首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
本文以南海北部粤东沿海夏季上升流三个短柱状岩心为研究对象,通过二醇化合物分布分析测试和二醇环境参数的定量化重建,初步探讨了过去80年来海水表层温度(SST)、上升流活动和沉积环境演变过程及其交互关系。二醇温度指标(LDI)在粤东沿海地区较好地指示了年均SST,在三个岩心中均显示了整体增加的分布特征和相似的多年尺度变化趋势。此外,LDI SST和二醇参数2具有非常好的线性关系(R2=0.85,n=49),其整体分布、多年尺度变化均和ENSO旋回一致,并且大部分高/低值和ENSO暖/冷年、南海夏季风强/弱年具有很好的对应关系,表明了二醇参数2可以作为粤东上升流强度变化(多年/单年尺度)的替代性指标。而1,14 二醇含量和ENSO指标在多年尺度上显示了相似的波动特征,但大部分高/低值和南海夏季风指数、ENSO指标呈反相分布,说明了仅用1,14 二醇含量不可反演粤东上升流。据此,利用二醇参数2初步重建了过去80年来粤东上升流演变信息:上升流强度整体上显示加强的分布趋势,大体上呈约2~5年周期变化。此外,三个岩心中1,15 C30(二醇/二醇+酮醇)比值和二醇参数2在整体上和多年尺度上均呈现相反的分布特征,可能与上升流活动导致的1,15 C30二醇母源再悬浮再氧化有关,而普遍较高的1,15 C30二醇比值(≥0.82)反映的强还原环境则和上升流地区水体中含氧量普遍偏低相关。  相似文献   

2.
Sediment denitrification was monthly evaluated in two tropical coastal lagoons with different trophic states using the 15N isotope pairing technique. Denitrification rates were very low in both environments, always <5.0 μmol N2 m?2 h?1 and were not significantly different between them. Oxygen consumption varied from 426 to 4248 μmol O2 m?2 h?1 and was generally three times higher in the meso-eutrophic than the oligotrophic lagoon. The low denitrification activity was ascribed to both low water NO3 ? concentrations (<2.0 μM) and little nitrate supply from nitrification. There was no correlation of denitrification with nitrate or ammonium fluxes. Sediments in temperate environments with similar oxygen consumption rates usually presented a higher proportion of nitrification–denitrification rates. Sediment oxygen consumption was a good predictor of sediment denitrification in both studied lagoons.  相似文献   

3.
Filter-feeding bivalves, like oysters, couple pelagic primary production with benthic microbial processes by consuming plankton from the water column and depositing unassimilated material on sediment. Conceptual models suggest that at low to moderate oyster densities, this deposition can stimulate benthic denitrification by providing denitrifying bacteria with organic carbon and nitrogen (N). While enhanced denitrification has been found at oyster reefs, data from oyster aquaculture are limited and equivocal. This study measured seasonal rates of denitrification, as well as dissimilatory nitrate reduction to ammonium (DNRA), and dissolved inorganic N fluxes at a rack and bag eastern oyster (Crassostrea virginica) aquaculture farm. Consistent with models, denitrification was enhanced within the farm, with an average annual increase of 350% compared to a reference site. However, absolute denitrification rates were low relative to other coastal systems, reaching a maximum of 19.2 μmol m?2 h?1. Denitrification appeared to be nitrate (NO3 ?) limited, likely due to inhibited nitrification caused by sediment anoxia. Denitrification may also have been limited by competition for NO3 ? with DNRA, which accounted for an average of 76% of NO3 ? reduction. Consequently, direct release of ammonium (NH4 +) from mineralization to the water column was the most significant benthic N pathway, with seasonal rates exceeding 900 μmol m?2 h?1 within the farm. The enhanced N processes were spatially limited however, with significantly higher rates directly under oysters, compared to in between oyster racks. For commercial aquaculture farms like this, with moderate oyster densities (100–200 oysters m?2), denitrification may be enhanced, but nonetheless limited by biodeposition-induced sediment anoxia. The resulting shift in the sediment N balance toward processes that regenerate reactive N to the water column rather than remove N is an important consideration for water quality.  相似文献   

