首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The Medina Wrenth in the central Mediterranean is a transform fault connecting the plate collision in northwest Africa and northern Sicily with that occurring at the Aegean plate boundary, south of Greece. The more than 800 km long crescent-shaped wrench zone is currently seismically quiet but exhibits major deformation since 5 Ma within a belt 30–100 km wide. It forms the southern boundary of two microplates moving eastward with respect to Africa and Europe. A simple plate rotation model constrained by recent paleomagnetic data indicates that a continental Iblean microplate and a hybrid continental/oceanic Ionian microplate, separated along the Malta Escarpment, have rotated anticlockwise by 11° and 12°, respectively, around poles in southern Italy. These rotations involved some 100 km of dextral eastward movement relative to Africa of the Ionian Basin north of the Medina Wrench since 5 Ma. Combining the published 26° clockwise rotation of the Peloponnesus and northwest half of the Aegean with the 12° anticlockwise rotation of the Ionian microplate results in (a) a 99% agreement between the length of the seismic Benioff Zone beneath Greece and the total convergence of the microplates, and (b) an average rate of convergence across the Aegean plate boundary southwest of the Peloponnesus of 6.6 ± 1cm a−1 since the Miocene. Relative motion between microplates in a collision zone thus may be as much as 6 times faster than convergence between the major plates which spawned them, and they can be considered rigid to the first order over the time span involved.  相似文献   

2.
Palaeomagnetic results from 27 sites at five localities within the dismembered Baër-Bassit ophiolite of northern Syria are presented. The ophiolite forms part of a series of thrust sheets emplaced over Mesozoic carbonates of the Arabian platform in the middle Maastrichtian. A positive inclination-only area-wide tilt test applied to four locality mean remanences and positive fold and reversal tests from palaeohorizontal units (pillow lavas, lava flows) within one of these localities indicate that the ophiolite preserves pre-deformation magnetisations. Variable directions of remanence between localities demonstrate that the ophiolite has experienced extreme relative anticlockwise rotations on a kilometric scale. Within the most extensively sampled ophiolite massif (Bassit sheet) there is a progressive increase in rotation from north to south. The southernmost units at the lowest structural level in the imbricate thrust stack record the highest rotation (exceeding 200°). Although tectonic rotation during imbricate thrusting has been reported in a number of orogenic belts, the pattern of rotations in the Bassit sheet is difficult to explain by differential thrust sheet rotation. Instead, regional comparisons with the Hatay ophiolite of southern Turkey and the Troodos ophiolite of Cyprus suggest that a significant component of rotation may be ascribed to intraoceanic deformation of a coherent region of oceanic crust within the southern Neotethyan basin prior to ophiolite emplacement. The partially rotated Baër-Bassit ophiolite was then emplaced and structurally dismembered by thrust faulting. During the Late Tertiary the ophiolitic units were further rotated during the initiation and development of a major sinistral strike-slip fault zone, linking the Cyprus subduction zone to the Dead Sea Transform system. The extreme rotations observed in the study are therefore of composite origin, and reflect the complex development of structural fabrics within the ophiolite.  相似文献   

3.
Double difference relocations of the 1402 Kachchh events (2001–2006) clearly delineate two fault zones viz. south-dipping North Wagad fault (NWF) and almost vertical Gedi fault (GF). The relocated focal depths delineate a marked variation of 4 and 7 km in the brittle-ductile transition depths beneath GF and NWF, respectively. The focal mechanism solutions of 464 aftershocks (using 8–12 first motions) show that the focal mechanisms ranged between pure reverse and pure strike-slip except for a few pure dip-slip solutions. The stress inversions performed for five rectangular zones across the Kachchh rift reveal both clockwise and anticlockwise rotation (7–32°) in the σ1 orientation within the rupture zone, favoring a heterogeneous stress regime with an average N-S fault normal compression. This rotation may be attributed to the presence of crustal mafic intrusives (5–35 km depth) in the rupture zone of the 2001 Bhuj main shock. Results suggest a relatively homogeneous stress regime in the GF zone favoring strike-slip motion, with a fault normal N-S compression.  相似文献   

