首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Summary ¶Snow is a key feature of mountain environments in terms of the controls it exerts on hydrology, vegetation, and in terms of its economic significance (e.g. for the ski industry). Its quantification in a changing climate is thus important for various environmental and economic impact assessments. Based on observational analysis, surface energy balance modeling, and the latest data from high-resolution regional climate models, this paper investigates the possible changes in snow volume and seasonality in the Swiss Alps. An average warming of 4°C as projected for the period 2071–2100 with respect to current climate suggests that snow volume in the Alps may respond by reductions of at least 90% at altitudes close to 1000m, by 50% at 2000m, and 35% at 3000m. In addition, the duration of snow cover is sharply reduced in the warmer climate, with a termination of the season 50–60 days earlier at high elevations above 2000–2500m and 110–130 days earlier at medium elevation sites close to the 1000m altitude. The shortening of the snow season concerns more the end (spring) rather than the beginning (autumn), so that it should be expected that snow melt will intervene much earlier in the season than under current conditions. The results of this study are of relevance to the estimations of the impacts that the projected warming may have on the amount and timing of water in hydrological basins, on the start of the vegetation season, and on the financial status of many mountain resorts.  相似文献   

2.
Summary In this paper, the relationship between seasonal mean (June, July, August and September) monsoon circulation features and the midlatitude circulations in winter and spring seasons have been examined during contrasting years of more (less) number of snow days in winter/spring followed by deficient (excess) Indian Summer Monsoon Rainfall (ISMR) using NCEP/NCAR reanalyzed data for the period 1966–1994. The Historical Soviet Daily Snow Depth (HSDSD) version II data set has been used to calculate the number of days of snow over west and east Eurasia separately under three classes: class 1 for SD>5cm, class 2 for SD>10cm and class 3 for SD>50cm where SD stands for snow depth. Correlation coefficients are computed between the anomaly in the number of days of snow depth under the above three classes during winter/spring over west and east Eurasia and the subsequent ISMR. HSDSD data show that difference in the number of days of SD>10cm in two extreme years is most prominent in the west Eurasia in the months of January and April. Also the anomaly in the number of days of snow in January and April over west Eurasia has correlation coefficients of –0.69 and –0.56 with the following ISMR, respectively at 0.1% significance level when the SD is more than 10cm at all the stations. Results also show that low-level atmospheric temperature difference between two extreme years of snow days in winter is up to 10°C and the cooling persists up to spring season with a difference of 2°C. This cooling persistence may give rise to anomalous cyclonic circulations over the midlatitudes and tropics which may be responsible for weakening the monsoon circulation over India during the year of more snow days over west Eurasia.  相似文献   

3.
Summary ¶The 0°C isotherm height, a parameter needed for the estimation of attenuation of microwave and millimetre wave for earth-space communication, has been estimated for different stations spread over India. The variations of 0°C isotherm height for different seasons over these stations are presented. Attenuations of radio wave due to rain at frequencies 10GHz and above have also been estimated for few stations using the 0°C isotherm height so derived. The results are useful for radio systems designers.  相似文献   

4.
Summary This paper reports on a small-scale pilot experiment held early in the dry season near Darwin, Australia, in which fine-scale observations of several prescribed fires were made using infrared digital video. Infrared imaging is used routinely to locate fires as infrared radiation suffers little attenuation as it propagates through the smoke that normally obscures visible imagery. However, until now, little use has been made of digital video imagery in analyzing the convective-scale structure of prescribed (or wild) fires. The advantage of digital video imagery is that the individual frames can be objectively analyzed to determine the convective motion in the plane viewed by the camera. The infrared imagery shows mostly rising plumes, much like convective clouds. The flow is highly convective, and the vertical transport of heat is confined to relatively narrow thermals. The updrafts range from a few ms–1 to around 15ms–1. A numerical model is used to simulate one of the prescribed fires at very high-resolution. For the most part, the model predictions compare well to the observations. The model produces plumes that are around 7m high, and spaced around 5m apart, which is similar to that observed. The model correctly predicts the mean rate of spread of the fire to be 1.3ms–1. Perhaps the most serious limitations to using infrared observations of the type presented here are the difficulties in interpreting precisely the relationship between the observed infrared temperature field and the air temperature calculated by the model, and the exact connection between the infrared camera derived flow field and that calculated by the model.  相似文献   

