首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Summary. The methods for designing pillars in underground mines are fundamentally based on empirical formulae that do not take into account the quality of the rock mass as an input parameter. This makes them difficult to apply in other types of ground that are different to those used to establish each empirical formula. To avoid this inconvenience, the present paper examines existing empirical formulae to then propose a modification of these formulae adjusting the resistance of the pillars on the basis of the RMR (Bieniawski’s Rock Mass Rating). The compression safety factor of the pillars is analyzed for each modified formula and a study is carried out of shear failure if planes of weakness exist in the pillars. Finally, the safety factors of the pillars in a marble mine situated in Alicante (Southern Spain) were calculated in order to validate the new formulae. From the results obtained, it is concluded that this new formulation determines the safety factor of pillars of the mine with greater reliability, provided that the pillars are isolated. At the same time, the introduction of the RMR in the formulae results in a better fit of the strength of each pillar to the characteristics of the rock mass.  相似文献   

2.
The study of rock pillar failure mechanisms is an issue that is faced routinely in mining and civil industries. In mining operation, the establishment of several mining levels is often necessary to ensure adequate production. This result in the formation of pillars that must be recovered under often high stress conditions at later stages of excavation. It is, therefore, beneficial to develop guidelines that can be used in the design of rock pillars. The aim of this paper is to delve into the mechanisms involved in pillar failure as well as to investigate the non-linear behavior of rock pillars. An extensive numerical analysis was carried out to study the pillar deformation and failure process under natural loading conditions. Effects of pillar geometry and pillar strength parameters on pillar behavior were investigated for hard rock material typical of Canadian mining conditions. Numerical data were compared against field data recorded in Canadian mines. A fairly good match was achieved between numerical and field data and the conducted analysis can be used as a qualitative guideline in the design of rock pillars in underground structures.  相似文献   

3.
煤炭资源在我国能源结构中仍处于主体地位,但煤炭工业发展面临着“碳达峰碳中和”的新挑战。积极发展煤炭开发地下空间储能技术,是推动能源利用低碳化和清洁化的有效手段,也是保证我国能源战略安全的关键措施。结合当前储能技术,探讨了煤炭开发地下空间的利用现状,围绕利用煤炭开发地下空间抽水蓄能、热储能、压缩空气储能、电化学储能、生物质储能等储能新技术,重点阐述废弃矿井不同能源类型的储能理念及方式,系统分析储能过程中面临的地质保障关键技术难题。煤炭开发地下空间储能新技术总体思路为:利用煤炭开发地下空间所具有的低位势能差,将其用作梯级储水库(抽水蓄能);或直接将其用作储质、储能空间(热储能、压缩空气储能、电化学储能、生物质储能),既可提升煤炭开发地下空间资源的开发利用率,又可避免土地资源浪费,尽量降低对生态环境的扰动。虽然煤炭开发地下空间可作为大规模储能库,但其开发利用过程仍存在一些亟待解决的地质问题以及地质保障技术。主要包括:(1)地质条件与选址适宜性分析和安全性评价,即对储能空间的地质因素进行岩土工程性质和环境地质条件的系统研究,查明储能空间稳定性主控因素及其权重,构建选址指标体系与评价方法,重点查...  相似文献   

4.
The experimental study of fatigue damage to coal under cyclic loading is important for guiding the design of pillars in underground coal mines where the pillars may be affected by repeated mining activity. In this paper, the strength, deformation, energy dissipation, and fatigue of samples of coal from a mine in China are studied using cyclic loading with a servo-controlled rock mechanical test system. The results indicate that coal is more likely to suffer fatigue damage than other, harder, rock lithologies. Under uniaxial cyclic loading, the fatigue failure “threshold value” for the coal samples studied is less than 78% of its uniaxial strength, but there is also a certain amount of fatigue damage when the cyclic loading/unloading experiments are carried out below the threshold value for fatigue failure. Axial deformation during the tests can be divided into three stages: initial deformation, constant steady deformation, and accelerated deformation. Transversal deformation can be divided into two stages: stable deformation and accelerated deformation. During cyclic loading experiments, imminent sample failure is signaled when transversal deformation increases significantly and quickly and the deformation recovers little when the load is removed. With an increasing number of loading/unloading cycles, a graph of energy dissipation per unit volume versus number of cycles presents an L-shaped curve when the coal samples do not suffer fatigue failure. However, for the coal samples that do rupture due to fatigue, the curve is U-shaped. Under cyclic loading, the evolution of compaction, strain hardening, strain softening, and failure of coal can be revealed in great detail by fatigue damage experiments.  相似文献   