4.
The kinematics of two different processes are investigated, both of which have been described as rift propagation. Courtillot uses this term to describe the change from distributed to localised extension which occurs during the early development of an ocean basin. The term localisation is instead used here to describe this process, to distinguish it from Hey's type of propagation. Localisation generally leads to rotation of the direction of magnetisation.To Hey propagation means the extension of a rift into the undeformed plate beyond a transform fault. Detail surveys of the Galapagos rift have shown that the propagating and failing rifts are not connected by a single transform fault, but by a zone which is undergoing shear. The principal deformation is simple shear, and the kinematics of this deformation are investigated in some detail. The strike of most of the lineations observed in the area can be produced by such deformation. The mode of extension on the propagating rift appears to be localised for some periods but to be distributed for others. Neither simple kinematic arguments nor stretching of the lithosphere with conservation of crust can account for the observed variations in water depth.  相似文献   

5.
青藏高原东北隅似三联点构造特征   总被引:27,自引:0,他引:27  
在大陆内部,对于一定尺度的构造块体,似三联点构造是一种普通的构造形式。由于大陆内部块体旋转的普遍性,似三联点构造可形成顺旋型和逆旋型两种构造型式。  相似文献   

6.
Located among the South China block, Tibetan plateau, Alxa block and Yinshan orogenic belt, the Ordos block is famous for its significant kinematic features with stable tectonics of its interior but frequent large earthquakes surrounding it. After the destruction of the North China Craton, the integrity, rotation movement and kinematic relations with its margins are hotly debated. With the accumulation of active tectonics data, and paleomagnetic and GPS observations, some kinematic models have emerged to describe rotation movement of the Ordos block since the 1970's, including clockwise rotation, anticlockwise rotation, clockwise-anticlockwise-alternate rotation, and sub-block rotation, etc. All of these models are not enough to reflect the whole movement of the Ordos block, because the data used are limited to local areas.
In this study, based on denser geophysical observations, such as GPS and SKS splitting data, we analyzed present-day crustal and mantle deformation characteristics in the Ordos block and its surrounding areas. GPS baselines, strain rates, and strain time series are calculated to describe the intrablock deformation and kinematic relationship between Ordos block and its margins. SKS observations are used to study the kinematic relationship between crust and deeper mantle and their dynamic mechanisms, combined with the absolute plate motion(APM)and kinematic vorticity parameters. Our results show that the Ordos block behaves rigidly and rotates anticlockwise relative to the stable Eurasia plate(Euler pole: (50.942±1.935)°N, (115.692±0.303)°E, (0.195±0.006)°/Ma). The block interior sees a weak deformation of~5 nano/a and a velocity difference of smaller than 2mm/a, which can be totally covered by the uncertainties of GPS data. Therefore, the Ordos block is moving as a whole without clear differential movement under the effective range of resolution of the available GPS datasets. Its western and eastern margins are characterized by two strong right-lateral shearing belts, where 0.2°~0.4°/Ma of rotation is measured by the GPS baseline pairs. However, its northern and southern margins are weakly deformed with left-lateral shearing, where only 0.1°/Ma of rotation is measured. Kinematics in the northeastern Tibetan plateau and western margin of the Ordos block can be described with vertical coherence model with strong coupling between the crust and deeper mantle induced by the strong extrusion of the Tibetan plateau. The consistency between SKS fast wave direction and absolute plate motion suggests the existence of mantle flow along the Qinling orogenic belt, which may extend to the interior of the Ordos block. SKS fast wave directions are consistent with the direction of the asthenosphere flow in Shanxi Rift and Taihang Mountains, indicating that the crustal deformation of these areas is controlled by subduction of the Pacific plate to North China. The week anisotropy on SKS in the interior of Ordos block is from fossil anisotropy in the craton interior. After comparing with the absolute plate motion direction and deformation model, we deem that anisotropy in the interior of Ordos block comes from anisotropy of fossils frozen in the lithosphere. In conclusion, the Ordos block is rotating anticlockwise relative to its margins, which may comes from positive movement of its margins driven by lithospheric extrusion or mantle flow beneath, and its self-rotation is slight. This study can provide useful information for discussion of kinematics between the Ordos block and its surrounding tectonic units.  相似文献   

