首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The downward short- and long-wave radiation fluxes at the sea surface (S, L) were measured aboard the R/VHakuho Maru, University of Tokyo, for the period of 117 days on six cruises from 1981 to 1985 in the western North Pacific near Japan. The upward fluxes of short- and long-wave radiation (S, L) were calculated by Payne's (1972) table and the Stefan-Boltzmann's law, respectively. The sensible and laten heat fluxes (Q h ,Q e ) were also estimated from an aerodynamic bulk method.From April to August, the daily mean value ofS varied with the amplitude of 100200 Wm–2. The value ofS was estimated approximately 6% ofS in all seasons. The difference betweenL andL was so small that the net radiation flux (Q n ) was dominated byS. In addition, the net heat flux at the sea surface was also dominated byS due to small values ofQ h andQ e , and then the ocean was warmed at the rate of 111 Wm–2 in April and 63 Wm–2 in August in the Oyashio Area, and 132 Wm–2 in May and 164 Wm–2 in June in the Kuroshio Area, respectively.From September to March, a remarkable negative correlation between the day to day variation ofS and that ofL was observed except when an intense cold air outbreak occurred. It was found that the correlation was caused by the cloud climatological feature of the western North Pacific in this period.S was not a dominant factor in the net heat flux. The value ofQ h +Q e in the Kuroshio Area ranged from 260 Wm–2 to 630 Wm–2, much larger thanQ n which ranged from –8 Wm–2 to 92 Wm–2 in the leg mean values (each leg period was about 10 days). Then the ocean was cooled at the rate of –160–620 Wm–2 during this period. The net heat flux in the Kuroshio Area averaged over five legs from late November to February was –473 Wm–2. This value is 50100% larger than the climatological values reported so far.The temporal and spatial variability of radiation fluxes and heat fluxes during each leg was also discussed.  相似文献   

2.
The amount of penetration of a western boundary current into a marginal sea which is connected to an open ocean by two narrow straits is estimated from a linear, steady and barotropic theoretical model. In this model the western boundary current in the open ocean is driven by a wind stress imposed at the sea surface. The inflow of the water of the open ocean into the marginal sea is caused by the pressure difference between two straits produced by the wind-driven circulation in the open ocean.Main external parameters are combined into two non-dimensional parameters; and (the ratio of the depth of the marginal sea to that of the open ocean), whereb is the distance between north and south boundaries of the ocean,D 0 is the depth of the open ocean, is the latitudinal variation of the Coriolis parameter andR is the coefficient of friction. The friction is assumed to be proportional to the flow velocity.In the limit of infinite the volume transport into the marginal sea is not affected by the width of two straits and . It is mainly controlled by the wind stress and the positions of two straits. For finite values of , however, the volume transport depends considerably on and the width of the straits.Guided by both this model and physical considerations, we obtained a relation between the volume transport into the marginal sea and the external parameters. This relation predicts that about 2 % of the volume transport of the Kuroshio penetrates into the Japan Sea.  相似文献   

3.
Local balance in the air-sea boundary processes   总被引:2,自引:0,他引:2  
A combination of the three-second power law, presented in part I for wind waves of simple spectrum, and the similarity of the spectral form of wind waves, leads to a new concept on the energy spectrum of wind waves. It is well substantiated by data from a wind-wave tunnel experiment.In the gravity wave range, the gross form of the high frequency side of the spectrum is proportional tog u * –4, whereg represents the acceleration of gravity,u * the friction velocity, the angular frequency, and the factor of proportionality is 2.0×l0–2. The wind waves grow in such a way that the spectrum slides up, keeping its similar form, along the line of the gross form, on the logarithmic diagram of the spectral density,, versus. Also, the terminal value of, at the peak frequency of the fully developed sea, is along a line of the gradient ofg 2 –5.The fine structure of the spectrum from the wind-wave tunnel experiment shows a characteristic form oscillating around the –4-line. The excess of the energy density concentrates around the peak frequency and the second- and the third-order harmonics, and the deficit occurs in the middle of these frequencies. This form of the fine structure is always similar in the gravity wave range, in purely controlled conditions such as in a wind-wave tunnel. Moving averages of these spectra tend very close to the form proportional to –5.As the wave number becomes large, the effect of surface tension is incorporated, and the –4-line in the gravity wave range gradually continues to a –8/3-line in the capillary wave range, in accordance with the wind-wave tunnel data. Likewise, the –5-line gradually continues to a –7/3-line.Also, through a discussion on these results, is suggested the existence of a kind of general similarity in the structure of wind wave field.  相似文献   