5.
Summary Regional climate model (RegCM2) and sulfur transport model (NJUADMS) were combined to simulate the distribution of anthropogenic sulfate aerosol burden over China, where a look up table method was applied to illustrate sulfate formation from SO2-oxidation. Direct radiative forcing of sulfate aerosol was further estimated using the scheme suggested by Charlson et al (1991). Investigations show that the annual average total sulfate column over mainland China is 2.01mg/m2 with high value in East and Central areas (more than 7mg/m2). The annual average direct radiative forcing of China is about –0.85W/m2. The forcing can reach –7W/m2 in Central and East China during the winter season. Total sulfate column shows significant seasonal variations with winter maximum-summer minimum in the Southern part of China and spring maximum-autumn minimum in the northern part of China. Strong seasonal cycles of direct radiative forcing are also found due to the influence of total sulfate column, cloud, relative humidity and the reflectivity of underlying surfaceReceived May 16, 2001; accepted August 5, 2002 Published online: May 8, 2003  相似文献   

6.
Summary The study on the characteristics of aerosol in Seoul during springtime from 1998 to 2003 is performed by the size-resolved number concentrations of aerosol. Asian dust events occur in spring most frequently, but it has been often observed in wintertime since 1999. Since 2000, the number of Asian dust days has been increasing, and the intensity has been more severe until 2002. However, there were only 3 dust days in Seoul during the spring of 2003, since the synoptic cyclone was relatively not intense enough to rise and transport dust to Korean peninsula, and the air stream was usually tiled to north of Korean peninsula. In addition, the precipitation was relatively plentiful and the air temperature was cold enough not to keep dry soil condition.Haze is the suspended particles in the air, reducing visibility by scattering light, and it is often a mixture of aerosols and photochemical smog. Dry particles with diameters of the order of 0.1µm, are small enough to scatter short wavelengths of light. Haze occurs well in winter and spring, and severe haze is observed in the afternoon. The occurrence frequency of haze has been decreasing since 2000 except in May of 2003.During Asian dust events from 1998 to 2003, the number concentration of aerosol with diameters from 0.3µm to 0.5µm decreases notably, but that larger than 1µm increases rapidly. On the other hand, for the haze events the number concentration from 0.3µm to 0.5µm increases notably, but that larger than 1µm decreases.  相似文献   

7.
Summary The influence of agricultural management on the CO2 budget of a typical subalpine grassland was investigated at the Swiss CARBOMONT site at Rigi-Seebodenalp (1025m a.s.l.) in Central Switzerland. Eddy covariance flux measurements obtained during the first growing season from the mid of spring until the first snow fall (17 Mai to 25 September 2002) are reported. With respect to the 10-year average 1992–2001, we found that this growing season had started 10 days earlier than normal, but was close to average temperature with above-normal precipitation (100–255% depending on month). Using a footprint model we found that a simple approach using wind direction sectors was adequate to classify our CO2 fluxes as being controlled by either meadow or pasture. Two significantly different light response curves could be determined: one for periods with external interventions (grass cutting, cattle grazing) and the other for periods without external interventions. Other than this, meadow and pasture were similar, with a net carbon gain of –128±17g Cm–2 on the undisturbed meadow, and a net carbon loss of 79±17g Cm–2 on the managed meadow, and 270±24g Cm–2 on the pasture during 131 days of the growing season, respectively. The grass cut in June reduced the gross CO2 uptake of the meadow by 50±2% until regrowth of the vegetation. Cattle grazing reduced gross uptake over the whole vegetation period (37±2%), but left respiration at a similar level as observed in the meadow.  相似文献   