5.
在谷德振先生“水文地质结构”学术思想指引下,本文提出建立结构水文地质学的设想,论述了其基础理论框架。从方法论角度将矿山水害防控分为被动防控和主动防控两种方法。以结构水文地质学指导煤矿高势能突水溃砂防控,分析了被动防控可能产生突水溃砂灾害的机理; 提出了主动地质工程防控的原理,包括地质材料性质改造、结构隔水性能重构、赋存水动力环境改造、减轻采掘诱发覆岩破坏等具体方法。抛砖引玉,以期催生符合中国矿山防治水实践需要的创新理论和方法。  相似文献   

6.
Strike stabilizing pillars are included in the mine layout of a number of deep South African gold mines as a means of providing regional support with the principal aim of controlling rockbursts. Large seismic events associated with stabilizing pillars can cause extensive damage to working areas. Mining-induced seismicity recorded at Western Deep Levels Limited has been analysed in an attempt to improve the design of stabilizing pillars, and thereby reduce their associated seismic hazard. This work revealed that the vast majority of stabilizing pillars, regardless of their dimensions and those of their adjacent stopes, will, at some time, give rise to seismic events of magnitude, M2. Contrary to expectations, this work strongly indicates that the rock mass in the near vicinity of the mined out areas does not behave in an elastic manner. Consequently, the currently employed design methodologies, based on elastic principles, should not provide the only criteria when designing strike stabilizing pillars.  相似文献   

7.
Modification of rock failure criteria considering the RMR caused by joints   总被引:1,自引:0,他引:1  
The aim of this study is to present a modification of the failure criteria of rock masses, separately considering the effect that the Bieniawski’s rock mass rating (RMR) has due to joints, as well as the RMR linked to compressive strength of the mass rock. This modification can be applied to three of the already existing criteria: that of Bieniawski–Yudhbir–Kalamaras, that of Sheorey, and that of Hoek–Brown, comparatively analysing the effects of the three modifications that have been proposed. The new, modified criterion will be validated with new data obtained in a marble mine exploited by means of rooms and pillars. The values observed and measured in the mine are compared to those obtained through numerical modelling of the pillars, using the Análisis Lagrangiano de Medios Continuos, Lagrangian Analysis of Continuous Media (ALMEC) program. Finally, several conclusions related to the application of these rock failure criteria to the analysis of mining excavation of rooms and pillars will be proposed.  相似文献   

8.
研究破碎岩体的压实特性是矿井地下工程的基础工作之一,由于破碎岩体所处环境的隐蔽性与危险性,常采用实验室测试和数值计算的研究方法。提出了一种三维破碎岩体模型构建方法,即在3D Voronoi建立完整岩体数值模型的基础上,通过预定孔隙率,随机删除完整岩体中的块体反演破碎岩体结构,测定破碎岩体的压实特性。该方法可较真实地反映破碎岩体的块度特征、碎胀特性与压实特性,与现有研究方法有较高的吻合度,为矿山地下工程的安全控制提供了新的有效的研究方法。  相似文献   

