首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using the classification scheme for planetary nebulae in the Magellanic Clouds using four criteria proposed in Paper I, all nebulae are divided into three classes on the basis of the mass of their central stars. The features of individual chemical abundances in the Magellanic Cloud planetary nebulae and the way in which these differ from the galactic planetary nebulae are investigated separately for each class of nebulae. The role of CN and ON cycling in intermediate mass star evolution is discussed.  相似文献   

2.
H α and [O  iii ] narrow-band, wide-field (7×7 deg2), CCD images of the Small Magellanic Cloud were compared, and a catalogue of candidate planetary nebulae and H α emission-line stars was compiled. The catalogue contains 131 planetary nebulae candidates, 23 of which are already known to be or are probable planetary nebulae or very low excitation objects. Also, 218 emission-line candidates have been identified, with 113 already known. Our catalogue therefore provides a useful supplement to those of Meyssonnier & Azzopardi and Sanduleak, MacConnell & Davis Phillip. Further observations are required to confirm the identity of the unknown objects.  相似文献   

3.
This paper presents new observations of 97 planetary nebulae in the Large Magellanic Cloud (LMC) obtained using the FLAIR system on the UK 1.2-m Schmidt Telescope. These nebulae are mostly at the fainter end of the known population, and about 75 per cent have not been observed before in spectroscopic mode. Radial velocities have been measured using cross-correlation techniques, and represent an increase of 66 per cent in the sample of LMC planetary nebulae with known radial velocities. The major line ratios are given, and are analysed in conjunction with published data. One-quarter of the faint nebulae are Type I objects with very strong [N II ] and [S II ] lines; most of the other faint nebulae have low density, low excitation and relatively strong [S II ] lines.  相似文献   

4.
Dependencies of galactic planetary nebula chemical abundances and their central star masses on the distance from the galactic plane are discussed.Z-dependencies of He/H, N/H, N/O and Ar/H and dependencies of He/H, N/H, N/O, Ne/H and Ar/H on central star mass are found. Three galactic planetary nebula distance scale samples are used and it is shown that the distance scale system (where distances of each planetary nebula mass class are determined with the separate scale) is the most reliable. The correlations obtained for the Magellanic Cloud planetary nebulae are used for comparison.  相似文献   

5.
It is shown that the planetary nebulae can be divided into three types according to the values of the mass of shell and a central star. The criteria are given using which one can determine the mass type of the nebula. The distance scale of each mass-type planetary nebulae is given. The distribution of planetary nebulae in the Galaxy, their formation rate, scale-height and other physical and kinematic characteristics are investigated. A catalogue of planetary nebulae emitting in the radio range is given.  相似文献   

6.
Localised collimated flows of ionized gas are found in two hydrogen deficient planetary nebulae, Abell 30 and Abell 78 as well as in the Honeycomb complex of interlocking shells in halo of 30 Dor in the Large Magellanic Cloud. One common feature of these flows, in seemingly disparate objects, is that they all terminate at around the same difference in radial velocity (with respect to that of the systemic radial velocity). A possible explanation involves high speed flows being decelerated by mass-loading. In Abell 30 and 78, mass is injected by clumps embedded in the fast wind. In the Honeycomb nebula, a supernova blast wave has pierced an old dense shell wall which adds mass to the post-shock flow via a boundary layer. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
Symbiotic systems, in particular symbiotic novae, have been suggested to be very early stages of planetary nebulae. Some of them have been described as going through a Wolf-Rayet phase. We argue that there may be a direct relation between symbiotic objects and planetary nebulae, and that the Wolf-Rayet phase is connected to an active spell of the hot companion. Symbiotic stars could lead to planetary nebulae with two central stars with different radiation temperatures and luminosities, where each has the power to ionize a planetary nebula on its own.  相似文献   

8.
Narrow-band [OIII] 500.7 nm images and ultraviolet spectrophotometry are obtained for 20 planetary nebulae (PNe) in the Magellanic Clouds using the Hubble Space Telescope (HST). Four objects show P Cygni-like features in the ultraviolet HST data, and/or broad emission complexes near the HeII 468.6 nm and CIV 580.6 nm lines in ground-based spectra. All objects are of excitation class four or lower, and all are compact and dense compared to other objects in the sample. The likelihood of detecting ultraviolet P Cygni-like profiles in future HST spectroscopy of other objects is discussed.  相似文献   

9.
Recent observations of multiple shell planetary nebulae confirm the existing subdivision into two morphological types: attached halo and detached halo. The multiple shell phenomenon appears in about twentyfive percent of round and elliptical planetary nebulae of theInstituto de Astrofisica de Canarias morphological survey. The analysis of these nebulae together with that of their central stars lead to the interpretation that detached halo nebulae are formed through discontinuous mass loss at the Asymptotic Giant Branch tip. The attached halo nebulae, instead, are probably produced via dynamical nebular shaping.  相似文献   

