首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
2.
Ag‐modified TiO2 nanotube arrays (Ag/TiO2 NAs) were prepared and employed as a photocatalyst for degradation of 17α‐ethinylestradiol (EE2) and inactivation of Escherichia coli. The as‐synthesized Ag/TiO2 NAs were characterized by field‐emission scanning electron microscope (FESEM), X‐ray diffraction (XRD), and X‐ray photoelectron spectroscopy (XPS). It was found that metallic Ag nanoparticles were firmly deposited on the TiO2 NAs with the pore diameter of 100 nm and the length of 550 nm. Photocatalytic degradation of EE2 and inactivation of E. coli were enhanced effectively in an analogical trend using Ag/TiO2 NAs. In particular, Ag/TiO2 NAs exhibited the antimicrobial activity even in the absence of light. The Ag acted as a disinfection agent as well as the dopant of the modified TiO2 NAs photocatalysis by forming a Schottky barrier on the surface of TiO2 NAs. Inorganic ions suppressed the rates of photocatalytic degradation of EE2, with HCO having a more pronounced effect than NO or SO. Humic acid (HA) was found to increase the rate of EE2 degradation.  相似文献   

3.
4.
5.
Lake ice supports a range of socio‐economic and cultural activities including transportation and winter recreational actives. The influence of weather patterns on ice‐cover dynamics of temperate lakes requires further understanding for determining how changes in ice composition will impact ice safety and the range of ecosystem services provided by seasonal ice cover. An investigation of lake ice formation and decay for three lakes in Central Ontario, Canada, took place over the course of two winters, 2015–2016 and 2016–2017, through the use of outdoor digital cameras, a Shallow Water Ice Profiler (upward‐looking sonar), and weekly field measurements. Temperature fluctuations across 0°C promoted substantial early season white ice growth, with lesser amounts of black ice forming later in the season. Ice thickening processes observed were mainly through meltwater, or midwinter rain, refreezing on the ice surface. Snow redistribution was limited, with frequent melt events limiting the duration of fresh snow on the ice, leading to a fairly uniform distribution of white ice across the lakes in 2015–2016 (standard deviations week to week ranging from 3 to 5 cm), but with slightly more variability in 2016–2017 when more snow accumulated over the season (5 to 11 cm). White ice dominated the end‐of‐season ice composition for both seasons representing more than 70% of the total ice thickness, which is a stark contrast to Arctic lake ice that is composed mainly of black ice. This research has provided the first detailed lake ice processes and conditions from medium‐sized north‐temperate lakes and provided important information on temperate region lake ice characteristics that will enhance the understanding of the response of temperate lake ice to climate and provide insight on potential changes to more northern ice regimes under continued climate warming.  相似文献   

6.
Saturation‐excess runoff is the major runoff mechanism in humid well‐vegetated areas where infiltration rates often exceed rainfall intensity. Although the Soil and Water Assessment Tool (SWAT) is one of the most widely used models, it predicts runoff based mainly on soil and land use characteristics, and is implicitly an infiltration‐excess runoff type of model. Previous attempts to incorporate the saturation‐excess runoff mechanism in SWAT fell short due to the inability to distribute water from one hydrological response unit to another. This paper introduces a modified version of SWAT, referred to as SWAT‐Hillslope (SWAT‐HS). This modification improves the simulation of saturation‐excess runoff by redefining hydrological response units based on wetness classes and by introducing a surface aquifer with the ability to route interflow from “drier” to “wetter” wetness classes. Mathematically, the surface aquifer is a nonlinear reservoir that generates rapid subsurface stormflow as the water table in the surface aquifer rises. The SWAT‐HS model was tested in the Town Brook watershed in the upper reaches of the West Branch Delaware River in the Catskill region of New York, USA. SWAT‐HS predicted discharge well with a Nash‐Sutcliffe Efficiency of 0.68 and 0.87 for daily and monthly time steps. Compared to the original SWAT model, SWAT‐HS predicted less surface runoff and groundwater flow and more lateral flow. The saturated areas predicted by SWAT‐HS were concentrated in locations with a high topographic index and were in agreement with field observations. With the incorporation of topographic characteristics and the addition of the surface aquifer, SWAT‐HS improved streamflow simulation and gave a good representation of saturated areas on the dates that measurements were available. SWAT‐HS is expected to improve water quality model predictions where the location of the surface runoff matters.  相似文献   