4.
The maximum uptake rate (max) and affinity constant (K s) for nitrate and ammonium were estimated in the surface water of offshore Oyashio in May (spring) and September (summer), 1990. The average max/Chl.a for ammonium was 2.1 times larger than that of nitrate in both seasons. The average max/Chl.a for both nitrogens were 3.5 times larger in summer than in spring. Water temperature and size composition of phytoplankton population were related to the seasonal difference in the max/Chl.a. Phytoplankton population showed high affinity for both nitrogens in the spring and summer. In addition, the contribution of new production to total production was estimated by max[max–No3/(max–NO3+max–NH4)]. The spring value was in the range of 0.26 to 0.45 (mean±SD=0.35±0.092), and the values in spring bloom were especially a little over 0.4. The summer value was in the range of 0.30 to 0.37 (0.34±0.04).  相似文献   

5.
The strength of the vertical mixing in the bottom mixed layer near the continental shelf break in the East China Sea was directly measured with the Micro-Scale Profiler (MSP). It has been shown that there is no significant statistical relation between the turbulent energy dissipation and the degree of the stratificationN 2. It seems that the vigorous turbulence occurs not constantly but intermittently in the bottom mixed layer so that a large variation of is found depending on the time. In contrast to , the coefficient of the vertical eddy diffusivityK z is mostly determined byN such thatK z is large in the bottom mixed layer and small in the thermocline. Large value ofK z in the bottom mixed layer is also found in the time series ofK z estimated in terms of Richardson number calculated from the data obtained with electromagnetic current meters. The value ofK z more than 10 cm2s–1 frequently occur in the layer of 20–25 m thick just above the bottom.  相似文献   

6.
The vertical distribution of salts brought by the Bosphorus undercurrent is numerically evaluated. By multiplying the average vertical salinity gradient by the diffusion coefficient,K z , and the cross-section of the sea at the appropriate depth, we can determine the total vertical salt flux,Q(z). The derivative ofQ with respect toz depicts the salt source intensity distribution over depth. The highest intensity, Q/z, matches the 200 m depth level, i.e. the shelf edge. Below 1500 m, Q/z equals merely 0.1% of the value observed at a depth of 200 m. Above 37 m, salts are noted to sink, which corresponds to their outflow with the Bosphorus current. The distribution of Q/z and the respective values of mineral phosphorus and hydrogen sulphide are matched up.Translated by Vladimir A. Puchkin.  相似文献   

7.
Effects of the Ekman friction on the prograde (eastward) flows past a cylinder on a-plane are investigated when (=R 2/U, whereR is the cylinder radius andU the freestream speed)O(1) and(=2E k 1/2/R 0·O(1) where is the non-dimensional beta parameter and the ratio of the square root of the Ekman numberE k multiplied by 2 to the Rossby numberRo multiplied by the aspect ratio(=H/R, whereH is the fluid depth). Previous studies without the Ekman friction have shown that the-effect inhibits flow separation for pragrade flows through the asymptotic boundary condition by shifting the region of the adverse pressure gradient toward the rear stagnation point. It is found that the Ekman friction alleviates this-effect on the exterior flow. In the Ek 1/4-boundary layer, on the other hand, Ekman friction suppresses the vorticity advection along the wall, which tends to make the boundary layer thickness thin and delay the flow separation. The Ekman friction thus affects flow separation in a complicated manner. Details of the boundary layer structures and the separation angles are described for 0.3< <4.0 and 0.1<<1.5.  相似文献   

