首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Field active body temperatures (Tb) and operative temperatures (Te) were assessed in a population of Uromastyx aegyptia microlepis at Mahazat as-Sayd Protected Area, Saudi Arabia. In summer Tb ranged between 23.2 and 47.2 °C, in winter between 23.0 and 45.1 °C and in spring between 25.5 and 45.9 °C. There is a significant difference between respective Tb and Te distributions which suggests that U. a. microlepis is an active thermoregulator. Above ground activity is very variable between seasons, with the highest activity level in spring. In winter the animals showed an unimodal activity profile. In spring and summer the lizards exhibit bimodal activity profiles with afternoon activity being generally lower than morning activity levels. Species distribution models were calculated to estimate the future impact of global warming on this taxon. Estimates on the basis of temperature data suggest that the range size on the Arabian Peninsula might be stable but with a remarkable decrease of environmental suitability of up to 70-80%. Based on a synthesis of thermo-ecological data and species distribution models we consider climate warming as a potential threat to the survival of the species.  相似文献   

2.
Land degradation and global warming are currently highly active research topics. Land degradation can both change land cover and surface climate and significantly influence atmospheric circulation. Researches have verified that carbon dioxide (CO2) and methane (CH4) are major greenhouse gases (GHG) in the atmosphere and are directly affected by human activity. However, to date, there is no research on the spatial distribution of GHG concentrations and also no research on how land degradations affect GHG concentrations in arid and semi-arid regions. In this study, we used GHG data from the ENVIronment SATellite (ENVISAT) and the Greenhouse gases Observing Satellite (GOSAT), the Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature (LST) data from the MODerate resolution Imaging Spectroradiometer (MODIS) and precipitation data from ground stations to analyze the way land degradation affects GHG concentrations in northern China and Mongolia, which exhibit the most serious land degradation process in East Asia. Our research revealed that the CO2 and CH4 concentrations (XCO2 and XCH4) increased from 2003 to 2009 and then decreased into 2011. We used geostatistics to predict and simulate the spatial distribution of XCO2 and XCH4 and found that the distribution of XCO2 displays a seasonal trend and is primarily affected by plant photosynthesis, soil respiration and precipitation. As the distribution of XCH4 is mainly affected by the sources' distribution, microbial processes, LST and submarine hydrate, the CH4 concentration presents no obvious seasonal changes and the high XCH4 values are primarily found in northeast and southeast China. Land degradation increases the concentration of GHG: the correlation coefficient between NDVI and XCO2 is R2 = 0.76 (P < 0.01) and the value between NDVI and XCH4 is R2 = 0.75 (P < 0.01).  相似文献   

3.
Piñon (Pinus edulis)-juniper (Juniperus monosperma)-ecosystems increased substantially in the western USA during the 20th century. Sustainability of these ecosystems primarily depends on soil quality and water availability. This study was undertaken with the objective of assessing the effect of tree species on soil physical quality in a semi-arid region in the western part of Sugarite Canyon, northeast of Raton, Colfax County, NM (37°56′32″N and 104°23′00″W) USA. Three cores and three bulk soil samples were obtained from the site under the canopy of three juniper, Gambel oak (Quercus gambelii) and piñon trees for 0–10 and 10–20 cm depths. These samples were analyzed for particle size distribution, soil bulk density (ρb), water stable aggregation (WSA), mean weight diameter (MWD) of aggregates, pH, electrical conductivity (EC) and soil organic carbon (SOC) and total nitrogen (TN) concentrations and stocks. Sand content was greater under juniper (48%) than oak (32%), whereas clay content followed the opposite trend. The ρb, WSA, MWD, pH and EC were similar under juniper, piñon, oak canopies for both depths. Estimated (from Philip and Green and Ampt infiltration models) and measured water infiltration parameters did not vary among these sites and were in accord with the values for ρb, WSA and MWD. The SOC concentrations and stocks were greater under oak (43.1 Mg ha−1 for 0–10 and 37.5 Mg ha−1 for 10–20 cm depths) than piñon (23.3 Mg ha−1 for 0–10 and 18.5 Mg ha−1 for 10–20 cm depths). The TN concentrations were greater under oak (3.4 g kg−1) than piñon (1.7 g kg−1) for the 0–10 cm depth only. Accumulation of detritus material under tree canopies reduced soil compaction and crusting caused by raindrop impact and increased SOC, and TN concentrations, and water infiltration. Coefficients of variation ranged from low to moderate for most soil properties except infiltration rate at 2.5 h, which was highly variable. Overall, soil quality for each site was good and soil aggregation, water infiltration and SOC concentrations were high, and soil ρb was low.  相似文献   