4.
The western Arctic Shelf has long been considered as an important sink of nitrogen because high primary productivity of the shelf water fuels active denitrification within the sediments, which has been recognized to account for all the nitrogen (N) removal of the Pacific water inflow. However, potentially high denitrifying activity was discovered within the oxygenated Chukchi Shelf water during our summer expedition. Based on 15N-isotope pairing incubations, we estimated denitrification rates ranging from 1.8 ± 0.4 to 75.9 ± 8.7 nmol N2 L?1 h?1. We find that the spatial pattern of denitrifying activity follows well with primary productivity, which supplies plentiful fresh organic matter, and there was a strong correlation between integrated denitrification and integrated primary productivity. Considering the active hydrodynamics over the Chukchi Shelf during summer, resuspension of benthic sediment coupled with particle-associated bacteria induces an active denitrification process in the oxic water column. We further extrapolate to the whole Chukchi Shelf and estimate an N removal flux from this cold Arctic shelf water to be 12.2 Tg-N year?1, which compensates for the difference between sediment cores incubation (~ 3 Tg-N year?1) and geochemical estimation based on N deficit relative to phosphorous (~ 16 Tg-N year?1). We infer that dynamic sediment resuspension combined with high biological productivity stimulates intensive denitrification in the water column, potentially creating a nitrogen sink over the shallow Arctic shelves that have previously been unrecognized.  相似文献   

5.
A two-dimensional, vertically integrated, nonlinear numerical model was applied to investigate the tide-driven bed load transport of sediments and morphodynamics in the shallow coastal lagoon of Yavaros, located in the southeastern part of the Gulf of California, Mexico. Satellite imagery exposes strong sediment dynamics in this coastal region. The dynamics in the lagoon were forced by 13 tidal constituents at the open boundary. Tides are of a mixed character and they are predominantly semidiurnal. The calculations showed areas of intense tidal currents and considerable water exchange with the Gulf of California. Numerical experiments revealed an ebb-dominant tidal distortion and a net export of sediment from the lagoon to the Gulf of California. A simulation of 20 years showed that the lagoon exported about 1,600 m3 of sediment; however, the daily oscillating exchange of sediment reached values of around 8 m3. The daily averaged flux of export–import sediments oscillates principally with semiannual, monthly and fortnightly periods. By applying a threshold velocity, a variable friction coefficient and the calculated amplitude of tidal velocities, it was possible to determine that morphological changes occur in zones of sharp topographic gradients and to explain the effect of friction on the export–import process of sediments. A 10-year simulation revealed that accumulation of sediment (~20 cm) occurred in small areas, whereas erosion occurred in larger areas but with less intensity (~8 cm). Besides the importance for the morphodynamics, these kinds of erosion–accretion processes may be relevant for the marine ecology.  相似文献   

6.
Coastal upwelling zones support some of the highest rates of primary production in the oceans. The settling and subsequent decomposition of this organic matter promotes oxygen depletion. In the Eastern tropical North and South Pacific and the Arabian Sea, large tracts of anoxic water develop, where intensive N2 production through denitrification and anammox accounts for about 1/3 of the total loss of fixed nitrogen in the marine realm. It is curious that despite extensive denitrification in these waters, complete nitrate removal and the onset of sulfate reduction is extremely rare. A simple box model is constructed here to reproduce the dynamics of carbon, oxygen and nutrient cycling in coastal upwelling zones. The model is constructed with five boxes, where water is exchanged between the boxes by vertical and horizontal mixing and advection. These primary physical drivers control the dynamics of the system. The model demonstrates that in the absence of nitrogen fixation, the anoxic waters in a coastal upwelling system will not become nitrate free. This is because nitrate is the limiting nutrient controlling primary production, and if nitrate concentration becomes too low, primary production rate drops and this reduces rates of nitrate removal through N2 production. With nitrogen fixation, however, complete nitrate depletion can occur and sulfate reduction will ensue. This situation is extremely rare in coastal upwelling zones, probably because nitrogen-fixing bacteria do not prosper in the high nutrient, turbid waters as typically in these areas. Finally, it is predicted here that the chemistry of the upwelling system will develop in a similar matter regardless whether N2 production is dominated by anaerobic ammonium oxidation (anammox) or canonical heterotrophic denitrification.  相似文献   

