首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We revisit the issue of the recent dynamical evolution of clusters of galaxies using a sample of Abell, Corwin & Olowin (ACO) clusters with   z < 0.14  , which has been selected such that it does not contain clusters with multiple velocity components nor strongly merging or interacting clusters, as revealed in X-rays. We use as proxies of the cluster dynamical state the projected cluster ellipticity, velocity dispersion and X-ray luminosity. We find indications for a recent dynamical evolution of this cluster population, which however strongly depends on the cluster richness. Poor clusters appear to be undergoing their primary phase of virialization, with their ellipticity increasing with redshift with a rate  dε/d z ≃ 2.5 ± 0.4  , while the richest clusters show an ellipticity evolution in the opposite direction (with  dε/d z ≃−1.2 ± 0.1  ), which could be due to secondary infall. When taking into account sampling effects due to the magnitude-limited nature of the ACO cluster catalogue we find no significant evolution of the cluster X-ray luminosity, while the velocity dispersion increases with decreasing redshift, independent of the cluster richness, at a rate  dσ v /d z ≃−1700 ± 400 km s−1  .  相似文献   

2.
1 INTRODUCTION Over the past years, diffuse radio halos have been detected in a few tens of nearby, richclusters. They often extend to a distance of 1 Mpc from the cluster centers, and have regularshape, low surface brightness and steep radio spectrum. Some clusters also contain peculiarradio structures called radio relics. Both radio halos and relics are believed to arise from themerging of sub-cluster structures (Buote 2001). The first radio halo, Coma C, was detected about 30 years a…  相似文献   

3.
The observed properties of young star clusters, such as the core radius and luminosity profile, change rapidly during the early evolution of the clusters. Here we present observations of six young clusters in M51 where we derive their sizes using Hubble Space Telescope ( HST ) imaging and ages using deep Gemini-North spectroscopy. We find evidence for a rapid expansion of the cluster cores during the first 20 Myr of their evolution. We confirm this trend by including data from the literature of both Galactic and extragalactic embedded and young clusters, and possible mechanisms (rapid gas removal, stellar evolutionary mass loss and internal dynamical heating) are discussed. We explore the implications of this result, focussing on the fact that clusters were more concentrated in the past, implying that their stellar densities were much higher and relaxation times ( t relax) correspondingly shorter. Thus, when estimating if a particular cluster is dynamically relaxed (i.e. when determining if a cluster's mass segregation is due to primordial or dynamical processes), the current relaxation time is only an upper limit, with t relax likely being significantly shorter in the past.  相似文献   

4.
We report results of collisional N -body simulations aimed at studying the N dependence of the dynamical evolution of star clusters. Our clusters consist of equal-mass stars and are in virial equilibrium. Clusters moving in external tidal fields and clusters limited by a cut-off radius are simulated. Our main focus is to study the dependence of the lifetimes of the clusters on the number of cluster stars and the chosen escape condition.
We find that star clusters in external tidal fields exhibit a scaling problem in the sense that their lifetimes do not scale with the relaxation time. Isolated clusters show a similar problem if stars are removed only after their distance to the cluster centre exceeds a certain cut-off radius. If stars are removed immediately after their energy exceeds the energy necessary for escape, the scaling problem disappears.
We show that some stars that gain the energy necessary for escape are scattered to lower energies before they can leave the cluster. As the efficiency of this process decreases with increasing particle number, it causes the lifetimes not to scale with the relaxation time. Analytic formulae are derived for the scaling of the lifetimes in the different cases.  相似文献   

5.
The initial condition of the formation of massive stars is still unclear at present. In particular, it is still debatable whether or not massive stars are formed in the cluster center. Some people considered from the viewpoint of time scale and thought that the mass segregation phenomena in embedded clusters means that the massive stars can only be born in the cluster center. In this paper we used the Monte Carlo method to make numerical simulation of the dynamical evolution of embedded clusters and the result is compared with the observations. It is assumed that at the initial time massive stars are randomly distributed. It was found that, due to the random motions of massive stars, temporary mass segregation may exist at certain times in the course of evolution of a given embedded cluster, and this phenomenon may be very prominent in some of them. It is pointed out that massive star formation in the center is not the only explanation for mass segregation in embedded clusters. In addition, dynamical friction from the gas can effectively reduce the time scale of the dynamical mass segregation. In consequence, the probability of temporary mass segregation is increased.  相似文献   

