the two dominant micrometeorological variables driving seasonal variations in NEE, while soil moisture (M s) and soil salinity (PSs) played minor roles. For the entire year, PAR and daytime NEE were significantly correlated, as well as temperature and nighttime NEE. These nonlinear relationships varied seasonally: the maximum ecosystem photosynthetic rate (A max), apparent quantum yield (?), and Q 10 reached their peak values during summer (17.09 μmol CO2?m?2 s?1), autumn (0.13 μmol CO2?μmol?1 photon), and spring (2.16), respectively. Exceptionally high M s or PSs values indirectly restricted ecosystem CO2 fixation capacity by reducing the PAR sensitivity of the NEE. The leaf area index (LAI) and live aboveground biomass (AGBL) were significantly correlated with NEE during the growing season. Although the annual net CO2 fixation rate of the coastal reclaimed wetland was distinctly lower than the unreclaimed coastal wetland in the same region, it was quite high relative to many inland freshwater wetlands and estuarine/coastal wetlands located at latitudes higher than this site. Thus, it is concluded that although the net CO2 fixation capacity of the coastal wetland was reduced by land reclamation, it can still perform as an important CO2 sink.  相似文献   

14.
The results of JHKLM photometry of two carbon stars are presented: the irregular variable NQ Cas and the Mira star BD Vul. Data on the mean fluxes supplemented with mid-IR observations with the IRAS, AKARI, andWISE satellites are used to compute spherically symmetrical model dust envelopes for the stars, consisting of particles of amorphous carbon and silicon carbide. The optical depth in the visible for the comparatively cool dust envelope of BD Vul, with a dust temperature at its inner boundary T1 = 610 K, is fairly low: τV = 0.13. The dust envelope of NQ Cas is appreciably hotter (T1 = 1550 K), and has τV = 0.32. The estimated mass-loss rates are 1.5 × 10?7M/yr for NQ Cas and 5.9 × 10?7M/yr for BD Vul.  相似文献   

15.
In this paper, we report some salient features from a suit of special experiments that have been conducted over a coastal site (Mumbai) during February 23–March 03, 2010, encompassing an Indian festival, namely Holi, using solar radiometers and pyranometer. The results of the analysis of observations at the experimental site show higher (more than double) aerosol optical depth, water vapor, and lower down-welling short-wave radiative flux during the festival period. This is considered to be due to anthropogenic activities and associated meteorological conditions at the experimental location. To illustrate further, Angstrom parameters (alpha, denoting the aerosol size distribution, and beta, representing the loading) are examined. These parameters are found to be greater on Holi day as compared to those on the normal (control, pre-, and post-Holi) days, suggesting an increase in accumulation mode (smaller size) particle loading. The aerosol size spectra exhibited bimodal/power-law distribution with a dominant peak, modulated by anthropogenic activities, involving local and long-range transport of dust and smoke (emanated from biomass-burning) aerosols, which is consistent with MODIS satellite observations. The aerosol direct radiative forcing estimation indicated cooling at the bottom of the atmosphere.  相似文献   

16.
大气气溶胶辐射强迫及气候效应的研究现状   总被引:51,自引:0,他引:51  
由于工业活动的影响,对流层气溶胶含量明显增加。他们通过直接吸收和反射太阳辐射以及改变其它辐射强迫因子(云、臭氧)的大小间接影响地气系统的能量收支。近年来研究表明:人类活动产生的气溶胶具有与CO2温室气体大小相当、符号相反的辐射强迫效应。他们在全球或区域范围内削弱温室气体的变暖趋势,对气候变化造成很大的影响。文章就人为气溶胶辐射强迫及气候效应近年来的研究状况做了介绍。  相似文献   