7.
In the equatorial Pacific, between the Galapagos Islands and the coast of South America, two kinds of upwelling of oceanic waters occur. One is related to coastal upwelling and the other to surfacing of the Equatorial Undercurrent. Both of those processes are associated with the development of the southeast trade winds blowing in this area. Coastal upwelling is increased when the trade winds are intensified, and the surfacing of the Equatorial Undercurrent occurs when the trades weaken. The development of coastal upwelling and the surfacing of the Equatorial Undercurrent are inferred from the radiolarian assemblages in the sediments. The abundance of quartz, opal, and radiolarian assemblages in the deep-sea sediments of this area, as well as the distance from the sample locations to land and to the quartz source, is correlated with the intensity of the trade winds (in February and August) through multiple regression analysis. The chronostratigraphy of core V1929 (3°35′S, 83°56′W), used in this study, is inferred on basis of its δ180 record. During the last 75,000 years, the fluctuations in intensity of the trade winds have been concurrent with or preceded the fluctuations in the amount of ice stored on the continents. In general, the wind velocity of the winter trades has been intensified during cool climatic stages of the earth (δ180 stages 4 and 2) and they have been relaxed during warm stages (δ180 stages 3 and 1). Seasonal contrast of the trade winds has also fluctuated within time, having been relatively high during the upper part of δ180 stage 3.  相似文献   

8.
To compare natural variability and trends in a developed estuary with human-influenced patterns, stable isotope ratios (δ13C and δ15N) were measured in sediments from five piston cores collected in Chesapeake Bay. Mixing of terrestrial and algal carbon sources primarily controls patterns of δ13Corg profiles, so this proxy shows changes in estuary productivity and in delivery of terrestrial carbon to the bay. Analyses of δ15N show periods when oxygen depletion allowed intense denitrification and nutrient recycling to develop in the seasonally stratified water column, in addition to recycling taking place in surficial sediments. These conditions produced 15N-enriched (heavy) nitrogen in algal biomass, and ultimately in sediment. A pronounced increasing trend in δ15N of +4‰ started in about A.D. 1750 to 1800 at all core sites, indicating greater eutrophication in the bay and summer oxygen depletion since that time. The timing of the change correlates with the advent of widespread land clearing and tillage in the watershed, and associated increases in erosion and sedimentation. Isotope data show that the region has experienced up to 13 wet-dry cycles in the last 2700 yr. Relative sea-level rise and basin infilling have produced a net freshening trend overprinted with cyclic climatic variability. Isotope data also constrain the relative position of the spring productivity maximum in Chesapeake Bay and distinguish local anomalies from sustained changes impacting large regions of the bay. This approach to reconstructing environmental history should be generally applicable to studies of other estuaries and coastal embayments impacted by watershed development.  相似文献   

9.
The distribution of fatty acids (FAs) in the water column and surface sediment of the coastal upwelling ecosystem off Concepción (central Chile; almost monthly from February 2007 to November 2008) was analyzed using gas chromatography–mass spectrometry. The concentration of FAs in the water column ranged from 3.4 to 67.7 μg l−1 and showed higher values in surface water than in bottom water, and under upwelling vs. non-upwelling conditions. The content in surface sediment ranged from 21.6 to 328.5 μg g dw−1 and had a higher abundance in February 2007, and January–March and June 2008. In surface water 16:0, 18:0 and 16:1n-7 made up ca. 47% of the FAs during the study period, while in bottom water 16:0, 18:0 and 18:1n-9 accounted for ca. 45%, and in surface sediment ca. 43% was accounted for by 14:0, 16:0, 16:1n-7 and 18:1n-7 FAs. Seasonal variability in the relative abundance of saturated and polyunsaturated FAs (PUFAs) was observed in surface water, while in bottom water and surface sediment no major temporal change in FA composition was observed. A negative exponential relationship between bacterial FAs and PUFAs from surface water and sediment suggests that bacteria may be responsible for ca. 80% of PUFA removal during sinking. We suggest that the FA composition of the surface sediment of the ocean is a consequence of rapid alteration of the FA pool by biological activity in the water column and sediment, driven by the removal of the labile fraction of FAs.  相似文献   

