首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Terrigenous loading into enclosed water bodies has been blamed for eutrophic conditions marked by massive algal growth and subsequent hypoxia due to decomposition of dead algal cells. This study aims to describe the eutrophication and hypoxia processes in a semi-enclosed water body lying near a big metropolis. Phosphorus mass balance in a small inlet, Ohko Inlet, located at the head of Hiroshima Bay, Japan, was quantified using a numerical model. Dissolved inorganic phosphorous inflow from Kaita Bay next to the inlet was five times higher than that from terrigenous load, which may cause an enhancement of primary production. Therefore, it was concluded that not only the reduction of material load from the land and the suppression of benthic flux are needed, but also reducing the inflow of high phosphorus and oxygen depleted water from Kaita Bay will form a collective alternative measure to remediate the environmental condition of the inlet.  相似文献   

2.
为探究在三峡水库特殊分层异重流背景下降雨对水华消退的影响,以香溪河为例,对库湾降雨前后水动力、生态环境因子开展连续三维立体跟踪监测。结果表明:降雨对水华的消退作用显著,降雨后香溪河库湾叶绿素a(Chl.a)浓度明显下降。热分层稳定指数(RWCS/H)变化不大,库湾近河口处分层较弱、中上游分层较强的特性并未随此次降雨发生较大变动。受降雨影响,藻类在表层水体聚集程度降低,藻类聚集度指数(MI)、微藻群体平均深度(MRD)下降。库湾流态随降雨发生而变得复杂,库湾水体浊度明显增加,异重流倒灌形式由近表层倒灌向中下层倒灌转变,雨后又逐渐转变为中层倒灌,长江干流水体倒灌进入库湾的影响范围、潜入深度增加。水体水平输移增强,分散下沉的藻类易随水体环流流出库湾,水华消退。雨后库湾入库流量增加,大部分上游来流依旧由上层流向河口,与中层倒灌异重流形成逆时针环流,藻类无法在表层水体稳定生长,库湾Chl.a浓度能在较长时间内保持较低水平,不会再次迅速暴发水华。  相似文献   

3.
Coastal embayments located downwind of large rivers under an upwelling-favorable wind are prone to develop low-oxygen or hypoxic conditions in their bottom water. One such embayment is Mirs Bay, off the Guangdong coast, which is affected by upwelling and the Pearl River Estuary (PRE) plume during summer. The relative importance of physical and biochemical processes on the interannual variability of hypoxia in Mirs Bay and its adjacent waters was investigated using statistical analyses of monthly hydrographic and water quality monitoring data from 2001 to 2015. The results reveal that the southwesterly wind duration and the PRE river discharge together explain 49% of the interannual variability in the size of the hypoxic area, whereas inclusion of the nutrient concentrations inside Mirs Bay and phytoplankton on the shelf explains 75% of the interannual variability in the size of the hypoxic area. This finding suggests that the interannual variability of hypoxia in Mirs Bay is regulated by coupled physical and biochemical processes. Increase of the hypoxic area under a longer-lasting southwesterly wind is caused by increased stratification, extended bottom water residence time, and onshore transport of a low-oxygen water mass induced by stable upwelling. In contrast, a reduction in the size of the hypoxic area may be attributed to a decrease in the surface water residence time of the particulate organic matter outside Mirs Bay due to increased discharge from the PRE. The results also show that the effects of allochthonous particulate organic matter outside Mirs Bay on bottom hypoxia cannot be neglected.  相似文献   

4.
《Continental Shelf Research》2005,25(9):1115-1131
Tidal inlet characteristics are controlled by wave energy, tidal range, tidal prism, sediment supply and direction and rates of sand delivered to the inlet. This paper deals with the relations between inlet and lagoon evolutions, linked by the tidal prism. Our study is focused on the Maumusson Inlet and the Marennes-Oléron Bay (first oyster farming area in Europe), located on the western coast of France. The tidal range (2–6 m) and wave climate (mean height: 1.5 m) place this tidal inlet system in the mixed energy (tide, waves), tide-dominated category. The availability of high-resolution bathymetric data since 1824 permits to characterise and quantify accurately morphological changes of both the inlet and the tidal bay. Since 1824, sediment filling of the tidal bay has led to a 20% decrease in its water volume, and a 35% reduction of the inlet throat section. Furthermore, the bay is subjected to a very high anthropic pressure, mainly related to oyster farming. Thus, both natural and human-related processes seem relevant to explain high sedimentation rates. Current measurements, hydrodynamic modelling and cross-sectional area of the inlet throat are used in order to quantify tidal prism changes since 1824. Both flood and ebb tidal prism decreased by 35%. Decrease in the Marennes-Oléron Bay water volume is inferred to be responsible for a part of tidal prism decrease at the inlet. Tidal prisms decrease may also be explained by an increase in frictional resistance to tidal wave propagation, due to a general shoaling and oyster farms in the bay. A conceptual model is proposed, taking into account natural and human-related sedimentation processes, and explaining tidal inlet response to tidal bay evolutions.  相似文献   

