首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 252 毫秒
1.
The CE-Qual-ICM model computes phytoplankton biomass and production as a function of temperature, light, and nutrients. Biomass is computed as carbon while inorganic nitrogen, phosphorus, and silica are considered as nutrients. Model formulations for production, metabolism, predation, nutrient limitation, and light limitation are detailed. Methods of parameter determination and parameter values are presented. Results of model application to a ten-year period in Chesapeake Bay indicate the model provides reasonable representations of observed biomass, nutrient concentrations, and limiting factors. Computed primary production agrees with observed under light-limited conditions. Under strongly nutrient-limited conditions, computed product is less than observed. The production characteristics of the model are similar to behavior reported for several similar models. Process omitted from the model that may account for production shortfalls include variable algal stoichiometry, use of urea as nutrient, and vertical migration by phytoplankton.  相似文献   

2.
As harmful algal blooms (HABs) have expanded in size and become more frequent, there have been increased efforts to predict when and why blooms occur, as well as to identify the ecological factors that limit their formation. Here we report the results of a laboratory experiment in which we examined how the establishment and proliferation of Microcystis aeruginosa, a common HAB species, was influenced by competition with resident green algae. We hypothesized that competition with green algae would reduce the final biomass of M. aeruginosa, and that the effects of competition would be most pronounced in communities of high species richness and when nutrients are scarce. We found that competition with green algae did, in fact, consistently reduce the final biomass of M. aeruginosa. The effects of competition were more pronounced in species-rich than in species-poor communities, but this was only true when nutrients were abundant. When nutrients were scarce, resident diversity did not matter because competition with any resident species was sufficient to limit the growth of M. aeruginosa. Our results confirm that biotic interactions with phytoplankton are important in limiting the establishment and proliferation of HAB species like M. aeruginosa. But our work goes on to suggest that, under some nutrient conditions, diverse communities of resident phytoplankton can be more resistant to proliferation of cyanobacteria that can cause HABs.  相似文献   

3.
Patterns of zooplankton–phytoplankton interactions in subtropical lakes of the Southern Hemisphere may deviate from those established for north-temperate lakes. We tested the responses of phytoplankton growth to different community structures of zooplankton and nutrient enrichment in a subtropical Australian reservoir for the prediction of potential outcomes of lake biomanipulation. Two zooplankton communities were created in lake enclosures over 4 weeks: a rotifer-dominated community developed in the presence of planktivorous fish (Hypseleotris spp.) and a Ceriodaphnia-dominated community developed in the absence of fish. Biomass gradients of both communities were established in 20 L containers and several separate containers received no additions (controls) or were enriched with nitrogen and/or phosphorus. The growth rate of total phytoplankton significantly increased in response to nutrient enrichment, indicating nutrient limitation. Most phytoplankton taxa were not markedly affected by grazing of either zooplankton community. However, both communities had significant stimulatory effects on the growth of inedible chlorophytes. The ability of zooplankton grazing to negatively affect phytoplankton growth during the summer was counteracted regardless of zooplankton community structure, possibly by nutrients regenerated by zooplankton. We hypothesise that in the subtropical system studied, changes in food web nutrient recycling may be more important for the outcome of biomanipulation than grazing impacts.  相似文献   

4.
5.
Puerto Galera Bay is a coastal lagoon with a variety of marine habitats and high species diversity. It is an area in the Phillippines where the growing influence of human activities is affecting the quality of its marine resources. This study examined the distribution and behaviour of nutrients and the physical hydrography of Puerto Galera Bay and determined how its physico-chemical nature affected the condition of biotic components in the bay. The relative importance of the nitrogen and phosphorus signals were used as indicators to implicate the influence of sewage and run-off into the bay. A nutrient pool accumulated in the bay as a result of low flushing rates. The interaction of hydrodynamic forcing with the biota have implications on the phytoplankton production and coral communities in the area.  相似文献   

6.
三峡水库蓄水以来,支流小江呈富营养化加重的趋势,且多次暴发春季水华.水库蓄水以后支流流速变缓,水体滞留时间增加,是引发支流水华的主要因素之一.基于MIKE软件,建立小江调节坝下游至河口的二维水动力-富营养化模型,考虑碳、氮、磷3种元素在浮游植物有机体、死亡腐屑和无机盐中的循环转化,模拟小江河段的春季水华过程.分析小江生态调节坝的水量调节抑藻作用,即人为制造"洪水脉冲",增加短时间内的水流流速,对下游流场进行扰动以控制水华.计算结果表明,增大泄水量对调节坝下游的小江河段的春季藻华总体上具有一定的抑制作用.小江上游河段调度作用效果明显,下游高阳至入汇口河段调节作用较小,上游调节坝水力调度可以作为三峡水库支流水华应急治理措施之一.营养盐控制应该是控制支流水华的根本措施.  相似文献   