10.
《Quaternary Science Reviews》2007,26(1-2):155-169
Diatom abundance and assemblage composition determined for 47 surface sediment samples from the Southeast Pacific (50°S–15°N), combined with existing data for the Peru and Chile margins, demonstrate responses to regional temperature, upwelling, and productivity. High diatom abundances (# valves/g) mark the eastern equatorial Pacific upwelling and the coastal upwelling areas, in particular the upwelling centers off Peru. Freshwater diatoms reflect the low-salinity tongue off the Chilean fjords. Diatom species composition distinguishes between coastal and eastern equatorial Pacific upwelling conditions, and records sea-surface temperatures. Q-mode factor analysis defines five floral assemblages. Factors 1 and 4 determined by the genus Chaetoceros (F1) and Thalassionema (F4) reflect coastal and equatorial upwelling conditions, respectively. Factors 2 and 3 characterized by the genus Thalassiosira and Azpetia nodulifera can be associated with El Niño conditions. A 5th factor, described by Paralia sulcata, records a near-shore upwelling center off Point Concepción, central Chile. Statistical transfer functions relate diatom species percentages to sea-surface temperature and productivity with error estimates of ±0.9 °C and ±23 gC/m2 yr, respectively, and provide new tools for estimating past temperature and productivity along the west coast of South America.  相似文献   

11.
Oxygen fluxes across the sediment–water interface reflect primary production and organic matter degradation in coastal sediments and thus provide data that can be used for assessing ecosystem function, carbon cycling and the response to coastal eutrophication. In this study, the aquatic eddy covariance technique was used to measure seafloor–water column oxygen fluxes at shallow coastal sites with highly permeable sandy sediment in the northeastern Gulf of Mexico for which oxygen flux data currently are lacking. Oxygen fluxes at wave-exposed Gulf sites were compared to those at protected Bay sites over a period of 4 years and covering the four seasons. A total of 17 daytime and 14 nighttime deployments, producing 408 flux measurements (14.5 min each), were conducted. Average annual oxygen release and uptake (mean ± standard error) were 191 ± 66 and ?191 ± 45 mmol m?2 day?1 for the Gulf sites and 130 ± 57 and ?152 ± 64 mmol m?2 day?1 for the Bay sites. Seasonal variation in oxygen flux was observed, with high rates typically occurring during spring and lower rates during summer. The ratio of average oxygen release to uptake at both sites was close to 1 (Bay: 0.9, Gulf: 1.0). Close responses of the flux to changes in light, temperature, bottom current velocity, and wave action (significant wave height) documented tight physical–biological, benthic–pelagic coupling. The increase of the sedimentary oxygen uptake with increasing temperature corresponded to a Q10 temperature coefficient of 1.4 ± 0.3. An increase in flow velocity resulted in increased oxygen uptake (by a factor of 1–6 for a doubling in flow), which is explained by the enhanced transport of organic matter and electron acceptors into the permeable sediment. Benthic photosynthetic production and oxygen release from the sediment was modulated by light intensity at the temporal scale (minutes) of the flux measurements. The fluxes measured in this study contribute to baseline data in a region with rapid coastal development and can be used in large-scale assessments and estimates of carbon transformations.  相似文献   