7.
In Turkey, neotectonic activity originated from the collision of the Arabian and Anatolian land masses during the Middle Miocene. As a result of the collision, westward escape of the Anatolian block introduced E-W compression in Western Turkey which began to be relieved by N-S extension. The North Anatolian Fault (NAF) is the major active strike-slip fault that was formed under the neotectonic regime. The rates of the motion along this fault estimated by several authors are in the range of 0.4–2.9 cm/a according to kinematic data. In Turkey, the first studies of crustal movements by geodetic methods were started in the west section of the NAF in 1972. So far, individual activities and studies coordinated by multidisciplinary projects have been realized in this region. The results obtained from available geodetic data indicate the motion of the Anatolian block relative to Eurasia.  相似文献   

8.
台湾地区地壳形变的弹性块体位错模型   总被引:3,自引:1,他引:2       下载免费PDF全文
在经典的非震形变位错模型中,地壳形变被认为是活动块体刚性运动和上部断层锁定影响的叠加,本文对此模型进行了改进: (1) 用活动块体整体运动和内部线性应变、旋转的贡献代替活动块体刚性运动的贡献;(2) 用分层介质地壳模型代替半无限介质模型计算断层锁定的影响. 利用改进后的非震形变位错模型,拟合了台湾地区1990~1995年间GPS观测资料. 结果显示,在东部海岸山脉区,约有30 mm·a-1的汇聚率被奇美断层消耗掉,运动速度从奇美断层向北迅速衰减. 在西部平原地区,南部断层是岛内锁定最为强烈的断层,该地区相应的也是史上灾害性地震多发的地区. 根据反演结果计算出的应变率与旋转率分布与前人结果在大部分地区一致,主应变率场显示台湾大部分地区存在近NW-SE方向的主压应变,主压应变方向呈扇形分布. 旋转率场显示台湾东部和南部地区存在着逆时针旋转率,而西部和北部地区则为顺时针旋转率.  相似文献   

9.
The Anatolian accretionary collage between Afro-Arabia and Eurasia is currently subject to two tectonic regimes. Ongoing slip of Arabia relative to Africa along the Dead Sea Fault Zone in the east is extruding crustal blocks away from the indenter by a combination of strike-slip and rotation. This zone of compression gives way to an extensional province in western Turkey, which also includes the eastern sector of Aegean Province. Although it is now well established that rotational deformation throughout Anatolia is distributed and differential, the sizes of the blocks involved are poorly understood. As a contribution towards evaluating this issue in central-east Turkey, we report palaeomagnetic study of the mid-Miocene Kepezda? and Yamada? volcanic complexes in central-south Anatolia (38–39.5°N, 37.5–39°E). A distributed sample through the Yamada? complex identifies eruption during an interval of multiple geomagnetic field reversals (40 normal, 36 reversed, 8 intermediate sites) with a selected mean defined by 63 sites of D/I = 335.4/51.1° (α95 = 4.4°). The smaller Kepezda? complex (8 reversed, 4 normal and 1 intermediate site) yields a comparable mean direction from 12 sites of 338.7/49.8° (α95 = 14.1°). In the context of a range of radiometric age evidence, two thick normal polarity zones within the Yamada? succession probably correlate with zones C5ACn and C5ADn of the Geomagnetic Polarity Time Scale and imply that the bulk of the volcanic activity took place between ∼15 and 13.5 Ma. Comparison of the palaeomagnetic results with the adjoining major plate indenters shows that the Yamada? complex has rotated CCW by 29.3 ± 5.2° relative to Eurasia; the much smaller dataset from the Kepezda? complex indicates a comparable CCW rotation of 26.0 ± 11.8° with respect to Eurasia. The Arabian Indenter has also been rotating CCW since mid Miocene times, and the block incorporating these two volcanic complexes north of the East Anatolian Fault Zone (EAFZ) is determined to have rotated 18.2 ± 6.0° CCW relative to the northern perimeter of Arabia. Comparison with data to the north identifies quasi-uniform rotation across a ∼200 km wide block extending from the Central Anatolian Fault Zone in the northwest to close to the East Anatolian transform fault zone in the south east. Although absence of suitable younger rocks does not permit the timing of this rotation to be determined in the study area, analogies with results from the Sivas Basin suggest that it is young, and followed establishment of the major transform faults. Rotation has evidently taken place around bounding arcuate faults and accompanied westward expulsion as the accretionary collage north of Arabia has been subject to ongoing post-collisional indentation.  相似文献   