4.
Annual above-ground net primary production (ANPP), evapotranspiration (ET) and water use efficiency (WUE) of rangeland have the potential to provide an objective basis for establishing pricing for ecosystem services. To provide estimates of ANPP, we surveyed the biomass, estimated ET and prepared a water use efficiency for dwarf shrublands and arid savanna in the Riemvasmaak Rural Area, Northern Cape, South Africa. The annual production fraction was surveyed in 33 MODIS 1 km2 pixels and the results regressed against the MODIS fPAR product. This regression model was used to predict the standing green biomass (kg DM ha−1) for 2009 (dry year). Using an approach which combines potential evapotranspiration (ET0) and the MODIS fPAR product, we estimated actual evapotranspiration (ETa). These two models (greening standing biomass and ETa) were used to calculate the annual WUE for 2009. WUE was 1.6 kg DM mm−1 ha−1 yr−1. This value may be used to provide an estimate of ANPP in the absence of direct measurements of biomass and to provide a comparison of the water use efficiency of this rangeland with other rangeland types.  相似文献   

5.
Resolving uncertainty in the carbon cycle is paramount to refining climate predictions. Soil organic carbon (SOC) is a major component of terrestrial C pools, and accuracy of SOC estimates are only as good as the measurements and assumptions used to obtain them. Dryland soils account for a substantial portion of global SOC, but the pool dynamics are highly uncertain. One crucial component of accurate estimates of SOC on an areal basis is bulk density (ρb), the mass of soil per unit volume. Here, we review methods used for calculating ρb and assess their prevalence. We show how treatment of coarse fragments (particles >2 mm diameter) influences ρb values and discuss the implications for SOC estimates in drylands. In four dryland examples, methods that varied in their treatment of coarse fragments led to substantial (up to 26%) differences in ρb. Calculated SOC pools responded proportionally, with SOC differing by up to 518 g C m−2. We suggest a revised method for accounting for coarse fractions in ρb calculations. A large portion of the world’s soils, particularly in drylands, are fine enough to allow ρb determination with cores, but contain coarse fragments that substantially impact SOC mass estimates if not explicitly considered.  相似文献   

6.
Despite low growth rates, plants in arid areas have a strong ability to modify soil surface properties affecting ecosystem processes and community dynamics. But our knowledge on species effects on soil properties in these areas comes largely from observational studies, increasing the risk of confounding factors and precluding estimations of rates of change. We evaluated changes in soil surface properties underneath Acacia salicina, Pinus halepensis and Eucalyptus occidentalis in a 10-year-old common garden experiment established on a degraded Stipa tenacissima steppe in southern Tunisia. The three species tested improved soil properties compared to those of open areas. Acacia salicina ranked first as soil modifier as the soil underneath this species showed higher total organic carbon, total nitrogen, available phosphorus, soil CO2 efflux and infiltration rate, and lower soil hydrophobicity than soil in open areas. The richness of vascular plants was higher under A. salicina than under the other types of cover. This species showed higher ability to improve microsite conditions and foster succession. Short rotations of A. salicina could thus be employed for the restoration of degraded S. tenacissima steppes provided that other aspects of its ecology are controlled. Pinus halepensis represents a good alternative when native species are a priority, albeit facilitative ability is lower.  相似文献   