12.
Indian summer monsoon is a global scale phenomenon controlled by different land, ocean, and atmospheric parameters. Sea surface temperature (SST) and snow are two of the major parameters, which may alter the spatial and temporal patterns of circulation and rainfall during Indian summer monsoon. In the current paper, we study the monsoon variability using long integrations (20 years) of the Indian Institute of Technology Delhi (IITD) Spectral model at T80L18 resolution with observed and climatological SST and snow. Study shows response of IITD GCM in simulating the Indian summer monsoon rainfall and circulation relative to the snow and SST as boundary conditions. The model’s response to SST and snow is examined by conducting four types of experiments by varying observed and climatological values of snow and SST. This paper discusses the seasonal total rainfall for country as a whole and 850 and 200 hPa wind for the period of 20 years starting from 1985 to 2004. The model has been integrated in the ensemble mode with five different initial conditions from the last week of April and first week of May. The model is able to capture the climatological patterns of seasonal total rainfall and averaged wind at lower and upper levels. Observed snow in the presence of climatological SST as a boundary condition shows much impact on rainfall and circulation than observed SST in the presence of climatological snow. Model performance is good in simulating the normal and excess monsoon conditions; it shows poor skill in capturing deficit monsoon years.  相似文献   

13.
Sea Surface Temperature (SST), river discharge and biological productivity have been reconstructed from a multi-proxy study of a high-temporal-resolution sedimentary sequence recovered from the Tagus deposition center off Lisbon (Portugal) for the last 2000 years. SST shows 2 °C variability on a century scale that allows the identification of the Medieval Warm Period (MWP) and the Little Ice Age (LIA).High Iron (Fe) and fine-sediment deposition accompanied by high n-alkane concentrations and presence of freshwater diatoms during the LIA (1300–1900 AD) (Science 292 (2001) 662) suggest augmented river discharge, whereas higher total-alkenone concentrations point to increased river-induced productivity. During the MWP (550–1300 AD) (Science 292 (2001) 662) larger mean-grain size and low values of magnetic susceptibility, and concentrations of Fe, n-alkanes, and n-alcohols are interpreted to reflect decreased runoff. At the same time, increased benthic and planktonic foraminifera abundances and presence of upwelling related diatoms point to increased oceanic productivity. On the basis of the excellent match found between the negative phases of the North Atlantic Oscillation (NAO) index and the intensified Tagus River discharge observed for the last century, it is hypothesized that the increased influx of terrigenous material during the LIA reflects a negative NAO-like state or the occurrence of frequent extreme NAO minima. During the milder few centuries of the MWP, stronger coastal upwelling conditions are attributed to a persistent, positive NAO-like state or the frequent occurrence of extreme NAO maxima.The peak in magnetic susceptibility, centered at 90 cm composite core depth (ccd), is interpreted as the result of the well-known 1755 AD Lisbon earthquake. The Lisbon earthquake and accompanying tsunami are estimated to have caused the loss of 39 cm of sediment (355 years of record—most of the LIA) and the instantaneous deposition of a 19-cm sediment bed.  相似文献   

14.
The ocean off NW Africa is the second most important coastal upwelling system with a total annual primary production of 0.33 Gt of carbon per year (Carr in Deep Sea Res II 49:59–80, 2002). Deep ocean organic carbon fluxes measured by sediment traps are also fairly high despite low biogenic opal fluxes. Due to a low supply of dissolved silicate from subsurface waters, the ocean off NW Africa is characterized by predominantly carbonate-secreting primary producers, i.e. coccolithophorids. These algae which are key primary producers since millions of years are found in organic- and chlorophyll-rich zooplankton fecal pellets, which sink rapidly through the water column within a few days. Particle flux studies in the Mauretanian upwelling area (Cape Blanc) confirm the hypothesis of Armstrong et al. (Deep Sea Res II 49:219–236, 2002) who proposed that ballast availability, e.g. of carbonate particles, is essential to predict deep ocean organic carbon fluxes. The role of dust as ballast mineral for organic carbon, however, must be also taken into consideration in the coastal settings off NW Africa. There, high settling rates of larger particles approach 400 m day−1, which may be due to a particular composition of mineral ballast. An assessment of particle settling rates from opal-production systems in the Southern Ocean of the Atlantic Sector, in contrast, provides lower values, consistent with the assumptions of Francois et al. (Global Biogeochem Cycles 16(4):1087, 2002). Satellite chlorophyll distributions, particle distributions and fluxes in the water column off NW Africa as well as modelling studies suggest a significant lateral flux component and export of particles from coastal shelf waters into the open ocean. These transport processes have implications for paleo-reconstructions from sediment cores retrieved at continental margin settings.  相似文献   