9.
随着我国能源消费的急剧增加,原油储备的建设已经刻不容缓,目前国内外常用的原油储存方式为地面油罐储存,其技术成熟、建设周期较短、全世界已经建设有大量的地面原油罐,而另外一种储备型式地下存储原油,则是近年来国内兴起的一种新兴石油储备方式。国内目前一般都选则花岗岩体作为建库岩体,采用此方法建设地下洞库对岩石条件限定较严格,目前国内在建的几座地下洞库都分布于东部沿海花岗岩地区。本文主要研究利用废弃石膏矿存储原油的可行性,通过对国内某石膏矿区的工程地质特性、水文地质特性、围岩稳定性分析、室内原油浸泡试验、原油储备综合分析等综合手段研究,初步得出了该石膏矿区具有较好的地质条件; 场区区域稳定性好无断层通过,石膏矿体平均厚度为458.42m,石膏矿岩样的单轴饱和抗压强度平均为55.45MPa、石膏矿体的岩体质量为Ⅱ级,采房及各种巷道围岩稳定,石膏矿吸水率范围在0.014% ~0.036%,吸油率范围在0.060% ~0.083%。同时石膏矿储备原油具有节约土地、投资省、运营定员少、安全性高、环保污染少、使用寿命长等特点。通过以上研究,本文得出该石膏矿区已经具备建设地下原油储备的基本地质条件。  相似文献   

10.
Numerical Study of Failure Mechanism of Serial and Parallel Rock Pillars   总被引:4,自引:2,他引:2  
Using a numerical modelling code, rock failure process analysis, 2D, the progressive failure process and associated acoustic emission behaviour of serial and parallel rock samples were simulated. Both serial- and parallel sample models are presented for investigating the mechanism of rock pillar failure. As expected, the numerical results show that not only the stiffness, but also the uniaxial compressive strength of the rock plays an important role in pillar instability. For serial pillars, the elastic rebound of a rock pillar with higher uniaxial compressive strength can lead to the sudden failure of an adjacent rock pillar with lower uniaxial compressive strength. The failure zone forms and develops in the pillar with lower uniaxial compressive strength; however, the failure zone does not pass across the interface of the two pillars. In comparison, when two pillars have the same uniaxial compressive strengths but different elastic moduli, both serial pillars fail, and the failure zone in the two pillars can interact, passing across the interface and entering the other pillar. For parallel pillars, damage always develops in the pillar having the lower uniaxial compressive strength or lower elastic modulus. Furthermore, in accordance with the Kaiser effect, the stress-induced damage in a rock pillar is irreversible, and only when the previous stress state in the failed rock pillar is exceeded or the subsequent applied energy is larger than the energy released by the external loading will further damage continue to occur. In addition, the homogeneity index of rock also can affect the failure modes of parallel pillars, even though the uniaxial compressive strength and stiffness of each pillar are the same.  相似文献   

11.
冲击地压等矿井动力灾害的发生受多因素影响,是自然地质动力环境条件和开采工程扰动条件耦合作用的结果。冲击地压发生的时间、空间、强度等特征与矿井所处区域地质动力环境有关,由于不同煤田、不同矿区、不同矿井所处的区域地质动力环境存在差异性,致使有些煤矿不具备发生冲击地压的地质动力环境条件,而有些煤矿发生冲击地压的类型也不同。提出矿井地质动力环境评价方法,并构建评价指标体系。在地质动力环境研究中,主要考虑自然地质条件下外部地质体的动力作用对冲击地压的影响效应,确定构造凹地反差强度、矿井区域断块构造运动、断裂构造、构造应力、开采深度、上覆岩层结构特征、本区及邻区判据条件等影响因素为评价指标,根据各因素对矿井的影响程度情况,给出每个因素的不同量化评价值。综合量化评价结果,判定矿井是否具有发生冲击地压的地质动力环境:(1)当综合评价指标值n为0~0.25,表明矿井不具备冲击地压发生的地质动力环境;(2)当综合评价指标值n为>0.25~0.50,矿井具有弱冲击地压发生的地质动力环境;(3)当综合评价指标值n为>0.50~0.75,矿井具有中等冲击地压发生的地质动力环境;(4)当综合评价指标值...  相似文献   