7.
Species-specific allometric models were developed to predict aboveground biomass (AGB) of eight woody species in the Borana rangelands, Ethiopia. The 23 equations developed (8 species; three biomass components: total aboveground, stem and branches) fit the data well to predict total AGB and by components for each of the species (r2 > 0.70; p < 0.001). The AGB of tree shaped species (e.g., Acacia bussei and Acacia etabaica) were significantly predicted from a single predictor (circumference of the stem at ankle height), with a high coefficient of determination (r2 > 0.95; p < 0.001). In contrast, the AGB of bushy shrubs (e.g., Acacia oerfota) was more effectively predicted by using the canopy volume (r2 = 0.84; p < 0.001). Shrubs with a tall stem and an umbrella-like canopy structure (e.g., Acacia mellifera) were most accurately predicted by a combination of both circumference of the stem at ankle height and canopy volume (r2 = 0.95; p < 0.001). Hence, our species-specific allometric models could accurately estimate their woody aboveground biomass in a semi-arid savanna ecosystem of southern Ethiopia. These equations will help in future carbon-trade discussions in times of climate change and CO2 emission concerns and mitigation strategies.  相似文献   

8.
To increase our understanding of soil water and nitrogen use strategies of invasive Tamarix ramosissima during dry seasons, the vertical distributions of fine roots and their associations with soil properties were examined in the Virgin River floodplain, southern Nevada, United States. We measured morphological traits of fine roots, such as fine-root mass density, fine-root length density, specific root length and specific root area at 10 cm increments to a depth of 2 m. Soil properties were analyzed at 20 cm increments. More than 60% of fine root length and biomass was concentrated at depths between 20 and 60 cm. Soil nitrogen (N) concentration had strong and positive relationships with fine-root mass and length densities, suggesting that the fine-root distribution may be influenced by soil N availability. A weak but positive relationship was observed between soil moisture and fine-root mass density. Soil salinity had no relationship with root morphological traits. These findings suggest that T. ramosissima fine roots may contribute to N uptake from the upper soil layers during dry seasons. This might be an important advantage over native riparian tree species in arid riparian areas of the southwestern United States.  相似文献   

9.
Mean tree biomass and soil carbon (C) densities for 39 map sheet grids (1° lat. × 1.5° long.) covering the Acacia woodland savannah region of Sudan (10–16° N; 21–36° E) are presented. Data from the National Forest Inventory of Sudan, Harmonized World Soil Database and FAO Local Climate Estimator were used to calculate C densities, mean annual precipitation (MAP) and mean annual temperature (MAT). Above-ground biomass C and soil organic carbon (SOC, 1 m) densities averaged 112 and 5453 g C m−2, respectively. Below-ground biomass C densities, estimated using root shoot ratios, averaged 33 g C m−2. Biomass C densities and MAP increased southwards across the region while SOC densities were lowest in the centre of the region and increased westwards and eastwards. Both above-ground biomass C and SOC densities were significantly (p < 0.05) correlated with MAP (rs = 0.84 and rs = 0.34, respectively) but showed non-significant correlations with MAT (rs = −0.22 and rs = 0.24, respectively). SOC densities were significantly correlated with biomass C densities (rs = 0.34). The results indicated substantial under stocking of trees and depletion of SOC, and potential for C sequestration. Up-to-date regional and integrated soil and forest inventories are required for planning improved land-use management and restoration.  相似文献   

10.
In this article we evaluate the potential use of Cladonia foliacea tissue N content, C:N ratio, and phosphomonoesterase (PME) activity as biomarkers of N deposition by means of a field experiment. In order to do this, we continuously added NH4NO3 to a semi-arid shrubland at four rates: 0, 10, 20 and 50 kg N ha−1 yr−1 starting in October 2007. Tissue N content and C:N ratios, considered as N stress indicators, significantly increased and decreased, respectively, after 1.5 years. The response found suggests N saturation above 20 kg N ha−1 yr−1. After 2.5 years, extracellular PME activity increased with 20 kg N ha−1 yr−1 and this was attributed to an induced nutritional (N to P) imbalance. Above this threshold, PME significantly decreased as a consequence of the physiological stress caused by extra N. Effects on PME were dependent on the soil properties (pH and Ca and Mg availability) experienced by C. foliacea. PME response suggests a critical load of ∼26.4 kg N ha−1 yr−1 (20 kg N ha−1 yr−1 + background) for this lichen. Further tissue chemistry and PME evaluations in C. foliacea and soil surveys conducted along wide N deposition gradients will confirm the potential use of this species as a biomonitor of N pollution and the importance of soil properties on its ability to respond to atmospheric reactive N.  相似文献   