7.
8.
9.
10.
Chenghai Wang  Yipeng Guo 《水文研究》2012,26(10):1509-1516
In this article, the trends and variability of precipitation and precipitable water (PW) over the Qinghai‐Xizang (Tibet) Plateau (QXP) (1970–2009) were analysed by using ERA‐40 (The European Center for Medium‐Range Weather Forecasts (ECMWF) 40 years Re‐analysis) and NCEP (The National Centers for Environmental Prediction)/NCAR reanalyses data and the ground observed precipitation data from 60 sites. The results showed that the precipitation over the QXP had an overall increasing trend; however, a slight decreasing trend was observed over the southeast. This decreasing precipitation trend might be related to the South Asia monsoon degradation. Since 1970, a decreasing PW trend has occurred over the QXP in which the southeast is the most significant region. Because of the rising temperatures in the QXP, a remarkable PW conversion rate (PWCR) increase of 0.87% per decade has occurred over the past 40 years. Because of its steep terrain, the PWCR in the middle eastern region of the QXP increased faster than that of the other regions. The mean PWCR in the wet southern region of the QXP was higher than that of the dry northern region, which was higher in the winter than that in the summer. Although much precipitation occurred in the summer, in the wet regions, the PWCR was higher in the winter than in the summer. The PWCR peak in the wet and dry regions occurred during the precipitation‐short and precipitation‐sufficient seasons, respectively. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
12.
13.
Quality Requirements for Fresh Waters: Water Quality Targets, Water Quality Objectives, and Chemical Water Quality Classification In the Federal Republic of Germany, water quality requirements for the protection of inland surface waters against hazardous substances are formulated on the basis of a quality targets derivation concept developed jointly by the Federal Government and the Federal States. The quality requirements were termed “water quality targets” in order to make it clear that the values derived are orientational values rather than legally binding limit values. The international comparison of quality requirements for surface waters shows that, on the whole, the national quality targets ensure a high level of protection. According to present scientific knowledge, impairments of uses, such as supply of drinking water, or risks to aquatic communities need not to be expected if the quality targets are complied with. A comparison of water quality data with the water quality targets makes it possible, on the one hand, to identify those substances whose inputs must be further reduced; on the other hand, it also shows that, for a number of substances, there is no need at present for concern over their adversely water quality. A further differentiation of the aquatic hazard potential of pollutants allows a water quality classification system to be developed on the basis of the quality targets derivation concept. The basic elements of this water quality classification system are presented, and its application is explained by way of examples.  相似文献   

14.
15.
Although it is known for many years, that transformation products (TPs) of pesticides are often more persistent, mobile, and sometimes more toxic than the parent compound, former catchment scale studies of substance release and flushing effects focused only on the parent compound. In this study, four river points were sampled in the Hula Valley, Israel, and samples were analyzed in the lab for chlorpyrifos (CP) and endosulfan residues (including transformation products; TPs). Sampling results of the first rainfall in autumn 2009 identified a strong release of most substances to the rivers. First flush effects of these substances were assessed regarding the risk for drinking water supply and ecology, like fresh water invertebrates and fish. Although, these substances were found in Jordan River water during the first significant rainfall the observed levels are below international drinking water guideline values with no adverse effects on human health in the region. However, the observed CP and chlorpyrifos oxon (CPO) levels are above the acute toxicity for fresh water invertebrates and fish. The study shows that the Hula Valley was an important source of pesticides and TPs at the Upper Jordan River basin and that substance flushing is extremely important for pesticides‐monitoring campaigns.  相似文献   

16.
Determination of Organophosphorus Pesticides in Water by HPLC‐MS‐MS In the EC Water Framework Directive 2000/60/EG and in CEC 76/464/EEC there are 16 organophosphorus pesticides (insecticides and acaricides) listed which belong to so‐called priority substances. The committed quality aims of these substances frequently require maximum concentrations below 0.1 μg/L. In this paper a HPLC‐MS‐method is described. The reported limits of determination of organophosphorus pesticides are lower than the demanded limits. High analytical sensitivity is reached by solid‐phase extraction (SPE) and by injecting large volumes. For some of these substances no sample enrichment is needed and low detection limits are obtained by direct injection of the original water sample.  相似文献   