15.
Coastal upwelling in the northern California Current varies seasonally, with downwelling in winter and upwelling in summer, resulting in pronounced variability in hydrography, nutrients, phytoplankton biomass, and species composition. Winter was characterized by moderate concentrations of nitrate and silicate (averages of 10 and 18 μM, respectively) and low concentrations of chlorophyll a (Chl a). During the upwelling season, concentrations of the same nutrients ranged from near 0 μM to approximately 27 and 43 μM and Chl a 0.5?<?x?<?15 μg L?1. During autumn, upwelling weakened and nutrient concentrations were reduced, but large phytoplankton blooms continued to occur. Variations in hydrography, nutrients, and phytoplankton also occurred within the upwelling season due to alternation of the winds between northerly (active upwelling) and southerly (relaxation of upwelling), on a 5- to 10-day time scale. Eleven blooms were observed, most of which occurred near the end of active upwelling events and during relaxation of upwelling. Nonmetric multidimensional scaling ordination of species composition of the microplankton revealed four distinct communities: a winter community, early upwelling and late upwelling season communities, and an autumn community. Diatoms (Asterionellopsis glacialis, Eucampia zodiacus, and several Chaetoceros, Thalassiosira, and Pseudo-nitzschia species) dominated early in the upwelling season, averaging 80 % of the phytoplankton biomass, and dinoflagellates dominated near the end of the upwelling season, averaging 68 % of the phytoplankton biomass. Dinoflagellates formed two monospecific blooms—Prorocentrum gracile in late summer and Akashiwo sanguinea in autumn. Changes in community composition were correlated with bottom temperature and salinity (representing seasonal variability) and sea surface salinity (representing within-season event-scale variability in upwelling).  相似文献   

16.
The mercury (Hg) deposition history in the Darién Gulf is reconstructed from three sediment cores spanning up to 1,000 years. Knowledge on the contribution to global Hg budget from the Caribbean is limited. Patterns of water circulation, sediment deposition rates, cataclysmic atmospheric inputs, and post-depositional migration have been considered in Hg trapping in the seabed. The sediment delivery rates to the coastal zone over the Late Holocene have increased from 0.2 to 1 cm year?1 owing to anthropogenic influence. This alteration took the form of geological effects, like coastal morphology change, that played a major role in Hg downcore signal preservation. Natural background Hg levels in Southern Caribbean sediments (77.0 μg kg?1) are up to three times higher than preindustrial signals at other latitudes, because of volcanic contributions from the Pacific ring of fire. Enrichment factors rose from 0.9 to 1.5 (70.1–113.5 μg kg?1) within profiles related to Hg usage since Spanish colonial times between the calendar years 1550 and 1811.  相似文献   

17.
The estuarine environment can serve as either a source or sink of carbon relative to the coastal ocean carbon budget. A variety of time-dependent processes such as sedimentation, carbon supply, and productivity dictate how estuarine systems operate, and Mobile Bay is a system that has experienced both natural and anthropogenic perturbations that influenced depositional processes and carbon cycling. Sediments from eight box cores provide a record of change in bulk sediment accumulation and carbon burial over the past 110 years. Accumulation rates in the central part of the basin (0.09 g cm?2) were 60–80 % less than those observed at the head (0.361 g cm?2) and mouth (0.564 g cm?2) of the bay. Sediment accumulation in the central bay decreased during the past 90 years in response to both anthropogenic (causeway construction) and natural (tropical cyclones) perturbations. Sediment accumulation inevitably increased the residence time of organic carbon in the oxic zone, as observed in modeled remineralization rates, and reduced the overall carbon burial. Such observations highlight the critical balance among sediment accumulation, carbon remineralization, and carbon burial in dynamic coastal environments. Time-series analysis based solely on short-term observation would not capture the long-term effects of changes in sedimentation on carbon cycling. Identifying these relationships over longer timescales (multi-annual to decadal) will provide a far better evaluation of coastal ocean carbon budgets.  相似文献   