10.
11.
汕头-吕宋岛岩石圈速度结构剖面,划分出华南陆缘古生代陆壳、陆架区晚古生代-中生代陆壳、陆坡带中生代-早第三纪过渡壳、新生代南海海盆洋壳及吕宋岛中生代-新生代岛弧陆壳与东吕宋海槽洋壳等地壳构造组分,并确定了上述地壳构造之间的边界断裂构造及其性质。结合地震震源分布及机制,初步确定了华南陆架盆岭构造带北、南两侧地震构造的控震构造与发震构造性质及其震源力学特征;1)指出1994年9月16日台湾浅滩7.3级地震属于板缘壳幔地震及造成一千公里有感范围的原因;2)马尼拉海沟的海底地堑构造与南海海盆岩石圈地幔上隆是马尼拉海沟俯冲带震源显示正断层性质的原因,且为被动的或转换俯冲带;3)东吕宋海槽仍属于菲律宾海俯冲带性质;吕宋岛东西两侧俯冲带岩石圈板片震源深度的准三层分布,可能表明俯冲带岩石圈板片存在相应的低速滑移层。  相似文献   

12.
云南地区地壳速度结构的层析成像研究   总被引:18,自引:11,他引:7       下载免费PDF全文
利用地震波到时和体波层析成像方法反演了云南地区的P波速度结构,根据不同深度的速度异常分析了主要断裂和区域动力作用的深部效应,揭示出壳内低速层的分布范围以及与下地壳流动的联系.研究结果表明,哀牢山-红河断裂两侧的地壳速度结构存在明显的差异,滇中地区的速度异常分布与小江断裂、元谋断裂、程海断裂等南北走向的断裂一致,反映了青藏东部地壳块体顺时针旋转产生的构造效应;滇西南的速度异常分布与哀牢山-红河断裂、无量山断裂、澜沧江等断裂的走向平行,显示了印支块体朝东南方向挤出产生的影响;沿着南汀河断裂分布的低速异常则与印缅块体侧向挤压引起的构造活动有关.壳内低速异常具有分层和分区特征:在哀牢山-红河断裂西侧和澜沧江之间主要分布在地壳中上部,在小江断裂和元谋断裂附近分布在地壳中下部,在滇中地区则广泛分布于地壳底部至莫霍面附近,东、西两侧分别受到小江断裂和哀牢山-红河断裂的限制.其中攀西地区的低速异常与小江断裂和元谋断裂在此附近交汇形成的热流传输通道以及张裂时期强烈的壳幔热交换有关;在哀牢山-红河和澜沧江地区,除了印支块体向东南方向的挤出之外,印缅块体的侧向挤压和向东俯冲也对地壳深部的构造变形产生了一定的影响,由此引发的地幔上涌将导致热流物质沿着断裂通道进入地壳形成低速层.因此,哀牢山-红河断裂不仅在地壳浅部是分隔印支块体和华南块体的地质界限,也是控制两侧区域深部构造变形和壳内韧性流动的分界.  相似文献   

13.
The residual aeromagnetic and gravity anomalies of inner East Anatolia, surveyed by the Mineral Research and Exploration (MTA) of Turkey, display complexities. Some faults, which are known and new lineaments, are drawn from maxspot map derived from the location of the horizontal gradient of gravity anomalies. Tectonic lineaments of inner East Anatolia exhibit similarities to the direction of East Anatolian Fault Zone. Anticlockwise rotation, approximately −30°, defined from disorientations of aeromagnetic anomalies. The lineaments obtained from maxspots map produced from the gravity anomalies and disoriented aeromagnetic anomalies are in-line with the mobilistic system revealed by the palaeomagnetic data. These Alpine age continental rotations caused westward wrenching of the global lithosphere and led to significant tectonic reactivation and deformations. GPS measurements, current tectonic knowledge and the results of the evaluation of potential field data were combined in a base map to demonstrate similarities.  相似文献   