12.
Floor design in underground coal mines   总被引:1,自引:0,他引:1  
Summary Floor failure and excessive heave in underground coal mines can jeopardize the stability of the whole structure, including the roof and pillars, due to differential settlements and redistribution of stress concentrations. Besides, floor failure is detrimental to haulageway operation and can lead to unacceptable conditions of high deformation. Thus, the design of any underground opening must consider roof/pillar and floor as one structural system.This paper presents guidelines for the design of mine floors, including the necessary field and laboratory investigations and the determination of the bearing capacity of floor strata. The design methodology is based essentially on a modified Hoek-Brown rock mass strength criterion. The main modifications are the introduction of the concept of the point of critical energy release to account for the long term strength, the inclusion of tensile strength and the adoption of a lithostatic state of stress in the rock mass. The determination of the dimensionless parametersm ands result from correlations with the RMR (rock mass rating) of the Geomechanics Clasification. Nine case histories, both in longwall and room and pillar coal mining, were analyzed with the proposed methodology.  相似文献   

13.
In underground coal mines, the failure of overlying strata can have disastrous effects where the working face is overlain by thin bedrock covered with thick alluvium. Roof failure under these conditions can cause a massive water and sand inrush. This paper presents a case study for a design to prevent such disasters in the Baodian mine, China. First, the engineering geological and hydrogeological conditions of the overlying lithified strata and the alluvium were obtained from field and laboratory studies. Numerical models were then built with different bedrock thicknesses using distinct-element modelling software. The deformation, failure, and subsidence of the overlying strata during simulated coal mining were studied using these computer models. Finally, the results of the model studies were combined with the geological data to design a reasonable layout for the longwall panel to be mined in the Baodian mine. Initial results showed that the alluvium was somewhat impervious and water-poor. The models showed that the first caving and weighting intervals of the roof decreased with decreasing bedrock thickness, and decreasing bedrock thickness also increased maximum subsidence of the alluvium. The maximum height of the caving zone and the minimum height of the sand-prevention coal and rock pillars were 34 m and 46 m, respectively. Knowing this allowed a somewhat shorter (204 m) but safe working face to be designed. This research provides a good background for the design of safe mines under similar conditions.  相似文献   

14.
陈国庆  李天斌  张岩  付开隆  王栋 《岩土力学》2013,34(12):3513-3519
目前深埋硬岩隧道的岩爆等脆性破坏研究还较少考虑到温度的作用效应。采用精细网格数值模型,提出热-脆性-精细力学计算方法,应用能反映高地应力下硬岩脆性破坏特点的岩体劣化模型,结合能量计算指标,开展了不同温度作用下隧道硬岩脆性破坏的热力耦合分析。以瑞典APSE花岗岩隧洞岩柱为例,进行不同地温下隧道破坏区、能量释放值和应力指标的定量化对比研究。研究结果表明,隧道地温的增加将使岩体产生附加温度应力,进而增大其脆性破坏程度,计算结果与隧道现场的破坏规律基本一致。热-脆性-精细力学计算能合理描述硬岩的损伤和渐进破坏过程,计算结果较好地揭示了花岗岩等硬岩深埋隧道脆性破坏的温度作用效应,对于高应力、高地温下深部工程的稳定性评价具有指导意义。  相似文献   

15.
Naturally fractured mine pillars provide an excellent example of the importance of accurately determining rock mass strength. Failure in slender pillars is predominantly controlled by naturally occurring discontinuities, their influence diminishing with increasing pillar width, with wider pillars failing through a combination of brittle and shearing processes. To accurately simulate this behaviour by numerical modelling, the current analysis incorporates a more realistic representation of the mechanical behaviour of discrete fracture systems. This involves realistic simulation and representation of fracture networks, either as individual entities or as a collective system of fracture sets, or a combination of both. By using an integrated finite element/discrete element–discrete fracture network approach it is possible to study the failure of rock masses in tension and compression, along both existing pre-existing fractures and through intact rock bridges, and incorporating complex kinematic mechanisms. The proposed modelling approach fully captures the anisotropic and inhomogeneous effects of natural jointing and is considered to be more realistic than methods relying solely on continuum or discontinuum representation. The paper concludes with a discussion on the development of synthetic rock mass properties, with the intention of providing a more robust link between rock mass strength and rock mass classification systems.  相似文献   