10.
In our previous work on the 3-dimensional dynamical structure of planetary nebulae the effect of magnetic field was not considered. Recently Jordan et al. have directly detected magnetic fields in the central stars of some planetary nebulae. This discovery supports the hypothesis that the non-spherical shape of most planetary nebulae is caused by magnetic fields in AGB stars. In this study we focus on the role of initially weak toroidal magnetic fields embedded in a stellar wind in altering the shape of the PN. We found that magnetic pressure is probably influential on the observed shape of most PNe.  相似文献   

11.
We have carried out a systematic search for the molecular ion CO+ in a sample of eight protoplanetary and planetary nebulae in order to determine the origin of the unexpectedly strong HCO+ emission previously detected in these sources. An understanding of the HCO+ chemistry may provide direct clues for the physical and chemical evolution of planetary nebulae. We find that the integrated intensity of the CO+ line may be correlated with that of HCO+, suggesting that the reaction of CO+ with molecular hydrogen may be an important formation route for HCO+ in these planetary nebulae.  相似文献   

12.
The status of planetary nebulae with Wolf-Rayet type central stars([WR] PN) remains one of the most important problems inthe investigation of planetary nebulae. We cannot claim to understand theevolution of low and intermediate-mass stars without answering the questionhow [WR] PN are created.Analyzing the statistical properties of the whole population of [WR] PNand comparing them to other planetary nebulae (non-[WR] PN) bringsimportant information on their origin and evolutionary status. In thisarticle I will summarize our results of this type of studies and show whatlimits they put on the possible evolutionary routes of [WR] PN creation.  相似文献   

13.
There are about 50 galactic planetary nebulae know to have [WR] type nuclei. We have compared their nebular properties with those of the other planetary nebulae in the Galaxy. We have found that the nebular morphological types are similarly distributed in the two groups. Bipolar nebulae constitute only 20% of the total in each group. The distribution of the nebular electron densities and abundance ratios N/O, He/H and C/O are the same in the two groups. The only marked difference is that nebular expansion velocities are larger in the group of planetary nebulae with [WR] central stars. We argue that the WR phenomenon does not preferentially occur in more massive central stars of planetary nebulae, contrary to what has been suggested in some former studies. We demonstrate that, for most of the observed [WR] type objects, the WR phenomenon cannot be triggered by a late helium shell flash event.The results of our investigation are published inAstronomy & Astrophysics 303, 893 (1995) and in the proceedings of the 2nd International Colloquium on Hydrogen-deficient Stars, C.S. Jeffery & U. Heber (eds), Astronomical Society of the Pacific Conference Series, Vol. 96, p. 209 (1996).  相似文献   

14.
The evolution of the central stars of planetary nebulae, interpreted as hot white dwarfs with liquefying cores, towards the cold white dwarf stage is discussed and theoretical (non-computational) evolutionary tracks are built for such central stars as they cool towards the crystallizing region. The conclusions seem to hint a picture in which crystalline white dwarfs can be looked at as final stages of the central stars of planetary nebulae.  相似文献   

15.
The He, C, N, and O abundances in more than 120 planetary nebulae (PNe) of our Galaxy and the Magellanic Clouds have been redetermined by analyzing new PNe observations. The characteristics of PNe obtained by modeling their spectra have been used to compile a new catalog of parameters for Galactic and extragalactic PNe, which is accessible at http://www.astro.spbu.ru/staff/afk/GalChemEvol.html. The errors in the parameters of PNe and their elemental abundances related to inaccuracies in the observational data have been analyzed. The He abundance is determined with an accuracy of 0.06 dex, while the errors in the C, N, and O abundances are 0.1–0.2 dex. Taking into account the inaccuracies in the corrections for the ionization stages of the elements whose lines are absent in the PNe spectra increases the errors in the He abundance to 0.1 dex and in the C, N, and O abundances to 0.2–0.3 dex. The elemental abundances in PNe of various Galactic subsystems and the Magellanic Clouds have been analyzed. This analysis suggests that the Galactic bulge objects are similar to type II PNe in Peimbert’s classification, whose progenitor stars belong to the thin-disk population with ages of at least 4–6 Gyr. A similarity between the elemental abundances in PNe of the Magellanic Clouds and the Galactic halo has been established.  相似文献   

16.
The results of a spectroscopic investigation of three possible planetary nebulae, K4- 53, K4- 55, and K4- 57, are presented. It is shown that K4- 53 and K4- 55 are planetary nebulae while K4- 57 can be considered with high probability to be one. The temperatures of the nuclei of these nebulae are determined by Ambartsumian’s method. The optical depths for Lc photons in the region of λ ≤ 912 Å are determined. An anomalously high nitrogen abundance is observed in K4- 55.  相似文献   