8.
A coastal ocean -coordinate model of Monterey Bay (MOB) with realistic bottom topography and coastlines is developed using the Princeton Ocean Model (POM) and grid generation technique (GGT) to study the horizontal pressure gradient errors associated with the MOB steep topography. The submarine canyon in MOB features some of the steepest topography encountered anywhere in the world oceans. The MOB grids are designed using the EAGEAL View and GENIE++ grid generation systems. A grid package developed by Ly and Luong (1993) is used in this study to couple grids to the model. The MOB model is tested with both orthogonal and curvilinear nearly-orthogonal (CNO) grids. The CNO grid has horizontal resolution which varies from 300 m to 2 km, while the resolution of the orthogonal grid is uniform with x = 1.25 km and y = 1.38 km. These grids cover a domain of 180 × 160 km with the same number of grid points of 131 × 131. Vertical resolutions of 25, 35 and 45 vertical sigma levels are tested. The error in the MOB are evaluated in terms of mean kinetic energy and velocity against various grids, vertical, horizontal resolution and distributions, and bottom topography smoothing. Simulations with various grids show that GGT can be used as another tool in reducing -coordinate errors in coastal ocean modeling besides increasing resolution and smoothing bottom topography. Topographical smoothing not only reduces topographic slope, but changes realistic topography. A CNO grid with a high grid density packed along steep slopes and Monterey Submarine Canyon reduces the errors by 40% compared to a rectangular grid with the same number of grid points. The CNO grid is more efficient than the rectangular grid, since it has most of its grids over water. The simulations show that the presented MOB -coordinate model can be used with a confidence regarding horizontal pressure gradient error.  相似文献   

9.
Observational data on air-sea boundary processes at the Shirahama Oceanographic Tower Station, Kyoto University, obtained in November, 1969, was analyzed and presented as an example representing the structure of growing wind-wave field. The condition was an ideal onshore wind, and the data contained continuous records of the wind speed at four heights, the wind direction, the air and water temperatures, the tides, and the growing wind waves, for more than six hours. The main results are as follows. Firstly, in both of the wind speed and the sea surface wind stress, rather conspicuous variations of about six-minute period were appreciable. Secondly, the three-seconds power law and its lemma expressed byH *=BT *3/2 and=2BT *–1/2, respectively, are very well supported by the data, whereH *(gH/u * 2) andT *(gT/u *) are the dimensionless significant wave height and period, respectively, the wave steepness,u * the friction velocity of air,g the acceleration of gravity, andB=0.062 is a universal constant. Thirdly, the spectral form for the high-frequency side of the spectral maximum is well expressed by the form of()= sgu*–4, where is the angular frequency and() the spectral density. The value of s is determined as 0.062±0.010 from the observational data. There is a conspicuous discrepancy between the spectral shape of wind waves obtained in wind-wave tunnels and those in the sea, the former containing well-defined higher harmonics of the spectral peak, and consequently there is an apparent difference in the values of s also. However, it is shown that the discrepancy of s may be eliminated by evaluating properly the energy level of the spectral form containing higher harmonics.  相似文献   

10.
Values of root mean square slope 0 and its variations -0 are estimated using the brightness field of an image of the surface of the sea near a speck of light. When 0 and -0 are defined it is highly important to take into account direct as well as dissipated solar radiation.The space-time analysis of the structure of the image brightness field is performed. This gives an opportunity to estimate dispersion relationship and the running effect of a brightness contrast packet. Comparison of the parameters obtained with the theoretical dispersion ratio of internal waves (IW) allows one to make a conclusion that IW surface manifestations are recorded in a frame.UDK 551.463.5  相似文献   

11.
The mechanism of the development of wind-waves will be proposed on the basis of the observed wave spectra in the wind tunnels and at Lake Biwa (Imasato, 1976). It consists of two aspects: One is that the air flow over the wind-waves transfers momentum concentratively to the steepest component waves and the other is that the upper limit of the growth of a wave spectral density is given by the ultimate value in the slope spectral density. The first aspect means that the wave field has the momentum transfer filter on receiving the momentum from the air flow. Wind-waves in the stage of sea-waves receive the necessary amount of momentum by the form drag,e.g. according to the Miles' (1960) inviscid mechanism, through a very narrow frequency region around a dominant spectral peak. On the other hand, wind-waves in the stage of initial-wavelets receive it according to the Miles' (1962a) viscous model through a fairly broad frequency region around the peak. The upper limit ofS max developing according to viscous mechanism is given byS max =6.40×10–4 k max –2cm2s andS max =2.03C(f max )–2cm2s(S max is the power density of the wave spectral peak with the frequencyf max ,k max is the wave number corresponding to the frequencyf max andC is the phase velocity).From the second aspect, the upper limit of the growth of wave spectral density is given by 33.3f –4cm2s in the frequency region of late stage of sea-waves. Therefore, the spectral peak, which has the largest value in the slope spectral density in the component waves of the wave spectrum, rises high over the line 4.15f –5cm2s. The energy is transported from the spectral peak to the high frequency part and to the forward face of a wave spectrum by nonlinear wave-wave interaction. This nonlinearity is confirmed by the bispectra calculated from the observed wind-wave data. In the stage of sea-waves, nonlinear rearrangement of the wave energy comes from a narrow momentum transfer filter, and, in the stage of initial-wavelets, it comes mainly from small corrugations and small steepness of the wave field.  相似文献   