8.
Summary The relative strength of the stabilizing effect of buoyancy and the destabilizing effect of velocity shear in a stratified shear flow, such as a stable atmospheric boundary layer, is measured by the gradient Richardson number, Rig. The boundary layer static stability, as described by the buoyancy frequency, N, can be calculated from the virtual potential temperature gradient derived from RASS temperature profiles. The mean wind profiles from a sodar can be used to calculate the mean vertical velocity shear. In combination these profilers are potentially a powerful tool for the remotely sensing the dynamic stability of the boundary layer. However, experience shows that the combinations of two experimentally derived quantities, like N and shear, may give highly variable results. On the other hand, a simple sensitivity analysis shows that reasonable estimates of Rig are achievable over a range of conditions in the stable nocturnal boundary layer. To test this conclusion, high spatial and temporal resolution temperature and velocity soundings were obtained above 50m in the stable nocturnal boundary layer using a 920MHz continuous wave Radio Acoustic Sounding System (RASS) and 1.875kHz and 5.00kHz Doppler sodars. Examples of the evolution of Rig are presented from 24 hours of observations of the boundary layer in Canberra, on the tablelands in south- eastern Australia. Most of the boundary layer had Rig between 0.1 and 1. Thus, it was marginally dynamically stable, even with the gradient Richardson number calculated from finite differences over a vertical interval of 68m. A comparison of the results from the two sodars showed that the velocity shear increased significantly when the vertical differencing interval was decreased from 68m to 20m.  相似文献   

9.
Summary The Earths local fair-weather electric field is significantly affected by small ions present in the atmosphere. These ions are typically smaller than 0.001µm and occur in concentrations from 500 to 600cm–3 in air. Attachment to larger aerosol particles may severely decrease the mobility of these atmospheric ions resulting in an increased local electric field. The number concentration of environmental aerosol particles in the size range 0.1 to 5.0µm was measured with two automatic laser scattering particle counters. The Earths electric field was monitored with an electric fieldmeter. Measurements were made in clean air and in an environment highly polluted by wood smoke. The electric field was found to be positively correlated to the aerosol number concentration. During one 24-hour period of measurement, the electric field increased from 180 to about 280Vm–1 as the number concentration of aerosols larger than 0.1µm increased from about 2000 to 9000cm–3. The number concentrations of aerosols larger than 0.1 and 0.3µm were both found to be positively correlated with the Earths electric field with correlation coefficients of 70% and 61%, respectively.Present address: School of Physical Sciences, Queensland University of Technology, Brisbane 4001, Australia.  相似文献   

10.
The processes of interaction between the atmospheric surface and mixed layers in daytime convective conditions over land are studied using a data set obtained during flights by an instrumented aircraft. Profiles of partitioned run-averaged statistics and examples of time series plots are discussed in the light of results from a recently published study by the authors, in which the average structure and flow within coherent eddies was reconstruced using a compositing technique. This evidence is used to support a conceptual model of the mechanisms of interaction between surface-layer plumes and mixed-layer thermal columns. The divergent flow created near the surface by the downdraft arms of the large-scale mixed-layer circulation patterns, forces the development of lines of convergence in the surface layer (the so-called thermal walls), which channel air into the bases of the mixed-layer thermals. Plumes progressively group and merge together with height in the surface and free convection layers, and move along these convergence lines toward large collector plumes at the intersection points, or hubs. Above the hubs are the thermals, and air parcels originating from plumes and their environment are strongly mixed as they rise, leading to an increased difficulty of the conditional sampling method to distinguish between them. The observed influence of mixed-layer convective processes far down into the surface layer, and the form of the averaged profiles, supports recent refinements of the theory of surface-layer structure suggested in Kader and Yaglom (1990).Notation CBL convective boundary layer - SL surface layer - FCL free convection layer - ML mixed layer  相似文献   