11.
High resolution palaeoecological studies of the Arabian Peninsula for the late Quaternary period are scarce. Consequently, little is known about time-dependent relationships between vegetation, environment and the development of human settlements in this area. To help fill this gap for the arid Hajar mountains of northern Oman, a 20 m deep profile in a sediment-filled depression near an oasis settlement was analysed for its physico-chemical properties, pollen and spores and other palynomorphs. Charcoal frequencies in combination with geochemical data provided evidence of an Early Holocene increase of rainfall. The onset of dryer conditions at about 8 ka was indicated by charcoal frequencies and geochemical data as were previously unrecognised short humid periods dated to 5.7, 5 and 4.4 ka. The upper 4 m of sediments contained a 4300 year-old pollen profile reaching into the archaeologically important Umm al-Nar period characterized by increased settlement activities throughout Oman. Variation in mollusc shell frequency and periodic peaks of NH4-N suggested only minor local variations of rainfall throughout the last 2000 years. The sudden appearance of Olea spec., Ziziphus and Fabaceae pollen since about 500 years ago points to a late onset of oasis agriculture nearby.  相似文献   

12.
Juniperus communities are found on over 50 × 106 ha in arid and semiarid habitats in southwestern North America. The drought tolerant sedge Carex planostachys occurs below the canopy in some of these communities. Cover and biomass of C. planostachys are high below the canopy and low in associated gaps. The purposes of this study were to investigate the temporal and spatial physiologic response of C. planostachys to abiotic changes, and determine it's light response characteristics from four contiguous microsites. Net photosynthesis was highest in spring when temperature was cooler and soil water higher, but low carbon uptake continued during summer drought. In addition, C. planostachys demonstrates a capacity to recover from extreme drought, despite water potential measured below ?9.0 MPa. Based on physiological light response curves and gas-exchange measurements, C. planostachys appears tolerant of shaded and full sun habitats. Light levels below the canopy were reduced compared to the gaps, but light saturation of C. planostachys did not change and net CO2 uptake was only reduced slightly. Carbon uptake was coupled to light levels and not soil moisture. Observed differences in physiological attributes and variation in C. planostachys cover and biomass correspond to the presence or absence of the canopy. Low light compensation points, coupled with reduced respiratory demand, maximize photosynthetic gain in low light microsites. C. planostachys appears to acclimate across a range of light regimes, suggesting photosynthetic plasticity, allowing growth and survival in diverse light microhabitats. C. planostachys, tolerant of drought, appears anisohydric and demonstrates a capacity to acclimate to sun and shaded habitats, which could allow it to occur across a wider range of arid areas.  相似文献   

13.
Service accessibility and urban transportation choices are crucial in cities' endeavours for securing social equality and environmental sustainability. They are particularly relevant when the public service network is to be rationalized. In this paper we provide a practical example of comparing the impacts of current varying service allocation strategies on travel behaviour and the resulting carbon dioxide (CO2) emissions. We take libraries as a local public service to examine the CO2 emissions resulting from residents' library trips in the capital region of Finland. Our analyses are based on data on library use (library loan database, N = 420,000), accessibility (comparable models of travel-time by car, public transportation and non-motorized transport) and customer transport choices (survey, n = 584). Our results show that (1) 52% of library customers use a library that is accessible from their home with minimum CO2 emissions (the “climate-optimal” facility provider), (2) the remaining 48% that choose a non-optimal facility provider produce nearly 90% of the total CO2-emissions related to library customer flows and (3) the service allocation strategies of the different municipalities lead to markedly different CO2-emission patterns resulting from service usage. To conclude, sustainability measures (in our case the CO2 burden) provide useful information on the impact of a service network structure which may be used alongside economic rationales.  相似文献   