12.
A new set of empirical formulas for the production rate and the number concentration of sea-water droplets on the sea surface are proposed, synthesizing past observation data of sea-salt particles in the sea and water droplets in wind-wave tanks. A new levelz c is introduced as the effective wind-sea surface where seawater droplets are produced. The new formulas are expressed in linear functions in logarithmic scales ofu*2/v p , a parameter to describe overall conditions of airsea boundary processes, whereu * is the friction velocity of air,v the kinematic viscosity of air and p the peak angular frequency of wind-wave part of wave spectra. A model of coexistence of spray droplets and suspended particles near the sea surface is proposed. As for the independent parameter, a comparison between the uses ofu*2/v p and ofu * 3 which was the traditional way of parameterization excluding wave measure, shows that the advantage of usingu*2/v p is statistically significant with a confidence limit 89% in F-test.  相似文献   

13.
The development process of wind-waves of which spectral peak distributes from 0.6 cps to 9.3 cps will be discussed on the basis of the wind tunnel experiments and of the field observations performed at Lake Biwa. The characteristics of power and slope spectra are here presented. The development process of these wind-waves is characterized by three stages;i.e. initial-wavelets, transition stage and sea-waves. In the wind tunnel experiments, the transition from the stage of the initial-wavelets to the transition stage occurs when the wave spectral peak arrives at the line 6.40×10–4 k –2cm2·sec (wherek is wave number) or when the slope spectral density at the frequencyf max becomes larger than 6.40×10–4 sec. In the stage of sea-waves, the component wave of a wave-spectral peak is steepest in the component waves. And the wave spectral peak develops along the line 1.02×102 f –6 cm2·sec (wheref is the frequency corresponding to the wave numberk) untill it reaches the line 33.3f –4cm2·sec, and thereafter develops along the latter line, which indicates the constant density of slope spectrum. It is suggested that the nonlinearity of wind-waves must become stronger as wind-waves develop. The effective momentum flux ws from the air flow to wind-waves in this stage is evaluated to be about 49% of the total stress 0.  相似文献   

14.
Bispectral analysis is applied to records of the vertical profile of the vertical temperature gradient in the oceanic thermocline in the San Diego Trough. The bispectra exhibit three notable features; (1) bispectral peaks at the points (0.2 m–1, 0.2 m–1) and (0.2 m–1, 0.1 m–1), (2) bispectral ridges along the lines ( 1= 0, 2= 0 and 1+ 2= 0 corresponding to peak wavenumbers 0 in power spectra, and (3) array of bispectral peaks of interval of 0.2 m–1 The results are compared with the bispectra of several modeled time series of spike-array type. The periodicity of 5 m found in the records seems to have two meanings: spacing of predominant spikes and wavelength of predominant sinusoidal wave. If this indicates the existence of internal waves having a vertical wavelength the same as the scale of homogeneous layers, it would suggest the possible importance of internal waves in the formation and maintenance mechanisms of oceanic microstructure.  相似文献   

15.
An attempt is made to find a relation betweenK, the absolute value of accumulation-dispersal coefficient of marine organisms referred to a region or a group (Kawai, 1986a), andL, the square root of the area of the region or the group over which the distribution density of organisms is averaged.K is estimated as shown below. For appropriate sampling time-intervals,K becomes greater than other coefficients such as population growth coefficient. Using this result, an order of magnitude ofK dependent onL is estimated from various data of temporal change in density. With the aid of a dependenceQL –2/3 (Kawai, 1985b), a relationKL –2/3 is predicted for 30 cmL 30 km, whereQ andK are the root-mean-square values of area-averaged horizontal divergence of near-surface flows and of the accumulation-dispersal coefficient, respectively. The reason whyK tends to have the order of magnitude of weak or mediumQ is discussed. The doubling-halving time of the distribution density due to accumulation-dispersal,T, is related toK byT=(loge2)/¦K¦L 2/3. Finally, sampling time-intervals to estimate accumulation-dispersal coefficients are referred to.  相似文献   