11.
Summary ¶In order to better understand land-atmosphere interactions and increase the predictability of climate models, it is important to investigate the role of forest representation in climate modeling. Corresponding to the big-leaf model commonly employed in land surface schemes to represent the effects of a forest, a so called big-tree model, which uses multi-layer vegetation to represent the vertical canopy heterogeneity, was introduced and incorporated into the National Center for Atmospheric Research (NCAR) regional climate model RegCM2, to make the vegetation model more physically based. Using this augmented RegCM2 and station data for China during 1991 Meiyu season, we performed 10 experiments to investigate the effects of the application of the big-tree model on the summer monsoon climate.With the big-tree model incorporated into the regional climate model, some climate characteristics, e.g. the 3-month-mean surface temperature, circulation, and precipitation, are significantly and systematically changed over the model domain, and the change of the characteristics differs depending on the area. Due to the better representation of the shading effect in the big-tree model, the temperature of the lower layer atmosphere above the plant canopy is increased, which further influences the 850hPa temperature. In addition, there are significant decreases in the mean latent heat fluxes (within 20–30W/m2) in the three areas of the model domain.The application of the big-tree model influences not only the simulated climate of the forested area, but also that of the whole model domain, and its impact is greater on the lower atmosphere than on the upper atmosphere. The simulated rainfall and surface temperature deviate from the originally simulated result and are (or seem to be) closer to the observations, which implies that an appropriate representation of the big-tree model may improve the simulation of the summer monsoon climate.We also find that the simulated climate is sensitive to some big-tree parameter values and schemes, such as the shape, height, zero-plane displacement height and mixing-length scheme. The simulated local/grid differences may be very large although the simulated areal-average differences may be much lower. The area-average differences in the monthly-mean surface temperature and heat fluxes can amount to 0.5°C and 4W/m2, respectively, which correspond to maximum local/grid differences of 3.0°C and 40W/m2 respectively. It seems that the simulated climate is most sensitive to the parameter of the zero-plane displacement among the parameters studied.  相似文献   

12.
Summary The Advanced Regional Prediction System (ARPS) model developed at Center for Analysis and Prediction of Storms at Oklahoma State University, USA is used for simulation of monsoon depression and tropical cyclone over Indian region. The radiosonde data are included in the initial analyses and subsequently; the simulations are performed with 50km and 25km grid resolutions. Two sets of forecast experiments produced by two types of analyses (with radiosonde and without radiosonde data) are compared. It is found that predicted mean sea-level pressure of the depression becomes closer to mean sea level pressure reported in Indian Daily Weather Reports when initialized with analyses containing radiosonde data. The precipitation forecast also is improved when initialized with the analyses containing radiosonde data. The simulation of tropical cyclone with 25km grid resolution is able to simulate some subsynoptic scale features of the system.  相似文献   

13.
Summary The evolving modes of the sea-surface temperature (SST) in the Tropical Atlantic on the short interannual (IA) timescale were obtained by performing the extended empirical orthogonal function (EEOF) analyses on this variable separately for the 106-year (1871–1976) and 20-year (1881–1900; 1901–1920; 1921–1940; 1941–1960) periods. The equatorial and inter-hemispheric patterns manifest in the first EEOF mode of each analysis as part of the short IA evolution of the SST anomalies in the Tropical Atlantic. Another outstanding feature of the first EEOF mode of each analysis concerns the propagations of the SST anomalies in the meridional direction within the 20°N–20°S band and in the zonal direction in the sector 40°W–20°W. For all analyses, the SST anomalies propagate northward from the equator to 15°N and southward from 20°N to 15°N, with the same sign anomalies merging approximately at 15°N. On the other hand, the SST anomalies propagate westward in the sector 40°W–20°W with a propagation rate close to that of the phase speed of the fastest baroclinic Rossby wave in the ocean. So, the observed propagations of the SST anomalies in the 20°N–20°S band might result from the combined effect of the surface oceanic currents in this band and the baroclinic Rossby waves in the ocean.  相似文献   