14.
基于PTFs的干旱地区土壤饱和导水率的尺度扩展   总被引:2,自引:0,他引:2  
土壤饱和导水率的空间分布是流域水文模拟及溶质运移研究的先决条件.基于塔里木河干流108个剖面的土壤质地、有机质及容重等测试数据,运用4种土壤传递函数(PTFs)进行土壤饱和导水率预测与检验,分析土壤饱和导水率的空间变异性并计算合理采样数量,并通过尺度上推的方法预测流域尺度土壤水力参数的空间分布特征.结果表明:Campbell模型为4种PTFs模型中最适合本研究区的土壤传递函数.从空间分布的预测结果来看,不同层土壤饱和导水率的分布特征具有相似性,而深层土壤饱和导水率大于浅层.  相似文献   

15.
Soils of arid regions of Central Asia contain salts of different types that may differentially affect seed germination and plant development. We studied effect of NaCl, Na2SO4, 2NaCl + KCl + CaCl2 and 2Na2SO4+K2SO4+MgSO4 on germination of Kochia prostrata and Kochia scoparia seeds under a range of concentrations from 0.5 to 5% and at two constant temperature regimes +22 °C and +6 °C. The observed salt tolerance limit of germination at constant temperature +22 °C for both species was 5-6%, while at low temperature (+6 °C) this limit was 2%. The salt tolerance of young plants (before flowering) was 3% for NaCl. Low concentrations of sulfuric and mixed salts had a stimulating effect on seed germination in K. prostrata. Despite similarity of salt-tolerance limits the studied species showed a significant difference in seed recovery ability, i.e. the ability of ungerminated, salt-soaked seeds to germinate after transfer to fresh water. K. scoparia demonstrated a full germination recovery after seed transfer to distilled water while K. prostrata showed only a partial recovery.  相似文献   

16.
《Geomorphology》2001,36(3-4):187-202
Drainage density (Dd), defined as the total length of channels per unit area, is a fundamental property of natural terrain that reflects local climate, relief, geology, and other factors. Accurate measurement of Dd is important for numerous geomorphic and hydrologic applications, yet it is a surprisingly difficult quantity to measure, particularly over large areas. Here, we develop a consistent and efficient method for generating maps of Dd using digital terrain data. The method relies on (i) measuring hillslope flow path distance at every unchanneled site within a basin, and (ii) analyzing this field as a random space function. As a consequence, we measure not only its mean (which is half the inverse of the traditional definition of drainage density) but also its variance, higher moments, and spatial correlation structure. This yields a theoretically sound tool for estimating spatial variability of drainage density. Averaging length-to-channel over an appropriate spatial scale also makes it possible to derive continuous maps of Dd and its spatial variations. We show that the autocorrelation length scale provides a natural and objective choice for spatial averaging. This mapping technique is applied to a region of highly variable Dd in the northern Apennines, Italy. We show that the method is capable of revealing large-scale patterns of variation in Dd that are correlated with lithology and relief. The method provides a new and more general way to quantitatively define and measure Dd, to test geomorphic models, and to incorporate Dd variations into regional-scale hydrologic models.  相似文献   

17.
Many arid basins in western North America are likely to experience future changes in precipitation timing and amount. Where shallow water tables occur, plant acquisition of groundwater and soil water may be influenced by growing season precipitation. We conducted a rainfall manipulation experiment to investigate responses of four common native plant species to ambient, increased, and decreased summer monsoon rainfall. We measured plant xylem pressure potentials (Ψ) and stable oxygen isotope signatures (δ18O) to assess effects of altered precipitation on plant water relations and water acquisition patterns. Reduced rainfall decreased Ψ more in the grasses Sporobolus airoides and Distichlis spicata than the more deeply rooted shrubs Sarcobatus vermiculatus and Ericameria nauseosa. E. nauseosa had little response to natural or experimental differences in available soil water. Plant xylem water δ18O indicated that S. airoides and D. spicata are almost entirely dependent on rain-recharged soil water, while E. nauseosa is almost entirely groundwater-dependent. Sarcobatus vermiculatus used groundwater during dry periods, but utilized precipitation from soil layers after large rainfall events. Persistent changes in precipitation patterns could cause shifts in plant community composition that may alter basin-scale groundwater consumption by native plants, affecting water availability for human and ecosystem uses.  相似文献   