7.
The effect of domestic sewage effluents after a) mechanical, b) mechanical-biological and c) mechanical-biological-chemical treatment on algal cultures and on natural lake phytoplankton was studied by means of laboratory assays and in situ experiments. The concentrations of phosphorus and nitrogen are almost exclusively responsible for any algal growth. Other constituents which may be present in sewage effluents (e.g. residual amounts of iron originating from the tertiary treatment) do not stimulate substantially the growth of algae.  相似文献   

8.
Saanich Inlet is a highly productive temperate fjord with the capability to record inter-annual patterns of water-column primary production in undisturbed laminated sediments. We investigated spatial and temporal variations in primary productivity, total and size-fractionated phytoplankton chl a, dissolved nutrients, temperature and salinity at the head and mouth of Saanich Inlet from May 2005 to November 2006. New primary productivity was also measured from May to October 2006. During the growing season (spring, summer and fall), primary productivity was 1.5 times higher at the mouth than at the head of Saanich Inlet and, averaged across stations, total productivity was 460 g C m−2 y−1. Average new productivity was 53% and 58% of total primary productivity at the head and mouth of the inlet, respectively, and during the growing season micro-phytoplankton (>20 μm; mainly diatoms) was the most abundant size-class of phytoplankton. These rates of primary production are as high as or higher than those measured in other fjords, possibly because of a tidally-driven fortnightly gravity exchange that supplies nutrients to surface waters that enhance biological production when nutrients would otherwise be limiting. This exchange delivers nutrients at least as far inland as the head station, while nutrients associated with an eddy near the mouth may be the cause of even higher productivity there. We discuss the impact of these nutrient sources to Saanich Inlet on the records of paleoproduction generated from two Ocean Drilling Program cores extracted from this fjord, and suggest that the fortnightly exchange buffers variations in nutrient supply occurring on sub-decadal or decadal scales.  相似文献   

9.
于2014年1月(枯水期)、7月(丰水期)对鄱阳湖湖水进行采集,测定相应的理化参数、叶绿素a浓度和光合有效辐射,结合初级生产力垂向归纳模型估算浮游植物初级生产力,分析湖区初级生产力特征及与环境因子的相关性.结果表明,鄱阳湖枯水期浮游植物初级生产力波动范围为83.50~355.43 mg C/(m~3·d),平均值为193.33 mg C/(m~3·d),初级生产力空间分布特征主要受水体类型的影响,枯水期初级生产力与氮、磷营养盐浓度呈负相关,其中与铵态氮浓度呈显著负相关,枯水期不会出现营养盐限制现象;丰水期浮游植物初级生产力波动范围为113.80~1134.06 mg C/(m~3·d),平均值为412.12 mg C/(m~3·d),初级生产力空间分布主要受河流注入的影响,丰水期浮游植物初级生产力与总磷及悬浮物浓度呈显著正相关,由于悬浮物对浮游植物生长的促进作用大于抑制作用,鄱阳湖丰水期会出现磷营养盐的限制;鄱阳湖整体平均流速约为0.28 m/s,易于浮游植物的生长,南鄱阳湖平均流速约为0.21 m/s,而北鄱阳湖平均流速约为0.35 m/s,所以南鄱阳湖比北鄱阳湖更容易发生水体富营养化并暴发水华.  相似文献   

10.
In many coastal cities around the world, marine outfalls are used for disposal of partially treated wastewater effluent. The combined use of land-based treatment and marine discharge can be a cost-effective and environmentally acceptable sewage strategy. Before 2001, screened sewage was discharged into Victoria Harbour through many small outfalls. After 2001, the Hong Kong Harbour Area Treatment Scheme (HATS) was implemented to improve the water quality in Victoria Harbour and surrounding waters. Stage I of HATS involved the construction of a 24 km long deep tunnel sewerage system to collect sewage from the densely populated urban areas of Hong Kong to a centralized sewage treatment plant at Stonecutters Island. A sewage flow of 1.4 million m3 d−1 receives Chemically Enhanced Primary Treatment (CEPT) followed by discharge via a 1.2 km long outfall 2 km west of the harbor. The ecosystem recovery in Victoria Harbour and the environmental response to sewage abatement after the implementation of HATS was studied using a 21-year data set from long term monthly water quality monitoring. Overall, the pollution control scheme has achieved the intended objectives. The sewage abatement has resulted in improved water quality in terms of a significant reduction in nutrients and an increase in bottom DO levels. Furthermore, due to the efficient tidal mixing and flushing, the impact of the HATS discharge on water quality in the vicinity of the outfall location is relatively limited. However, Chl a concentrations have not been reduced in Victoria Harbour where algal growth is limited by hydrodynamic mixing and water clarity rather than nutrient concentrations. Phosphorus removal in the summer is suggested to reduce the risk of algal blooms in the more weakly-flushed and stratified southern waters, while nutrient removal is less important in other seasons due to the pronounced role played by hydrodynamic mixing. The need for disinfection of the effluent to reduce bacterial (E. coli) concentrations to acceptable levels is also confirmed and has recently been implemented.  相似文献   