14.
Summary This study assessed the climatic suitability for the expansion of Solenopsis invicta Buren (red imported fire ant) in Oklahoma under the present climate and with a doubling of atmospheric CO2 using three general circulation models (GCMs) (GFDL R30, OSU, UKMO). Oklahoma was chosen as the geographical focus because it has a dense network of meteorological stations and lies on the edge of the current biogeographic range of S. invicta. Meteorological data were spatially referenced with model data in GIS to produce a series of images of selected suitability indicators: (1) mean annual precipitation >510mm; (2) less than seven consecutive days with mean air temperature <1.1C; and (3) mean winter air temperature >9.4C. These indicator images were combined to produce suitability maps for the potential range of S. invicta. Under current climatic conditions, roughly three-quarters of Oklahoma is suitable for potential invasion by S. invicta. The GFDL R30, OSU, and UKMO show that the area suitable for colonization increases by approximately 26, 26, and 36%, respectively. In terms of actual land area, the increase with a warmer, wetter climate ranges from 35,300km2 to 47,600km2. The destructiveness of S. invicta on human livelihood necessitates a better understanding of the future expansion of the species for an uncertain future climate.  相似文献   

15.
Summary This study uses a 1°×1° lat/long dataset, extracted from ECMWF re-analyses for the 15-year period 1979–1993 (ERA-15), to diagnose the synoptic-scale kinematic, thermodynamic and moisture environments in the vicinity of named tropical cyclones (TCs) in the eastern North Pacific. Based on the NCDC best track dataset, TCs are partitioned into one of three categories: weak (W), strong (S) or intensifying (I). In total, 63TCs are examined: 8Ws and 20Is at point A (maximum intensification) and 11Ws, 13Ss and 11Is at point B (maximum frequency). Composite maps are compiled for all five groups, and six individual case studies are examined, four for extreme TC cases and two for cases involving dry air intrusions.For the most part, peak values and patterns of composited ERA-15 variables display circulation, thermodynamic and moisture characteristics that are compatible with the strength represented by a groups classification. Intercomparison between Ws and Is at points A and B yielded larger conditional instability of low-level air parcels and upper-level outflow within the region of maximum intensification (point A).The intrusions of dry versus moist mid-level air are addressed for each storm with the assistance of 72-hour backward trajectories. Trajectory density maps indicate two preferred paths of air parcels that reach the environment of W storms at point A on the 700 and 500hPa levels. The first one crossed Central America in the region of the Isthmus of Tehuantepec and the second one south of the Central American mountains. Several storms revealed that these trajectories were associated with dry air intrusions into the larger storm area, and this might be one reason for their weak status at point A. One documented example is Kevin (1985). By the time it reached point B, the dry air was replaced by air that was moist and Kevin intensified, although it remained a W system. In contrast, Narda (1989) received a dry air intrusion from Central Mexico at 500hPa as a weak storm at point B and did not intensify. Despite possible analyses problems, the documentation in this study of mid-level dry air intrusions into eastern Pacific TCs from the Mexican-Central American region suggests a hitherto unexploited forecast potential. Received January 15, 2002; revised November 28, 2002; accepted December 19, 2002 Published online: May 8, 2003  相似文献   

16.
Summary A simple parameterization for the estimation of turbulent kinetic energy (TKE) and momentum flux profiles under near-neutral stratification based on sodar measurements of the vertical velocity variance has been tested using data from the LINEX-2000 experiment. Measurements included operation of a phased-array Doppler sodar DSDPA.90 and of a sonic anemometer USA-1 mounted at a meteorological tower at a height of 90m. Good agreement has been found between the TKE and momentum flux values derived from the sonic and sodar data (with correlation coefficients r>0.90 and a slope of the regression lines of about 1.01.1) suggesting the possible use of sodar measurements of w 2 to derive turbulence parameter profiles above the tower range.  相似文献   