17.
18.
Seismic interferometry is a relatively new technique to estimate the Green's function between receivers. Spurious energy, not part of the true Green's function, is produced because assumptions are commonly violated when applying seismic interferometry to field data. Instead of attempting to suppress all spurious energy, we show how spurious energy associated with refractions contains information about the subsurface in field data collected at the Boise Hydrogeophysical Research Site. By forming a virtual shot record we suppress uncorrelated noise and produce a virtual refraction that intercepts zero offset at zero time. These two features make the virtual refraction easy to pick, providing an estimate of refractor velocity. To obtain the physical parameters of the layer above the refractor we analyse the cross‐correlation of wavefields recorded at two receivers for all sources. A stationary‐phase point associated with the correlation between the reflected wave and refracted wave from the interface identifies the critical offset. By combining information from the virtual shot record, the correlation gather and the real shot record we determine the seismic velocities of the unsaturated and saturated sands, as well as the variable relative depth to the water‐table. Finally, we discuss how this method can be extended to more complex geologic models.  相似文献   

19.
The performance of one pilot‐scale and two full‐scale membrane bioreactors (MBR) were evaluated based on the control of main operational parameters, composition of microbial community and pathogens concentration in the treated outlet. Plants were designed for 0.75 m3/day (A), 60 m3/day (B) and 30 m3/day (C). Inlet and outlet samples were monitored for chemical oxygen demand (COD), biological oxygen demand, total suspended solids, ammonia nitrogen concentration (NH4–N), nitrate nitrogen concentration, total Kjeldahl nitrogen, total phosphorus and phosphate phosphorus concentration concentrations. Plants showed good COD removal: 91.9% for Plant A, 97.8% for Plant B and 94.2% for Plant C. The targeted nitrogenous ion was NH4–N due to the requirements for outlet limits. NH4–N removal was moderate for Plant A (73.3%) and Plant B (86.1%) and excellent for Plant C (>99%). Excellent phosphorus removal was achieved by Plant A (average outlet concentration was 0.7 mg/L, efficiency 84.7%). Unsatisfactory results for phosphorus removal were achieved at the full‐scale plants due to operational problems. The dependency between the extracellular polymeric substances increase and decreasing mixed liquor volatile suspended solids for both lab and full‐scale plants was confirmed. Soluble microbial product concentrations were reduced by 65–68% after coagulant dosage for Plant A. Outlets from the MBR plants were monitored for the presence of pathogens (thermotolerant coliforms, Escherichia coli, intestinal Enterococci and culturable microorganisms at 22 and 37°C). The treated effluent from Plant A, B and C met Czech national legislation regarding reuse criteria (standards) for environment, irrigation and swimming purposes. Plants B and C were not able to achieve requirements for potable water and personal hygiene quality standards.  相似文献   

20.
A previously published regional groundwater‐flow model in north‐central Nebraska was sequentially linked with the recently developed soil‐water‐balance (SWB) model to analyze effects to groundwater‐flow model parameters and calibration results. The linked models provided a more detailed spatial and temporal distribution of simulated recharge based on hydrologic processes, improvement of simulated groundwater‐level changes and base flows at specific sites in agricultural areas, and a physically based assessment of the relative magnitude of recharge for grassland, nonirrigated cropland, and irrigated cropland areas. Root‐mean‐squared (RMS) differences between the simulated and estimated or measured target values for the previously published model and linked models were relatively similar and did not improve for all types of calibration targets. However, without any adjustment to the SWB‐generated recharge, the RMS difference between simulated and estimated base‐flow target values for the groundwater‐flow model was slightly smaller than for the previously published model, possibly indicating that the volume of recharge simulated by the SWB code was closer to actual hydrogeologic conditions than the previously published model provided. Groundwater‐level and base‐flow hydrographs showed that temporal patterns of simulated groundwater levels and base flows were more accurate for the linked models than for the previously published model at several sites, particularly in agricultural areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号