14.
Quasi-trijunction is a type of popular structure for certain scale tectonic blocks in a continent. There are two kinds of quasi-trijunction in the conjoining area formed due to rotation of continental blocks. They are the clockwise type and the anticlockwise type of quasi-trij unction. The shape of a quasi-trij unction may be gradually changed associated with block rotation and tectonic evolution, but, sediments and structure in the conjoining area can record the history of tectonic evolution. Thus, studying a quasi-trij unction can reveal regional tectonic evolution.Regional tectonic movement, plane strain partitioning and characteristics of seismic activity can be studied based on kinematics and geometric analysis of a quasi-trijunction.The quasi-trijunction is a surface structure controlled by deep crustal movement. Tectonic activity may be different in three branches. In the quasi-trijunction in the northeastern corner of Qinghai-Xizang Plateau, the NWW-trending Qilianshan-Hexi corridor fault zone w  相似文献   

15.
利用郯庐断裂带中段附近10个宽频带台站的远震波形资料,基于上地幔地震各向异性来分析郯庐断裂带中段深部构造特征。本研究得到,郯庐断裂带中段深部平均快波偏振方向为93.8°,即郯庐断裂带中段深部主张应变(张应力)方向,对照GPS资料和地震资料的研究表明,郯庐断裂带中段地壳和深部上地幔的形变存在总体的一致性,即郯庐断裂带中段岩石层的形变具有统一特征,地壳与深部上地幔处于相似的应力应变状态中。  相似文献   

16.
The Dalrymple Trough marks part of the transform plate boundary between India and Arabia in the northern Arabian Sea. Oblique extension is presently active across this portion of the boundary at a rate of a few millimetres per year, and seismic reflection profiles across the trough confirm that it is an extensional structure. We present new swath bathymetric and wide-angle seismic data from the trough. The bathymetric data show that the trough is bounded by a single, steep, 3-km-high scarp to the southeast and a series of smaller, en-echelon scarps to the northwest. Wide-angle seismic data show that a typical oceanic crustal velocity structure is present to the northwest, with a crustal thickness of ~ 6 km. There is an abrupt change in crustal thickness and velocity structure at the northwestern edge of the trough, and the trough itself is underlain by 12-km-thick crust interpreted as thinned continental crust. Therefore we infer that Dalrymple Trough is an unusual obliquely extending plate boundary at which continental crust and oceanic crust are juxtaposed. The extensional deformation is focused on a single major fault in the continental lithosphere, but distributed over a region ~ 60 km wide in the oceanic lithosphere.  相似文献   

17.
王恒  杨振宇 《地球物理学报》2019,62(5):1789-1808
印度—欧亚板块碰撞以来青藏高原内部及其周缘地区经历了复杂的构造演化,复杂构造变形区的复合构造使得古地磁的数据解释究竟代表区域的构造旋转还是只能反映局部的构造变形一直是备受关注的问题.本文通过采集川滇地块西缘渔泡江断裂东侧三岔河地区白垩纪红层古地磁样品,揭示采样区差异性旋转并探讨川滇地块西部自中新世以来的构造演化规律.前人的地质调查表明川滇地块渔泡江断裂东侧上白垩统赵家店组地层发育倾伏褶皱.三岔河剖面以三岔河镇为界分为南北两段,三岔河南段剖面高温剩磁分量平均方向在倾斜校正后Ds=29.3°,Is=45.7°,ks=54.3,α95=6.6°,倾伏地层产状校正后Ds=30.6°,Is=46.6°,ks=69.3,α95=5.8°;而三岔河北侧剖面高温剩磁分量平均方向在倾斜校正后Ds=350.4°,Is=42.1°,ks=69.4,α95=9.2°,倾伏地层产状校正后Ds=347.4°,Is=41.9°,ks=96.6,α95=7.8°;两组高温剩磁分量均通过了褶皱检验,表明其获得于褶皱形成之前.相对于东亚稳定区80Ma古地磁极,三岔河南侧剖面发生了20.5°±4.8°的顺时针构造旋转量,与楚雄盆地核部之间不存在差异性旋转;但三岔河镇以北剖面却发生了22.7°±6.6°的逆时针旋转.综合分析川滇地块内部的古地磁数据表明自中新世以来川滇地块南部楚雄盆地经历了约20°的顺时针构造旋转,而三岔河镇北侧经历了约20°逆时针旋转.进一步分析表明三岔河北侧剖面相对于南侧剖面经历了约40°的逆时针旋转,可能由于研究区的滑脱构造导致岩石薄弱层拆离滑脱所引起.  相似文献   