5.
入出湖总磷负荷变化是影响太湖湖体磷收支平衡的关键因素.基于2012-2018年水质水量监测资料,计算全湖及各水资源分区河流入出湖总磷负荷,并以水量加权计算其总磷年平均浓度,探明其时空变化规律;运用双累积曲线法分析不同分区水污关系的变化规律;以月为时间尺度,利用Pearson相关系数,揭示入湖总磷负荷分别与入湖水量、入湖...  相似文献   

6.
The local response of the phytoplankton community to river inflow processes was investigated with modeling and field analyses in a long and narrow, stratified reservoir in mid-summer. The river water had high concentrations of phosphorus and nitrogen (ammonium and nitrate) and temperature had large variations at diurnal scales. As a consequence of the large variation in river temperature, the level of neutral buoyancy (the depth where the river water spreads laterally in the reservoir) oscillated between the surface (overflows) during the day, and the depth of the metalimnion (interflows) during the night. The reservoir remained strongly stratified, which favoured the presence of cyanobacteria. It is shown that under these conditions, nutrient-rich river water injected during overflows into the surface layers promoted the occurrence of localized algal blooms in the zones where the overflow mixed with the quiescent water of the reservoir. A series of hydrodynamic simulations of the reservoir were conducted both with synthetic and realistic forcing to assess the importance of river temperatures and wind-driven hydrodynamics for algal blooms. The simulations confirmed that the river inflow was the main forcing mechanism generating the localized bloom.  相似文献   

7.
滇池入湖河流磷负荷时空变化及形态组成贡献   总被引:5,自引:2,他引:3  
研究了2013年滇池主要入湖河流总磷(TP)及各形态磷浓度的时空变化与入湖负荷特征,并探讨了不同形态磷的入湖负荷贡献.结果表明:(1)滇池河流入湖TP浓度在0.11~1.93 mg/L之间,以溶解性无机磷(DIP)和颗粒态磷(PP)为主,溶解性有机磷(DOP)浓度较低;(2)滇池河流入湖磷负荷总量为280.51 t/a,绝大多数河流主要以DIP形态入湖,平均贡献率为43.48%;PP形态入湖负荷次之,平均贡献率为31.64%;DOP入湖负荷较低,平均贡献率为24.88%;(3)DIP入湖负荷贡献率较高值出现在3、4和11月的枯水期,平均入湖负荷贡献率达到55.30%;PP入湖负荷贡献率较高值出现在1和7月,平均入湖负荷贡献率为56.14%;DOP入湖负荷贡献率月变化差异较小,最高值出现在12月,贡献率为21.85%;(4)研究滇池入湖河流污染负荷不仅要考虑溶解态无机磷的贡献,而且需要重视PP和DOP负荷,控制滇池入湖河流污染负荷需要考虑不同河流不同形态磷负荷组成及月变化差异特征,有针对性地采取相应措施.  相似文献   

8.
We describe a numerical forecast system designed for prediction of physical and biological dynamics of a coastal inlet. It is based on a coastal ocean observatory that was located at Lunenburg Bay, Nova Scotia, Canada. Biological, chemical, optical, and physical measurements were collected from instrumented moorings, weekly sampling and detailed surveys from 2002 through 2007. Here we present a framework for calibration and evaluation of an ecosystem model using data from the summer of 2007. A three-dimensional hydrodynamic model was coupled to a simple biological (Nutrients-Phytoplankton-Detritus) model; a simple model was used so results could be compared directly to observed biological and chemical variables using skill scores as a first step toward data-assimilation modeling. As a complement to this analysis, variability of model output, e.g., the nutrient limitation term, was examined to understand the modeled biological response to the simulated physical environment. Skill scores based on variances in observed and simulated time-series of biological components were also investigated. Coastal upwelling/downwelling simulated through this model has been found to increase modeled biological activity in the bay. Also model skill in reproducing the observed patterns in nutrients and phytoplankton has been increased due to the restoring conditions for biology set up at the open ocean boundaries of the bay.  相似文献   