18.
The pattern of carbon (C) allocation among the different pools is an important ecosystem structural feature, which can be modified as a result of changes in environmental conditions that can occur gradually (e.g., climatic change) or abruptly (e.g., management practices). This study quantified the C pools of plant biomass, litter and soil in an arid shrubland in Chile, comparing the natural condition (moderately disturbed by grazing) vs. the afforested condition (two-year-old plantation with Acacia saligna (Labill.) H.L. Wendl.), each represented by a 60 ha plot. To estimate plant biomass, allometric functions were constructed for the four dominant woody species, based on the volume according to their shape, which showed high correlation (R2 > 0.73). The soil was the largest C pool in both natural and afforested conditions (89% and 94%, respectively) and was significantly lower in the afforested than natural condition at all five soil depths. The natural condition had in total 36.5 ton (t) C ha−1 compared to 21.1 t C ha−1 in the afforested condition, mainly due to C loss during soil preparation, prior to plantation of A. saligna. These measurements serve as an important baseline to assess long-term effects of afforestation on ecosystem C pools.  相似文献   

19.
Two experiments were conducted in southern Kordofan State to determine the influence of Acacia senegal L., Balanites aegyptiaca L. and Azadirachta indica L. on millet (Pennisetum typhoides) yield, soil quality and to monitor decomposition and nutrients release from tree litters. Yield under A. indica (174.83 kg ha−1) and B. aegyptiaca (173.09 kg ha−1) were significantly higher than the control (121.43 kg ha−1). The lowest yield (111.04 kg ha−1) was recorded under A. senegal. Straw dry matter under B. aegyptiaca (1161.5 kg ha−1) and A. indica (857.8 kg ha−1) was significantly higher than both under A. senegal (321.8 kg ha−1) and the control (454.8 kg ha−1). Trees varied in their capacity to induce changes in soil properties whereas effects on soil N were not substantial. A. indica had a decomposition rate (0.6283 week−1) 2.0 times higher than that of B. aegyptiaca (0.2057 week−1) and A. senegal (0.267 week−1). The highest rate of P and K release from A. indica and B. aegyptiaca litters has resulted in significant accumulation in the soil indicating these tree litters are potential sources for these elements. The capacity of trees to improve soil fertility could offer an alternative management system for improved cultivation of field crops.  相似文献   

20.
In dryland rangelands with their high environmental variability, local ecological knowledge of forage plants is essential for management decisions. Ecological apparency hypothesis (EAH) predicts plants' availability and visibility to be important criteria for local valuation. However, EAH has mainly been tested in low-variability systems. We ask whether EAH is valid for forage plants in drylands; which other local criteria exist; and how criteria are connected to management decisions.In a Moroccan pastoral system, we applied a novel ethnobotanical method by calculating the Cognitive Salience Index (CSI) for plants' valuation (CSIantro) and availability (CSIeco). To evaluate explicit criteria, we correlated palatability and nutritive value to CSIanthro. ANCOVAs related CSIanthro to EAH criteria (CSIeco and lifetime) and to plant occurrence on pasture types. We found EAH criteria to better predict CSIantro than explicit criteria. Apparent plants from semi-arid pastures were more valued than those from arid pastures (HSD; p < 0.05). We introduce the criterion of reliability into EAH to explain this, and demonstrate how pastoralists adjust management decisions to resource reliability. Linking resource valuation to management decisions can thus improve our understanding of resilience mechanisms. Our study also confirms the validity of EAH for forage species and dryland environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号