11.
Meteorological extreme events (heavy rainfall, heat waves) may lead to fast changes in nutrient load and water temperature in temperate lakes. We conducted laboratory experiments with an artificial phytoplankton community to mimic a rapid temperature increase (from 21 °C to 29 °C) at low nutrient levels (‘heat wave scenario’), respectively temperature decrease (from 21 °C to 16 °C) and increased nutrient load (‘heavy rainfall scenario’). We hypothesised that there is a taxon specific nutrient x temperature interaction, leading to significant shifts in the phytoplankton community composition when both variables change. To separate the temperature effect from the nutrient effect, we performed another experimental series at a reduced temperature but without addition of nutrients. As expected, the nutrient effect was overall more important than temperature and significantly affected all five taxa tested that represented different algal classes. However, temperature also played an important role for community composition, because the cryptophyte Cryptomonas sp. and the dinoflagellate Peridinium sp. reached significantly higher biovolumes at lower temperatures. The nutrient x temperature interaction was significant in the green alga Scenedesmus obliquus. These findings suggest that our experimental results cannot be interpreted primarily by species competition for nutrients. Heterotrophic bacteria were present in all experiments. Bacterial biomass was significantly positively related to temperature and nutrients. However, relative to phytoplankton biovolume, bacterial biovolume decreased under nutrient replete conditions. In conclusion, our results demonstrate that short-term environmental change may significantly affect both the phytoplankton community (in terms of species dominance and total biomass) and the ratio between autotrophs and heterotrophs in temperate lakes.  相似文献   

12.
Terrestrial ecosystems contribute many different forms of organic matter to adjacent waterbodies. Carbon, nitrogen, and phosphorus in this material can significantly influence the planktonic communities of these systems, especially where there is a large proportion of contributing area relative to waterbody size and where nutrients are generally in short supply. Plant pollen, which upon degradation releases nutrients into the water column, is one such source of allochthonous material. In Cape Cod (Massachusetts, USA), large amounts of pollen from dense pitch pine (Pinus rigida L.) forest are deposited in late spring into small, freshwater lakes scattered across the landscape. This study examines in vivo chlorophyll fluorescence responses of surface-water samples collected from three such lakes within Cape Cod National Seashore (Wellfleet and Truro) to additions of P. rigida pollen in a laboratory setting. The results indicate that where influxes are high enough, pollen can have a stimulatory effect on phytoplankton communities and is a short-term nutrient subsidy in these systems at a time of year (May-June) when warming temperatures and faster growth rates elevate the demand for nutrients.  相似文献   