17.
Summary In this paper, the interannual variability of satellite derived outgoing longwave radiation (OLR) is examined in relation to the Indian summer monsoon rainfall (June to September total rainfall; ISMR). Monthly grid point OLR field over the domain i.e. the tropical Pacific and Atlantic region (30°N to 30°S, 110°E to 10°W) and the ISMR for the period 1974–2001 are used for the study. A strong and significant north–south dipole structure in the correlation pattern is found between the ISMR and the OLR field over the domain during January. This dipole is located over the west Pacific region with highly significant negative (positive) correlations over the South China Sea and surrounding region (around north-east Australia). The dipole weakens and moves northwestward during February and disappears in March. During the month of May, the OLR over the central Atlantic Ocean shows a significant positive relationship with the ISMR. These relationships are found to be consistent and robust during the period of analysis and can be used in the prediction of the ISMR.A multiple regression equation is developed, using the above results, for prediction of the ISMR and the empirical relationships are verified using an independent data set. The results are encouraging for the prediction of the ISMR. The composite annual cycle of the OLR, over the west Pacific regions during extreme ISMR is found to be useful in the prediction of extreme summer monsoon rainfall conditions over the Indian subcontinent.  相似文献   

18.
Summary The skill of the FSU Superensemble technique as applied to global numerical weather prediction is evaluated extensively in this paper. The global mass and motion fields for year 2000 and precipitation over the domain 55S to 55N for year 2001, as predicted by the Superensemble, the ensemble member models, and the mean of the ensemble members, are evaluated by standard statistical measures of skill to determine the performance of the Superensemble in relation to the other models. The member models are global forecast models from 5 of the worlds operational forecast centers in addition to the FSU global spectral model. For precipitation 5 additional versions of the FSU global model are utilized in the ensemble, as defined by different initial conditions provided by various physical initialization algorithms. Statistical parameters calculated for the mass and motion fields include root mean square (RMS) error, systematic error (or bias), and anomaly correlation. These are applied to the mean sea level pressure, 500hPa heights, and the wind fields at 850hPa and 200hPa. Statistical parameters that were calculated for precipitation include RMS error, correlation, equitable threat score (ETS), and a special definition of bias appropriate for the precipitation field. For the mass and motion fields the performance of the Superensemble was considered for the annual global case, as well as for each hemisphere (north and south) and for each of the four seasons. For precipitation only the annual case was considered over the domain cited above.For the mass and motion fields the RMS calculations showed the Superensemble to be superior (to have the smallest total forecast error) in all comparisons to the ensemble member models, and to be superior to the ensemble mean in the vast majority of comparisons. Performance in comparison to the other models was generally better in the Southern Hemisphere than in the Northern Hemisphere, and better in the transition seasons of fall and spring than in the extreme seasons of winter and summer. The Superensemble had the best success with mean sea level pressure, followed in order by 500hPa geopotential heights, 850hPa winds, and 200hPa winds.In the calculations of 500hPa geopotential height anomaly correlation the Superensemble had higher scores in all comparisons to the ensemble member models, as well as higher scores in the majority of comparisons to the ensemble mean. As with the RMS error results, the Superensemble performed better in the Southern Hemisphere than in the Northern Hemisphere, and better in fall than in summer, in comparison to the other models. The superior anomaly correlation scores of the Superensemble attest to the ability of the model to forecast daily perturbations from the climatological means, perturbations that are associated with transient synoptic scale features, given the horizontal resolution in the forecast models.In terms of systematic error reduction the Superensemble produces its most impressive results. Annual global mean sea-level pressure systematic errors for day 5 forecasts are generally in the range of ±1hPa (compared to errors as high as 8hPa in other models), and day 2 forecasts of 500hPa geopotential height produced systematic errors generally in the range of ±10 meters (compared to errors as high as 60 meters in other models). The Superensemble was able to reduce systematic errors in forecasts of a variety of important features in the global mass and motion fields: surface equatorial trough, wave amplitude in geopotential heights at 500hPa, trade winds and Somali Jet at 850hPa, mid-latitude westerlies, subtropical jet, and Tropical Easterly Jet (TEJ) at 200hPa.In terms of forecasting precipitation the Superensemble outperforms all ensemble member models and the ensemble mean in terms of RMS error, correlation coefficient, equitable threat score, and bias. The superior correlation scores indicate that the Superensemble is more reliable than the other models in predicting perturbations in the area distribution of precipitation, perturbations that are essentially associated with migrant synoptic scale disturbances, considering the horizontal resolution of the forecast models.The Superensemble is a valuable tool for significantly improving upon the global model forecasts of the worlds operational forecast centers. These forecasts are used daily as important guidance in making weather forecasts in all regions of the world. This paper will demonstrate that the Superensemble improves upon the ensemble member model forecasts: (1) in a statistical sense considering broad areas of the globe, (2) in a synoptic climatology sense through focus on the improved forecasts of climatological features seen in the global mass and motion fields, (3) in a synoptic sense through use of anomaly correlation and correlation coefficient where improvement is demonstrated in the forecasts of perturbations from mean fields which are essentially associated with transient synoptic scale disturbances.  相似文献   