18.
《Quaternary Science Reviews》2007,26(13-14):1818-1837
We present the first synchronously coupled transient simulation of the evolution of the northern Africa climate-ecosystem for the last 6500 years in a global general circulation ocean–atmosphere–terrestrial ecosystem model. The model simulated the major abrupt vegetation collapse in the southern Sahara at about 5 ka, consistent with the proxy records. Local precipitation, however, shows a much more gradual decline with time, implying a lack of strong positive vegetation feedback on annual rainfall during the collapse. The vegetation change in northern Africa is driven by local precipitation decline and strong precipitation variability. In contrast, the change of precipitation is dominated by internal climate variability and a gradual monsoonal climate response to orbital forcing. In addition, some minor vegetation changes are also simulated in different regions across northern AfricaThe model also simulated a gradual annual mean surface cooling in the subtropical North Atlantic towards the latest Holocene, as well as a reduced seasonal cycle of SST. The SST response is caused largely by the insolation forcing, while the annual mean cooling is also reinforced by the increased coastal upwelling near the east boundary. The increased upwelling results from a southward retreat of the North Africa monsoon system, and, in turn, an increased northeasterly trade wind. The simulated changes of SST and upwelling are also largely consistent with marine proxy records, albeit with a weaker magnitude in the model.The mismatch between the collapse of vegetation and gradual transition of rainfall suggests that the vegetation collapse is not caused by a strong positive vegetation feedback. Instead, it is suggested that the Mid-Holocene collapse of North African vegetation is caused mainly by a nonlinear response of the vegetation to a precipitation threshold in the presence of strong climate variability. The implication to the modeling and observations is also discussed.  相似文献   

19.
南海北部夏季沿岸上升流近百年的强度变化   总被引:7,自引:0,他引:7  
用全谱直读ICP-AES技术测定了海南岛东部(琼东)沿岸上升流区域滨珊瑚1906—1996年的Sr/Ca比值。结果显示珊瑚Sr/Ca比值重建的琼东海域的夏季海表温度偏低,强烈地受到东亚夏季风引起沿岸冷上升流的影响。结合西沙海域的滨珊瑚海表温度记录,首次重建了1906~1993年琼东沿岸风生上升流的强度指数变化序列。结果表明琼东上升流于1906~1993期间整体呈加强趋势,并具显著的年代际波动特征,同全球趋暖密切相关。此外,重建的上升流强度指数序列还揭示了大尺度环流——厄尔尼诺一南方涛动对琼东上升流强度变化的制约。  相似文献   

20.
The present study examines the temporal variability of air–water CO2 fluxes (FCO2) and seawater carbonate chemistry in a Baja California coastal lagoon during an exceptionally warm anomaly that was developed in Northeast Pacific coasts during 2014. This oceanographic condition led to a summer-like season (weak upwelling condition) during the study period, which reached a maximum surface temperature anomaly of 2 °C in September 2014. San Quintín Bay acts as a source of CO2 to the atmosphere in 2014 (3.3 ± 4.8 mmol C m?2 day?1) with the higher positive fluxes mainly observed in summer months (9.0 ± 5.3 mmol C m?2 day?1). Net ecosystem production (NEP) switched seasonally between net heterotrophy and net autotrophy during the study period, with an annual average of 2.2 ± 7.1 mmol C m?2 day?1, which indicates that San Quintín Bay was a net autotrophic system during the atypical warm oceanographic condition in 2014. This pattern of seasonal variations in the carbon balance at San Quintín Bay appears to be linked to the life cycle of benthic communities, which play an important role in the whole-ecosystem metabolism. Under the limited input from external sources coupled with an increase in seawater temperatures, the recycled benthic carbon and nutrient fluxes play a major role to sustain water-column processes within the bay. Since the upwelling condition may influence the magnitude of the air–water CO2 fluxes, our results clearly indicated that San Quintín Bay is a net source of carbon to the atmosphere regardless of the adjacent oceanic conditions. Our study sheds light on the carbon dynamics and its metabolic implications in a shallow coastal ecosystem under a regional warm anomaly and contributes potentially relevant information in view of the likely future scenario of global climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号