9.
A probabilistic method of calculating the occurrence of oxygen-depleted water within a combined hydrothermal and water quality model was presented in this paper to investigate the environmental impact of eutrophication on the living resources. The method was applied to an eutrophicated shallow coastal bay in western Japan, where the occurrence of red tides at the water surface and the onset of bottom hypoxic waters are observed every summer. Both meteorology and freshwater inflow contribute to the development of stratification of the bay, thus limiting the dissolved oxygen supply to bottom waters. The resulting hydrodynamics enhances the development of oxygen-depleted bottom waters by transporting organic matter produced by algal blooms to the inner bay, where it decomposes and exerts high SOD. During August, about 60% of the inner bay is hypoxic for prolonged durations and as a result most of the benthic biota and fish die. The method used here is a very useful and informative way to evaluate the spatial and temporal damage and severity caused by hypoxia on living resources. Moreover, the model results agreed very well with the observed hydrodynamics, thermal structure and water quality data of the stratified bay. The model can be used for other lakes and bays where knowledge of temperature and density stratification is important for assessing water quality.  相似文献   

10.
The transverse structure of exchange flows and lateral flows as well as their relationship to the subtidal variability are investigated in a subtropical inlet, Ponce de Leon Inlet, Florida. Two surveys were executed during different phases of the tidal month to determine the spatial structure of subtidal exchange flows. Data from fixed moorings were used to depict the temporal variability of the spatial structure established in the surveys. The data suggested a tidally rectified pattern of net outflow in the channel and inflow over shoals with a negligible influence of streamwise baroclinic pressure gradients on the dynamics and slight modifications due to the wind. Onshore winds strengthened net inflows but weakened net outflows, rarely reversing them, while offshore winds increased net outflows and weakened net inflows. Curvature effects were found to be important in modifying secondary circulations. Slight modifications to the secondary flows were also caused by stream-normal baroclinicity during one survey. Most important, the intensity of the exchange flows was modulated by tides, with the largest exchange flows developing in response to the strongest tidal rectification of spring tides.  相似文献   