17.
Maryland Coastal Bays differ in hydrography from river-dominated estuaries because of limited freshwater inflow from tributary creeks and more marine influence. Consequently, the copepod community structure may be different from that of the coastal ocean and river-dominated estuaries in the mid-Atlantic region. A 2-year study was conducted to describe copepod species composition and seasonal patterns in abundance and factors influencing the community structure. Seven copepod genera, Acartia, Centropages, Pseudodiaptomus, Parvocalanus, Eurytemora, Oithona, and Temora, in addition to harpacticoids were found. The copepod community was dominated by Acartia spp. (64%), followed by Centropages spp. (30%), unlike in river-dominated estuaries in the region where the copepod community is usually dominated by Acartia spp. followed by Eurytemora affinis. Acartia tonsa was the most abundant in summer and fall whereas Centropages spp., Temora sp., Oithona similis, E. affinis, and harpacticoids were most abundant in winter and early spring. Parvocalanus crassirostris and Pseudodiaptomus pelagicus were present in fall and winter but at relatively low densities. The highest mean density of copepods occurred in winter 2012 (36,437 m?3) and the lowest in spring 2013 (347 m?3). Low densities occurred through early summer (614 m?3) coinciding with peak spawning by bay anchovy (Anchoa mitchilli). Bottom-up control via low phytoplankton biomass coupled with top-down control by ctenophores (Mnemiopsis sp.), mysids (Neomysis americana), and bay anchovy was probably responsible for the low copepod densities in spring and early summer. Temperature and salinity were also important factors that influenced the seasonal patterns of copepod species occurrence. The observed seasonal differences in the abundance of copepods have important implications for planktivorous fishes as they may experience lower growth rates and survival due to food limitation in spring/early summer when copepod densities are relatively low than in late summer/fall when copepod abundance is higher.  相似文献   

18.
19.
Atmospheric aerosol optical depth (AOD) plays an important role in radiation modeling and partly determines the accuracy of estimated downward surface shortwave radiation (DSSR). In this study, Iqbal’s model C was used to estimate DSSR under cloud-free conditions over the Koohin and Chitgar sites in Tehran, Iran; the estimated DSSR was based on (1) our proposed hybrid modeling scheme where the AOD is retrieved using the Simplified Aerosol Retrieval Algorithm (SARA), ground-based measurements at the AERONET site in Zanjan and (2) the AOD from the Terra MODerate-resolution Imaging Spectroradiometer (MODIS) sensor. Several other Terra MODIS land and atmospheric products were also used as input data, including geolocation properties, water vapor, total ozone, surface reflectance, and top-of-atmosphere (TOA) radiance. SARA-based DSSR and MODIS-based DSSR were evaluated with ground-based DSSR measurements at the Koohin and Chitgar sites in 2011 and 2013, respectively; the averaged statistics for SARA-based DSSR [R 2 ≈ 0.95, RMSE ≈ 22 W/m2 (2.5% mean value), and bias ≈ 3 W/m2] were stronger than those for MODIS-based DSSR [R 2 ≈ 0.79, RMSE ≈ 51 W/m2 (5.8% mean value), and bias ≈ 34 W/m2]. These results show that the proposed hybrid scheme can be used at regional to global scales under the assumption of future access to spatially distributed AERONET sites. Additionally, the robustness of this modeling scheme was exemplified by estimating the aerosol radiative forcing (ARF) during a dust storm in Southwest Asia. The results were comparable to those of previous studies and showed the strength of our modeling scheme.  相似文献   

20.
During the Integrated Campaign for Aerosols, gases and Radiation Budget (ICARB) over India, high-resolution airborne measurements of the altitude profiles of the mass concentrations (MB) of aerosol black carbon (BC) were made off Bhubaneswar (BBR, 85.82°E, 20.25°N), over northwest Bay of Bengal, in the altitude region upto 3 km. Such high-resolution measurements of altitude profiles of aerosols are done for the first time over India. The profiles showed a near-steady vertical distribution of MB modulated with two small peaks, one at 800m and the other at ~2000m. High resolution GPS (Global Positioning System) sonde (Vaisala) measurements around the same region onboard the research vessel Sagar Kanya (around the same time of the aircraft sortie) revealed two convectively well mixed layers, one from ground to ~700m with an inversion at the top and the other extends from 1200m to ~2000m with a second inversion at ~2200m and a convectively stable region in the altitude range 700–1200m. The observed peaks in the MB profile are found to be associated with these temperature inversions. In addition, long-range transport from the Indo-Gangetic Plain (IGP) and deserts lying further to the west also influence the vertical profile of BC. Latitudinal variation of MB showed a remarkable land ocean contrast at the 500m altitude (within the well mixed region) with remarkably lower values over oceans, suggesting the impact of strong sources over the mainland. However, above the ABL (at 1500m), the latitudinal variations were quite weak, and this appears to be resulting from the impact of long-range transport. Comparison of the altitude profiles of MB over BoB off BBR with those obtained during the earlier occasion over the inland stations of Hyderabad and Kanpur showed similarities above ~500m, with MB remaining around a steady value of ~1 μg m?3. However, large differences are seen within the ABL. Even though the observed MB values are not unusually high, their near constancy in the vertical column will have important implications to radiative forcing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号