13.
2005-2017年北部太湖水体叶绿素a和营养盐变化及影响因素   总被引:7,自引:0,他引:7  
利用国家生态观测网络太湖湖泊生态系统研究站对北部太湖14个监测点2005-2017年的营养盐和叶绿素a浓度逐月监测数据,分析了北部太湖2005年以来水体营养盐和叶绿素a变化特征,探讨了叶绿素变化的影响因素.结果表明,2015年以来,北部太湖水体叶绿素a浓度呈现显著增高特征,特别是5-7月的蓝藻水华灾害关键期,水体叶绿素a浓度增幅更加明显;营养盐方面,氮、磷对治理的响应完全不同:水体总氮、溶解性总氮、氨氮的降幅很明显,甚至在春末夏初的蓝藻生长旺盛期出现了供给不足的征兆;但水体总磷降幅却不明显,加之蓝藻水华的磷"泵吸作用",近3 a来水体总磷浓度反而有升高趋势,溶解性总磷浓度也无明显下降趋势.不同湖区的营养盐变化也不相同:西北湖区溶解性总氮、溶解性总磷浓度显著高于梅梁湾、贡湖湾和湖心区,而且后3个湖区的水质呈现均一化趋势.统计分析表明,北部太湖水体叶绿素a浓度与颗粒氮、颗粒磷、总磷、高锰酸盐指数均呈显著正相关,与溶解态氮呈负相关;5-7月水华关键期北部太湖水体叶绿素a浓度与上半年(1-6月)逐日水温积温、总降雨量、年平均水位均呈显著正相关关系.从研究结果可以看出,近年来北部太湖水体叶绿素a浓度的波动很大程度上受水文气象因子的影响;2007年以来太湖流域一系列生态修复工程的实施,虽然明显降低了湖泊氮浓度,但由于流域和湖体的氮磷本底较高,磷的缓冲能力大,致使水体营养盐水平仍未降到能显著抑制蓝藻生长的水平,年际之间的水文气象条件差异成为蓝藻水华暴发强度差异的主控因素.为此,仍需加大对太湖流域氮、磷负荷的削减,使湖体氮、磷浓度降低到能显著影响蓝藻生长的水平,才能摆脱水文气象条件对蓝藻水华情势的决定作用.  相似文献   

14.
Sixteen years (1997–2013) of physicochemical, nutrient and phytoplankton biomass (Chlorophyll-a (Chl-a)) data and a decade (2003-2013) of phytoplankton composition and abundance data were analyzed to assess how the algal community in a temperate southeastern Australian estuary has responded to decreased chronic point source nitrogen loading following effluent treatment upgrade works in 2003. Nitrogen concentrations were significantly lower (P < 0.05) following enhanced effluent treatment and Chl-a levels decreased (P < 0.05) during the warmer months. Temperature and nutrient concentrations significantly influenced temporal changes of Chl-a (explaining 55% of variability), while salinity, temperature, pH and nutrient concentrations influenced phytoplankton abundance and composition (25% explained). Harmful Algal Bloom (HAB) dynamics differed between sites likely influenced by physical attributes of the estuary. This study demonstrates that enhanced effluent treatment can significantly decrease chronic point source nitrogen loading and that Chl-a concentrations can be lowered during the warmer months when the risk of blooms and HABs is greatest.  相似文献   

15.
《Marine pollution bulletin》2009,58(6-12):313-324
This study investigated the seasonal and spatial dynamics of nutrients and phytoplankton biomass at 12 stations in Hong Kong (HK) waters during a three year period from 2004 to 2006 after upgraded sewage treatment and compared these results to observations before sewage treatment. Pearl River estuary (PRE) discharge significantly increased NO3 and SiO4 concentrations, particularly in western and southern waters when rainfall and river discharge was maximal in summer. Continuous year round discharge of sewage effluent resulted in high NH4 and PO4 in Victoria Harbour (VH) and its vicinity. In winter, spring and fall, the water column at all stations was moderately mixed by winds and tidal currents, and phytoplankton biomass was relatively low compared to summer. In summer, the mean surface phytoplankton chl biomass was generally >9 μg L−1 in most areas as a result of thermohaline stratification, and high nutrients, light, and water temperature. In summer, the potential limiting nutrient is PO4 in the most productive southern waters and it seldom decreased to limiting levels (∼0.1 μM), suggesting that phytoplankton growth may be only episodically limiting. The mean bottom dissolved oxygen (DO) remained >3.5 mg L−1 at most stations, indicating that the eutrophication impact in HK waters was not as severe as expected for such a eutrophic area. After the implementation of chemically enhanced primary sewage treatment in 2001, water quality in VH improved as indicated by a significant decrease in NH4 and PO4 and an increase in bottom DO. In contrast, there were an increase in chl a and NO3, and a significant decrease in bottom DO in southern waters in summer, suggesting that hypoxic events are most likely to occur in this region if phytoplankton biomass and oxygen consumption keep increasing and exceed the buffering capacity of HK waters maintained by monsoon winds, tidal mixing and zooplankton grazing. Therefore, future studies on the long-term changes in nutrient loading from PRE and HK sewage discharge will be crucial for developing future strategies of sewage management in HK waters.  相似文献   