11.
This paper presents the development of a multiple‐station neural network for predicting tidal currents across a coastal inlet. Unlike traditional hydrodynamic models, the neural network model does not need inputs of coastal topography and bathymetry, grids, surface and bottom frictions, and turbulent eddy viscosity. Without solving hydrodynamic equations, the neural network model applies an interconnected neural network to correlate the inputs of boundary forcing of water levels at a remote station to the outputs of tidal currents at multiple stations across a local coastal inlet. Coefficients in the neural network model are trained using a continuous dataset consisting of inputs of water levels at a remote station and outputs of tidal currents at the inlet, and verified using another independent input and output dataset. Once the neural network model has been satisfactorily trained and verified, it can be used to predict tidal currents at a coastal inlet from the inputs of water levels at a remote station. For the case study at Shinnecock Inlet in the southern shore of New York, tidal currents at nine stations across the inlet were predicted by the neural network model using water level data located from a station about 70 km away from the inlet. A continuous dataset in May 2000 was used for the training, and another dataset in July 2000 was used for the verification of the neural network model. Comparing model predictions and observations indicates correlation coefficients range from 0·95 to 0·98, and the root‐mean‐square error ranges from 0·04 to 0·08 m s?1 at the nine current locations across the inlet. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
Data are presented on long-term salinity behaviour in San Francisco Bay, California. A two-level, width averaged model of the tidally averaged salinity and circulation has been written in order to interpret the long-term (days to decades) salinity variability. The model has been used to simulate daily averaged salinity in the upper and lower levels of a 51 segment discretization of the Bay over the 22-yr period 1967–1988. Monthly averaged surface salinity from observations and monthly-averaged simulated salinity are in reasonable agreement. Good agreement is obtained from comparison with daily averaged salinity measured in the upper reaches of North Bay.The salinity variability is driven primarily by freshwater inflow with relatively minor oceanic influence. All stations exhibit a marked seasonal cycle in accordance with the Mediterranean climate, as well as a rich spectrum of variability due to extreme inflow events and extended periods of drought. Monthly averaged salinity intrusion positions have a pronounced seasonal variability and show an approximately linear response to the logarithm of monthly averaged Delta inflow. Although few observed data are available for studies of long-term salinity stratification, modelled stratification is found to be strongly dependent on freshwater inflow; the nature of that dependence varies throughout the Bay. Near the Golden Gate, stratification tends to increase up to very high inflows. In the central reaches of North Bay, modelled stratification maximizes as a function of inflow and further inflow reduces stratification. Near the head of North Bay, lowest summer inflows are associated with the greatest modelled stratification. Observations from the central reaches of North Bay show marked spring-neap variations in stratification and gravitational circulation, both being stronger at neap tides. This spring-neap variation is simulated by the model. A feature of the modelled stratification is a hysteresis in which, for a given spring-neap tidal range and fairly steady inflows, the stratification is higher progressing from neaps to springs than from springs to neaps.The simulated responses of the Bay to perturbations in coastal sea salinity and Delta inflow have been used to further delineate the time-scales of salinity variability. Simulations have been performed about low inflow, steady-state conditions for both salinity and Delta inflow perturbations. For salinity perturbations a small, sinusoidal salinity signal with a period of 1 yr has been applied at the coastal boundary as well as a pulse of salinity with a duration of one day. For Delta inflow perturbations a small, sinusoidally varying inflow signal with a period of 1 yr has been superimposed on an otherwise constant Delta inflow, as well as a pulse of inflow with a duration of one day. Perturbations in coastal salinity dissipate as they move through the Bay. Seasonal perturbations require about 40–45 days to propagate from the coastal ocean to the Delta and to the head of South Bay. The response times of the model to perturbations in freshwater inflow are faster than this in North Bay and comparable in South Bay. In North Bay, time-scales are consistent with advection due to lower level, up-estuary transport of coastal salinity perturbations; for inflow perturbations, faster response times arise from both upper level, down-estuary advection and much faster, down-estuary migration of isohalines in response to inflow volume continuity. In South Bay, the dominant time-scales are governed by tidal dispersion.  相似文献   

13.
《Continental Shelf Research》2007,27(10-11):1528-1547
Barrier island estuarine systems are common along the East and Gulf coasts of Florida. While some information regarding these systems is available in report form, detailed observational studies of their hydrodynamic properties are scarce in existing literature. Hydrography and current velocity were observed at a tidally driven coastline trifurcation, adjacent to the St. Augustine Inlet, Florida, in the Guana–Tolomato–Matanzas Estuary. Data were collected over nearly a semidiurnal period on February 2, 2006. The domain is well mixed and convergence fronts appear aligned with bathymetry. Eighty-six percent of the tidal variability in the study area is explained by the semidiurnal harmonic, which propagates through the system as a quasi-standing wave. The mean flow structure at the inlet (inflow in channel and outflow over shoals) governs intra-estuarine communication and is consistent with theoretical residual flows produced by a standing tidal wave. The governing force balance is between advective acceleration and the barotropic pressure gradient. The mean flow structure across the inlet might be explained by both Li and O’Donnell's [2005. The effect of channel length on the residual circulation in tidally dominated channels. Journal of Physical Oceanography 35, 1826–1840] analytical model, and Stommel and Farmer's [1952. On the nature of estuarine circulation. Woods Hole Oceanographic Institute, Woods Hole, Massachusetts, Ref. 52–51, 52–63, 52–88] source–sink analog. Flow characteristics for St. Augustine Inlet are compared with Beaufort Inlet, North Carolina; North Inlet, South Carolina; and Sand Shoal Inlet, Virginia. While these systems share similar characteristics, a common subtidal flow structure is not evident.  相似文献   