16.
Analysis is made of wind and wave data, which were obtained during the passage of Typhoon 8013 at an Ocean Data Buoy Station south of Honshu operated by the Japan Meteorological Agency, in order to investigate the wave dependence of sea-surface roughness parameter in the situation where wind waves are dominant with less significant swells. The data fit better the wave-dependent expression of the wind stress,z 0 p/u*=, than to Charnock's formula,gz 0/u*2=, wherez 0 is the roughness length, p the angular frequency of the spectral peak of wind waves,u* the friction velocity of air,g the acceleration of gravity, and are non-dimensional constants. The results are very similar to those of our previous study using data from an oil producing platform in the Bass Strait, Australia, although the type of observation system and the synoptic situation of the winds and wind waves were totally different.  相似文献   

17.
We compare the results obtained by using theoretical and semiempirical models developed for the evaluation of the dissipation rate of turbulent energy in a stratified ocean with independent distribution of this quantity established by the authors for the active layer of the Black Sea (50–300 m) by using a one-dimensional model taking into account the balance of heat, salt, and fluid inside the layer. It is shown that, in a layer with gradual variation of the Väisälä–Brunt frequency N as a function of depth, the predominant sink of the energy of motion into dissipation N 2 is ensured by the flow of energy through the spectrum of internal waves toward low frequencies and small vertical scales. On the contrary, in layers with abrupt drops of density as a function of depth (layers with jumps of density), an important role is played by the interface-type waves and the dependence of on N transforms into N .  相似文献   

18.
The general statement of a non-linear problem in modelling a barotropic tide for the limited part of a real shelf and the problems related to artificial division of the computation area in the ocean by a liquid boundary are considered. Linear combinations of various types of boundary conditions and analytical expressions are used to describe the tidal wave structure at the liquid boundaries. The results of test computations for basins with the simplest outlines are given. The model is used to reconstruct the spatial distribution of characteristics of theM 2 tide on the shelf of Guinea. The methods of computation and specification of unambiguously determined model parameters are described. Joint analysis of the modelling results and the field data has been carried out. The tidal map of theM 2 wave is plotted for the area under investigation.Translated by Mikhail M. Trufanov.  相似文献   

19.
Transmission and reflection problems when kissing≓ occurs among planetary and topographic Rossby waves in a two-layer ocean are studied. The slope parameterS(=dh 2/dx, whereh 2is the thickness of the lower layer) is assumed to have constant values in the regionsx 0 andxL and to vary linearly with the increase ofx in the region0xL (refer to Fig. 2 in the text). Furthermore, a wave is entered fromx=– and kissing is assumed to occur in the region (0<)x axxb(<L).It is found that a wave of the same type as the incident wave is mainly transmitted when the width of the region in which kissing occurs,L kiss(=tx b–xa), is smaller than kiss=2/K¦+ y/2), whereK is a representative wavenumber in the regionx ab, y is they-component of , and is the frequency. WhenL kiss is larger than kiss, on the other hand, the main wave transmitted is of a different type to the incident wave. As an application, transmission and reflection problems of planetary Rossby waves are considered, and it is shown that when an external (internal) planetary Rossby wave is entered, an internal (external) one can be transmitted due to the effect of kissing.  相似文献   

20.
Numerical solutions are examined for isolated, intense vortices as influenced by western bounding bottom topography through the use of a rigid-lid, two-layer primitive -plane numerical model. Systematic studies are made of the sense of rotation (cyclonic/anticyclonic), the consequence of varying the gradient of bottom slope, and the different vertical shear in a two layer ocean. In the basin with a bottom slope, the nearly barotropic anticyclonic vortex forms a modon-like vortex for S with fixedRo 2<O(1) (where is the ratio between the variation of the Coriolis parameter across the eddy to the Coriolis parameter in the center, S the topographic effect and,Ro 2 the Rossby number in the lower layer) and its generation is due to a compound effect of the planetary beta, topographic beta, avvection, and mirror image. The formation of the modon-like vortex and the propagation of the original vortex onto the bottom slope depends on the strength of slope gradient and the baroclinicity of the vortex. The nearly barotropic anticyclonic vortex evolves into the stronger upper ocean one with increasing S: the gradient of the bottom slope becomes steeper. Then the original vortex lives longer because the barotropic component of the energy is converted to the baroclinic one and it moves toward southeast in forming a modon-like vortex in the lower layer. The evolution of a vortex in the model results are compared to observational results of a Kuroshio warm core ring (KWCR) obtained from hydrographic data (June, 1985) and from NOAA satellite infrared images (April, 1985 to July, 1985). It is shown that a KWCR (June, 1985) is influenced by the western continental slope/shelf of the East Japan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号