16.
This study investigated the seasonal and spatial dynamics of nutrients and phytoplankton biomass at 12 stations in Hong Kong (HK) waters during a three year period from 2004 to 2006 after upgraded sewage treatment and compared these results to observations before sewage treatment. Pearl River estuary (PRE) discharge significantly increased NO(3) and SiO(4) concentrations, particularly in western and southern waters when rainfall and river discharge was maximal in summer. Continuous year round discharge of sewage effluent resulted in high NH(4) and PO(4) in Victoria Harbour (VH) and its vicinity. In winter, spring and fall, the water column at all stations was moderately mixed by winds and tidal currents, and phytoplankton biomass was relatively low compared to summer. In summer, the mean surface phytoplankton chl biomass was generally > 9 microL(-1) in most areas as a result of thermohaline stratification, and high nutrients, light, and water temperature. In summer, the potential limiting nutrient is PO(4) in the most productive southern waters and it seldom decreased to limiting levels ( approximately 0.1 microM), suggesting that phytoplankton growth may be only episodically limiting. The mean bottom dissolved oxygen (DO) remained > 3.5 mg L(-1) at most stations, indicating that the eutrophication impact in HK waters was not as severe as expected for such a eutrophic area. After the implementation of chemically enhanced primary sewage treatment in 2001, water quality in VH improved as indicated by a significant decrease in NH(4) and PO(4) and an increase in bottom DO. In contrast, there were an increase in chl a and NO(3), and a significant decrease in bottom DO in southern waters in summer, suggesting that hypoxic events are most likely to occur in this region if phytoplankton biomass and oxygen consumption keep increasing and exceed the buffering capacity of HK waters maintained by monsoon winds, tidal mixing and zooplankton grazing. Therefore, future studies on the long-term changes in nutrient loading from PRE and HK sewage discharge will be crucial for developing future strategies of sewage management in HK waters.  相似文献   

17.
A sewer main serving a large municipal wastewater system ruptured, discharging approximately 3,000,000 gallons (11,355,000 L) of raw human sewage into a multi-branched tidal creek estuary along the US East Coast. The biochemical oxygen demand caused severe hypoxia in the system, causing a large fish kill. The sewage load led to high fecal coliform bacteria concentrations in the creek (maximum of 270,000 CFU 100ml(-1)), which declined in an approximate logarithmic manner over the first few days. The spill caused elevated sediment fecal coliform bacteria and enterococcus counts that declined much more gradually than water column counts. Persistence of relatively high concentrations of fecal indicator bacteria in sediments for several weeks after the spill suggests that sediment sampling should be included in response to major sewage spills. The high concentration of nutrients in the spilled sewage led to several algal blooms. However, nutrient concentrations in the water column declined rapidly, demonstrating the value of conserving marshes because of their pollutant filtration function.  相似文献   

18.
19.
The EU Water Framework Directive recognises that ecological status is supported by the prevailing physico-chemical conditions in each water body. This paper describes an approach to providing guidance on setting thresholds for nutrients taking account of the biological response to nutrient enrichment evident in different types of water. Indices of pressure, state and impact are used to achieve a robust nutrient (nitrogen) threshold by considering each individual index relative to a defined standard, scale or threshold. These indices include winter nitrogen concentrations relative to a predetermined reference value; the potential of the waterbody to support phytoplankton growth (estimated as primary production); and detection of an undesirable disturbance (measured as dissolved oxygen). Proposed reference values are based on a combination of historical records, offshore (limited human influence) nutrient concentrations, literature values and modelled data. Statistical confidence is based on a number of attributes, including distance of confidence limits away from a reference threshold and how well the model is populated with real data. This evidence based approach ensures that nutrient thresholds are based on knowledge of real and measurable biological responses in transitional and coastal waters.  相似文献   

20.
《Continental Shelf Research》2007,27(10-11):1399-1407
The annual cycle of nutrient-phytoplankton dynamics in Bohai Sea (BS) is simulated using a coupled physical–biological model in this study. By comparison, the modeled seasonal variations of nutrients and primary productivity agree with observations rather well. Although the annual cycles of chlorophyll a and primary production are both characterized by a double-peak configuration, a structural difference is still apparent: the phytoplankton biomass reaches the highest value in spring while summer is characterized by the most productivity in the BS, which can be ascribed to the combined impact of seawater temperature and zooplankton-grazing pressure on the growth of algae. Based on the validated simulations, the annual budgets of carbon, nitrogen and phosphorus are estimated, and are about 0.82 mt C surplus, 39 kt N deficit and 12 kt P surplus, respectively, implying that the BS ecosystem is somewhat nitrogen limited. The contribution of two external nutrient sources, namely river discharges and resuspended sediments, to the growth of algae is also examined numerically, and it is found that the influence of river-borne nutrients mainly concentrates in estuaries, whereas the reduction of sediment-borne nutrients may significantly inhibit the onset of algae bloom in the whole BS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号