14.
Bottom hypoxia (dissolved oxygen concentration ≤2 ml l(-1)) from anthropogenic eutrophication is a growing global concern. Here, we summarized characteristics of hypoxia and its effects on benthic organisms in Tokyo Bay. Despite recent decreases in nutrient inputs, hypoxia has been increasing in duration and spatial extent, suggesting that the substantial loss of tidal flats from reclamation is contributing to a decrease in the ability of Tokyo Bay to recycle nutrients. Hypoxia develops in the central to northern part of the bay and persists from spring to autumn, causing defaunation of benthic organisms. After the abatement of hypoxia in autumn, the defaunated area is recolonized, either through migration or larval settlement. Some megabenthic species with a spawning peak in spring and summer experience failure of larval settlement, which is probably due to hypoxia. The adverse effects of hypoxia are an impediment to recovery of benthic organisms in Tokyo Bay.  相似文献   

15.
A sewer main serving a large municipal wastewater system ruptured, discharging approximately 3,000,000 gallons (11,355,000 L) of raw human sewage into a multi-branched tidal creek estuary along the US East Coast. The biochemical oxygen demand caused severe hypoxia in the system, causing a large fish kill. The sewage load led to high fecal coliform bacteria concentrations in the creek (maximum of 270,000 CFU 100ml(-1)), which declined in an approximate logarithmic manner over the first few days. The spill caused elevated sediment fecal coliform bacteria and enterococcus counts that declined much more gradually than water column counts. Persistence of relatively high concentrations of fecal indicator bacteria in sediments for several weeks after the spill suggests that sediment sampling should be included in response to major sewage spills. The high concentration of nutrients in the spilled sewage led to several algal blooms. However, nutrient concentrations in the water column declined rapidly, demonstrating the value of conserving marshes because of their pollutant filtration function.  相似文献   

16.
On the basis of investigations into periphyton for three years as well as selected physical and chemical criteria of water quality at eight stations with different wastewater load there were classified initially 52 algal taxa with respect to their saprobic indicative values: 4 oligoto β-mesosaprobic, 23 β-mesosaprobic, 19 β- to α-mesosaprobic, 6 α-mesosaprobic. Their distribution and ecological demands are shortly discussed. The degree of saprobity, expressed as the index of saprobity according to PANTLE and BUCK proves to be very suitable for the documentation of ecological changes at wastewater inlet points and their environment. Finally, proposals for an ecological classification of coastal waters by their trophic state and anthropogenic load are derived from the results of investigation by analogy with the corresponding classification of stagnant inland waters.  相似文献   

17.
In this study, the artificial opening of a new tidal inlet in an existing multiple inlet system is shown to significantly modify the adjacent nearshore and backbarrier morphology, as well as both updrift and downdrift shorelines. The study focuses on the dominant Faro‐Olhão and Armona inlets in the Ria Formosa barrier island system of southern Portugal. The equilibrium state and future evolution of the system are inferred using a range of morphological and hydrodynamic indicators, including the evolution of the inlet cross‐section, changes in tidal prism, and changes in the dimensions (length and area) of barrier islands. The results reveal how the morphology of an interconnected two‐inlet bay system and the adjacent coastlines has evolved following the artificial opening and stabilization of Faro‐Olhão inlet since 1929. A clear relationship between barrier island size, inlet cross‐section/width, and tidal prism is demonstrated. Decadal time‐scale changes in the tidal prism of the two interconnected inlets are shown to be the main mechanism responsible for morphological change, and have resulted in the remobilization of ebb‐tidal delta sediments deposited during previous hydraulic configurations. These changes, in turn, have contributed to a narrowing of Armona inlet and an increase in the size of Culatra Island. The work highlights the importance of ebb‐tidal deltas both as sand reservoirs and as conduits through which sand exchange between estuaries or lagoons and the open coast is regulated. It also shows the pivotal role of ebb‐tidal deltas in trapping longshore‐transported sediment and releasing it again during periods of increased wave activity. The findings have implications regarding the accurate assessment of the stability of multiple inlet systems. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
A discussion is presented about the mechanisms that govern the spatial and seasonal variability in sand-wave height and migration speed in the 4 km wide Marsdiep tidal inlet, the Netherlands. Since 1998, current velocities and water depths have been recorded with an ADCP that is mounted under the ferry ‘Schulpengat’. In this paper, the current measurements were used to explain the sand-wave observations presented in Buijsman and Ridderinkhof [this issue. Long-term evolution of sand waves in the Marsdiep inlet. I: high-resolution observations. Continental Shelf Research, doi:10.1016/j.csr.2007.10.011]. Across nearly the entire inlet, the sand waves migrate in the flood direction. In the flood-dominated southern part of the inlet, the ‘measured’ (i.e. based on sand-wave shape and migration speed) and predicted bedload transport agree in direction, magnitude, and trends, whereas in the ebb-dominated northern part the predicted bedload and suspended load transport is opposite to the sand-wave migration. In the southern part, 55% of the bedload transport is due to tidal asymmetries and 45% due to residual currents. In addition to the well-known tidal asymmetries, asymmetries that arise from the interaction of M2M2 and its overtides with S2S2 and its compound tides are also important. It is hypothesised that in the northern part of the inlet the advection of suspended sand and lag effects govern the sand-wave migration. The relative importance of suspended load transport also explains why the sand waves have smaller lee-slope angles, are smaller, more rounded, and more three-dimensional in the northern half of the inlet. The sand waves in this part of the inlet feature the largest seasonal variability in height and migration speed. This seasonal variability may be attributed to the tides or a seasonal fluctuation in fall velocity. In both cases sediment transport is enhanced in winter, increasing sand-wave migration and decreasing sand-wave height. The influence of storms and estuarine circulation on the sand-wave variability is negligible.  相似文献   