18.
19.
Superimposed on a regional pattern of oroclinal bending in the Aegean and west Anatolian regions, the coastal region of western Anatolia, shows a complex and chaotic pattern of coexisting clockwise and counterclockwise rotations. Here, we report new palaeomagnetic data from the eastern Aegean island of Chios, to test whether this fits the regional palaeomagnetic pattern associated with the Aegean orocline, or should be included in the narrow zone of chaotic palaeomagnetic directions. Therefore, a combined palaeomagnetic study of Miocene sediments and volcanic rocks has been carried out. Thermal and AF demagnetization of a 130-m thick Middle Miocene succession from the Michalos claypit allowed a stable component of both polarities to be isolated while rock magnetic experiments showed that the main magnetic carrier is magnetite. When compared with the Eurasian reference, the mean declination of 348 ± 5.1° implies 15° of counterclockwise rotation since Middle Miocene times. The obtained shallow inclination of 38 ± 6.7° was corrected to 61.8 ± 3.9°, by applying the elongation/inclination correction method for inclination shallowing. This result is similar to the expected inclination of 58° for the latitude of Chios. The palaeomagnetic analysis (demagnetization treatment and corresponding rock magnetic measurements) of the volcanic rocks identify a stable, predominantly normal, ChRM with poorly constrained mean declination of about 290 ± 19.8° based on five successfully resolved components. The significantly different palaeomagnetic results obtained from an island as small as Chios (and a very short distance), and the relatively large rotation amounts do not fit the regional palaeomagnetic direction of Lesbos and basins in northwestern Turkey which show little or no significant rotation. We thus prefer to include Chios in the coastal zone of chaotic rotations, which may represent a previously inferred tectonic transfer zone that accommodates lateral differences in extensional strain within the Aegean back-arc.  相似文献   

20.
巴颜喀拉块体北东地区现今水平运动与变形   总被引:2,自引:0,他引:2  
本文利用GPS数据研究了巴颜喀拉块体北东地区现今水平运动与变形特征。 在球坐标系中解算了各应变分量, 分析了应变率场的空间分布特征, 并与地球物理学和地震地质学研究结果进行了综合对比分析。 最新的GPS速度场结果表明, 巴颜喀拉块体北东地区与高原整体运动性质一样具有顺时针向南东方向旋转的特征, 自西向东和北东方向测站水平运动速度呈现明显的衰减特征。 应变场结果显示, 研究区以北东向的主压应变为主, 伴随着近北西向的张性应变。 应变较强的区域主要分布在活动块体的边界断裂东昆仑断裂带的东段塔藏段和龙门山断裂带上。 东昆仑断裂带东段塔藏段的主压应变明显, 结合地震地质和活动构造资料, 认为东昆仑断裂带东段塔藏段的运动性质自西向东发生了改变, 水平滑动速率逐渐减小, 垂向运动逐渐增强。 研究区GPS速度场和应变场的这一变形特征表明, 青藏高原内部的块体运动特征较为明显, 变形主要集中在作为活动块体边界的活动断裂带上, 边界断裂带的运动特征在调节活动块体间的相互运动中起着重要作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号