17.
We report the extragalactic radio-continuum detection of 15 planetary nebulae (PNe) in the Magellanic Clouds (MCs) from recent Australia Telescope Compact Array+Parkes mosaic surveys. These detections were supplemented by new and high-resolution radio, optical and infrared observations which helped to resolve the true nature of the objects. Four of the PNe are located in the Small Magellanic Cloud (SMC) and 11 are located in the Large Magellanic Cloud (LMC). Based on Galactic PNe the expected radio flux densities at the distance of the LMC/SMC are up to ∼2.5 and ∼2.0 mJy at 1.4 GHz, respectively. We find that one of our new radio PNe in the SMC has a flux density of 5.1 mJy at 1.4 GHz, several times higher than expected. We suggest that the most luminous radio PN in the SMC (N S68) may represent the upper limit to radio-peak luminosity because it is approximately three times more luminous than NGC 7027, the most luminous known Galactic PN. We note that the optical diameters of these 15 Magellanic Clouds (MCs) PNe vary from very small (∼0.08 pc or 0.32 arcsec; SMP L47) to very large (∼1 pc or 4 arcsec; SMP L83). Their flux densities peak at different frequencies, suggesting that they may be in different stages of evolution. We briefly discuss mechanisms that may explain their unusually high radio-continuum flux densities. We argue that these detections may help solve the 'missing mass problem' in PNe whose central stars were originally  1–8 M  . We explore the possible link between ionized haloes ejected by the central stars in their late evolution and extended radio emission. Because of their higher than expected flux densities, we tentatively call this PNe (sub)sample –'Super PNe'.  相似文献   

18.
The possibility of using broad absorption lines (on the order of 100 km/sec or more) of the Mg II 2800 doublet, formed in regions of planetary nebulae with fast collimated flows and, probably, manifested against the background of the short-wavelength wing of the Balmer continuum of the spectrum as indicators of such flows, is discussed. For this purpose, using existing analytical (dynamical) models of mass-loaded isothermal flows and numerical (photoionization) models of planetary nebulae, theoretical line profiles are calculated in the Sobolev approximation and their dependence on certain parameters is shown. An advantage of the proposed method consists in the possibility of revealing fast flows in faint, star-like planetary nebulae. Translated from Astrofizika, Vol. 42, No. 4, pp. 519–530, October–December, 1999.  相似文献   

19.
We present mid-infrared (MIR) photometry for 367 Galactic disc, bulge and Large Magellanic Cloud (LMC) planetary nebulae (PNe), determined using data acquired with the Spitzer Space Telescope , and through the Legacy Programs GLIMPSE II (Galactic Legacy Infrared Mid-plane Survey Extraordinaire II) and SAGE (Surveying the Agents of the Galaxy's Evolution). This has permitted us to make a comparison between the luminosity functions of bulge and LMC PNe, and between the MIR colours of all three categories of source. It is determined that whilst the  3.6 μm  luminosity functions of the LMC and bulge sources are likely to be closely similar, the [3.6]–[5.8] and [5.8]–[8-0] indices of LMC nebulae are different from those of their disc and bulge counterparts. This may arise because of enhanced  6.2 μm  polycyclic aromatic hydrocarbon emission within the LMC sources, and/or as a result of further, and more radical differences between the spectra of LMC and Galactic PNe. We also determine that the more evolved disc sources listed in the Macquarie/AAO/Strasbourg (MASH) catalogues of Parker et al. and Miszalski et al. have similar colours to those of the less evolved (and higher surface brightness) sources in the catalogue of Acker et al., a result which appears at variance with previous studies of these sources.  相似文献   

20.
We present a mosaic image of the 1.4-GHz radio continuum emission from the Large Magellanic Cloud (LMC) observed with the Australia Telescope Compact Array (ATCA) and the Parkes Telescope. The mosaic covers     with an angular resolution of 40 arcsec, corresponding to a spatial scale of ∼10 pc in the LMC. The final image is suitable for studying emission on all scales between 40 arcsec and the surveyed area. In this paper, we discuss (i) the characteristics of the LMC's diffuse and compact radio continuum emission, (ii) the fraction of the emission produced by thermal processes and the implied star formation rate in the LMC and (iii) variations in the radio spectral index across the LMC. Two non-standard reduction techniques that we used to process the ATCA visibility data may be of interest for future wide-field radio continuum surveys. The data are open to the astronomical community and should be a rich resource for studies of individual objects such as supernova remnants, H  ii regions and planetary nebulae as well as extended features such as the diffuse emission from synchrotron radiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号