16.
Enhanced demand for coal and minerals in the country has forced mine operators for mass production through large opencast mines. Heavy blasting and a large amount of explosive use have led to increased environmental problems, which may have potential harm and causes a disturbance. Ground vibrations generated due to blasting operations in mines and quarries are a very important environmental aspect. It is clear that a small amount of total explosive energy is being utilized in blasting for breakage of rock mass, while the rest is being wasted. The amount of energy which is wasted causes various environmental issues such as ground vibrations, air overpressure, and fly rock. Ground vibrations caused by blasting cannot be eliminated entirely, yet they can be minimized as far as possible through a suitable blasting methodology. A considerable amount of work has been done to identify ground vibrations and assess the blast performance regarding the intensity of ground vibrations, i.e., peak particle velocity and frequency spectrum. However, not much research has done into reducing the seismic energy wasted during blasting leading to ground vibrations. In this paper, the blast-induced ground vibrations in three orthogonal directions, i.e., transverse, vertical, and longitudinal, were recorded at different distances using seismographs. An attempt has been made for the estimation of the percentage of explosive energy dissipated in the form of seismic energy with electronic and non-electric (NONEL) initiation system. signal processing techniques with the help of DADiSP software is used to study the same.  相似文献   

17.
煤矿陷落柱地震层析成像试验   总被引:2,自引:1,他引:2  
陷落柱是我国北方煤矿机械化综采的主要障碍之一,在综采前探明采区陷落柱的位置和分布具有重要意义。本文介绍用于探测煤矿陷落柱的地震层析成像方法,并利用物理模拟的资料作成像试验,证实应用地震层析成像方法可以准确地圈定煤矿中的陷落柱。  相似文献   

18.
Analysis of rock structure stability in coal mines   总被引:1,自引:0,他引:1  
In this paper, the theory of limit point instability is used to analyse the stability of rock structures in coal mines. A general method of analysing stability of rock structures is put forward and a uniform instability condition of rock structures is set up. Some instability phenomena, such as rock bursts in circular roadways, pillars and long walls, and the outburst of coal and gas from circular roadways, are discussed analytically. At a later stage, the critical point of rock structure instability is determined. The influence of relative parameters (such as the mechanical properties of rock, coal, and the geometric sizes) on the stability of the rock structures is carefully analysed. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

19.
Summary The design of pillars in cut-and-fill mining and open stoping in vertical and subvertical orebodies is of vital importance in optimizing mining operations. The primary requirement for a good and reliable design technique is the ability to represent the actual physical behaviour of the pillar. In this paper, a new methodology for stope roof and sill pillar design is proposed for the Zinkgruvan Mine in Sweden. Studies of failure modes, local geology and rock mass characteristics were carried out to correlate failure modes to different geomechanical environments. For preliminary design, crude and ready-to-use stress level criteria were extracted from simple linear elastic modelling. More detailed modelling was used to simulate observed failures in a mechanically realistic manner and, at the same time, to help identify the fundamental failure mechanisms. Once the correct models and input parameters were identified, a set of guidelines on choice of model and parameter values were produced. The models can be used for design of new mining areas at Zinkgruvan, and the methodology could also be applied to other mines with similar geomechanical conditions.  相似文献   

20.
基于正交试验设计的层状盐岩地下储库群多因素优化研究   总被引:2,自引:0,他引:2  
贾超  张凯  张强勇  徐坤 《岩土力学》2014,35(6):1718-1726
目前国内正在大规模兴建盐岩地下储库群,其规划设计阶段可优化因素较多,且各因素影响程度不同,选取椭球形腔体几何分布形式、矿柱宽度和夹层位置3个主要因素进行了综合优化研究,旨在分析3个因素的敏感性影响程度,并确立储库群最优形式。对3个因素分别设立3个水平,运用正交试验设计原理,确立了9组试验方案,进行了相关数值模拟试验。评价层状盐岩地下储库群时选用经改进的位移、应力试验指标,基于试验结果运用正交试验法中的极差分析和方差分析对3个因素进行详细分析。结果表明,3个因素中夹层位置影响最显著,矿柱宽度居次,椭球形腔体几何分布形式影响最弱;最优储库群形式为邻腔夹角60°的分布形式、2.0D矿柱宽度、夹层分布在腔体上部1/4H(H为腔体高度)位置。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号