19.
Summary The temperature T of a black or gray body orbiting the Sun can be expressed in terms of spherical harmonics in latitude and longitude, its Keplerian orbital elements, and a variable describing rotation about its axis. Assuming that the Earth is a black or gray body without thermal inertia, the resulting equation for T exhibits previously unrecognized odd-degree zonal terms dubbed Seversmith psychroterms. They cause a hemispheric temperature difference which depends upon e sin S, where e is the orbital eccentricity and S is the Suns argument of perigee measured in an Earth-centered frame. The hemisphere containing perihelion is the cooler. For a gray body with the Earths average albedo of 0.3, an emissivity of unity, and an obliquity of 23.5°, the pole-to-pole temperature difference for the combined first and third degree spherical harmonic psychroterms can reach 3.4K for the present eccentricity of 0.016, and 12.9K for the maximum eccentricity of 0.06. While a thermally inertia-less black or gray body with boiling hot subsolar points and nights at absolute zero are poor models for the Earth, the Seversmith psychroterms will survive in more realistic models (although with smaller amplitudes) because the Earth radiates nonlinearly in T. The psychroterms acts in the direction opposite to the Milankovitch precession index, which also depends on e sin S: by warming the cool northern summers, the psychroterms make it harder for the traditional Milankovitch mechanism to operate. The Seversmith psychroterms could in fact be responsible for the ice sheets that cycle with e sin S, instead of the Milankovitch mechanism. By cooling the southern hemisphere for thousands of years when perihelion is in the south, the psychroterms may somehow cause the southern hemisphere to control the northern ice sheets associated with the 23kyr and 19kyr periods (kyr=103 years), possibly through ice-albedo feedback in the sea ice surrounding Antarctica. Two other unexpected features besides the psychroterms are: while the average insolation increases with increasing e, the average temperature of the Earth paradoxically decreases; and the equator-to-pole temperature difference of 21K on a gray body with an albedo equal to 0.3 and an emissivity of unity is actually smaller than the observed difference of 28K on the real Earth.  相似文献   

20.
Summary The Tierras Bajas regions of eastern Santa Cruz, Bolivia have undergone among the most rapid rates of concentrated deforestation during the 1980s and 1990s. We investigate the sensitivity of local climate to these land cover changes as observed from Landsat images acquired between 1975 and 1999. The Simple Biosphere model (SiB2) is used to assess the effects of both morphological and physiological changes in vegetation and the implications for fluxes of water, energy and carbon between the vegetation and the atmosphere during the rainy season.Conversion from tropical forest to cropland implicates morphological changes in vegetation as the primary drivers for a daily maximum warming of about 2°C and a slight nighttime cooling, suggesting that clearing of tropical forests for agricultural use may increase the diurnal temperature range, mainly by increasing the maximum temperature. On the other hand, the conversion of wooded grassland to cropland resulted in a similar daily warming and drying but exclusively due to vegetation physiological activity.The area-averaged monthly mean response for each conversion type resulted in a warming of about 0.6°C for the conversion of broadleaf evergreen and 1.2°C for conversion of wooded grassland. These temperature differences represent an augmentation in the local heat source associated with a reduction in evapotranspiration due to land cover conversion and do not reflect variations forced by changes in atmospheric circulation.When averaged over the entire domain, the effect of landscape conversion results in a reduction of the latent heat flux and an increase in sensible heat flux, producing a large-scale apparent heat source of 0.5°C during January. This warming is in line with an increasing trend observed in monthly mean temperature in Santa Cruz, Bolivia during the same period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号