19.
We studied the spatial variability and within-year temporal changes in hydrological features, grain size composition and chemical characteristics of sediments, as well as macrofaunal assemblages, along a heavily modified inlet in the Gulf of Oristano (western Sardinia, Italy). The inlet connects the Cabras lagoon to the gulf through a series of convoluted creeks and man-made structures, including a dam and fish barriers built in the last three decades. Sediments were muddy and mainly composed of the "non-sortable" fraction (i.e., <8 microm particle size) in all four areas investigated: Lagoon, Creeks, Channel and Seaward. Along the inlet, however, the ratio between the <8 microm and the 8-64 microm fractions was highest in Creeks and Channel, between the fish barriers and the dam, suggesting impaired hydrodynamics. Consistently, steep gradients in water salinity, temperature and dissolved oxygen concentrations were found in proximity to the fish barriers. The whole inlet was characterized by a major organic enrichment of sediments, with up to an annual mean of 33.6% of organic matter and 11.7% of total organic carbon in Seaward due to the presence of seagrass leaf litter. Acid-volatile sulphide and chromium-reduced sulphur concentrations were highest throughout the year in Seaward and Lagoon, respectively, with a peak in summer. Consistently, the whole inlet supported low structured macrofaunal assemblages dominated by few opportunist species, with a relatively lower diversity in Lagoon throughout the year and the highest abundances in Seaward in summer. We infer that the presence of artificial structures along the inlet, such as fish barriers and the dam, impair the lagoon-gulf hydrodynamics, sediment exchange and animal recruitment and colonization. We suggest that the removal of these structures would favour water renewal in the Cabras lagoon, but would also increase the outflow of organic C-bonding fine particles into the gulf with serious consequences for Posidonia oceanica and Cymodocea nodosa seagrass meadows. We conclude that all possible consequences of such initiatives should be carefully considered before any action is taken.  相似文献   

20.
夏季滇池和入滇河流氮、磷污染特征   总被引:6,自引:1,他引:5  
为探讨滇池入湖河流水体营养盐空间分布特征及其对滇池水体富营养化的影响,2014年7月采集了入滇4类典型河流(城市纳污型河流、城乡结合型河流、农田型河流、村镇型河流)及滇池水样,分析其氮、磷浓度.结果表明:4条入湖河流总氮(TN)、总磷(TP)、硝态氮和氨氮污染均较严重;河流水体中TN、TP平均浓度大小为:农田型河流(大河)村镇型河流(柴河)城乡结合型河流(宝象河)城市纳污型河流(盘龙江),其中农田型河流(大河)水体TN、TP污染最为严重;在夏季,4条入湖河流水体中TN、TP浓度从上游向下游增加趋势比较明显,表明氮、磷沿河流不断富集;氮磷比分析表明,夏季河流输入氮、磷营养盐有利于藻类的生长,并且滇池浮游植物生长主要受TN浓度限制;夏季滇池南部入湖河流水体的TN、TP浓度高于北部入湖河流,该特征与滇池水体中TN、TP污染分布状况相反,推测滇池北部富营养化的主要影响因素是内源释放.因此,在今后的滇池水体富营养化研究中,应对滇池内源释放进行深入研究.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号