6.
We investigate the evolutionary effect of dynamical mass segregation in young stellar clusters. Dynamical mass segregation acts on a time-scale of order the relaxation time of a cluster. Although some degree of mass segregation occurs earlier, the position of massive stars in rich young clusters generally reflects the cluster's initial conditions. In particular, the positions of the massive stars in the Trapezium cluster in Orion cannot be due to dynamical mass segregation, but indicate that they formed in, or near, the centre of the cluster. Implications of this for cluster formation and for the formation of high-mass stars are discussed.  相似文献   

7.
In this study we present the results from realistic N -body modelling of massive star clusters in the Magellanic Clouds. We have computed eight simulations with   N ∼ 105  particles; six of these were evolved for at least a Hubble time. The aim of this modelling is to examine in detail the possibility of large-scale core expansion in massive star clusters, and search for a viable dynamical origin for the radius–age trend observed for such objects in the Magellanic Clouds. We identify two physical processes which can lead to significant and prolonged cluster core expansion – mass-loss due to rapid stellar evolution in a primordially mass-segregated cluster, and heating due to a retained population of stellar mass black holes, formed in the supernova explosions of the most massive cluster stars. These two processes operate over different time-scales and during different periods of a cluster's life. The former occurs only at early times and cannot drive core expansion for longer than a few hundred Myr, while the latter typically does not begin until several hundred Myr have passed, but can result in core expansion lasting for many Gyr. We investigate the behaviour of each of these expansion mechanisms under different circumstances – in clusters with varying degrees of primordial mass segregation, and in clusters with varying black hole retention fractions. In combination, the two processes can lead to a wide variety of evolutionary paths on the radius–age plane, which fully cover the observed cluster distribution and hence define a dynamical origin for the radius–age trend in the Magellanic Clouds. We discuss in some detail the implications of core expansion for various aspects of globular cluster research, as well as the possibility of observationally inferring the presence of a significant population of stellar mass black holes in a cluster.  相似文献   

8.
The results are here presented of an analysis of the subclustering in a sample of galaxy clusters from the European Southern Observatory (ESO) Nearby Abell Cluster Survey (ENACS), along with complementary data from other studies. The analysis is performed by using the S-tree method, enabling us to study the hierarchical properties of clusters by the detection of the main physical cluster and of its subgroups. The results indicate (a) systematically lower genuine cluster velocity dispersions than were known from previous studies, and (b) the existence of 2–3 subgroups in each cluster. As a result of certain properties of a new class of dynamical entities, we denote these subgroups as galaxy associations ; these may become an essential challenge for the formation mechanisms of galaxy clusters.  相似文献   

9.
We study the evolution of binary stars in globular clusters using a new Monte Carlo approach combining a population synthesis code ( startrack ) and a simple treatment of dynamical interactions in the dense cluster core using a new tool for computing three- and four-body interactions ( fewbody ). We find that the combination of stellar evolution and dynamical interactions (binary–single and binary–binary) leads to a rapid depletion of the binary population in the cluster core. The maximum binary fraction today in the core of a typical dense cluster such as 47 Tuc, assuming an initial binary fraction of 100 per cent, is only ∼ 5–10 per cent. We show that this is in good agreement with recent Hubble Space Telescope observations of close binaries in the core of 47 Tuc, provided that a realistic distribution of binary periods is used to interpret the results. Our findings also have important consequences for the dynamical modelling of globular clusters, suggesting that 'realistic models' should incorporate much larger initial binary fractions than has usually been the case in the past.  相似文献   

10.
Globular cluster systems evolve, in galaxies, due to internal and external dynamics and tidal phenomena. One of the causes of evolution, dynamical friction, is responsible for the orbital decay of massive clusters into the innermost galactic regions. It is found that these clusters are effective source of matter to feed a central galactic black hole such to make it grow and shine as an AGN.  相似文献   

11.
We consider the use of N -body simulations for studying the evolution of rich star clusters (i.e. globular clusters).The dynamical processes included in this study are restricted to gravitational (point-mass) interactions, the steady tidal field of a galaxy, and instantaneous mass loss resulting from stellar evolution. With evolution driven by these mechanisms, it is known that clusters fall roughly into two broad classes: those that dissipate promptly in the tidal field, as a result of mass loss; and those that survive long enough for their evolution to become dominated by two-body relaxation.
The time-scales of the processes we consider scale in different ways with the number of stars in the simulation, and the main aim of the paper is to suggest how the scaling of a simulation should be done so that the results are representative of the evolution of a 'real' cluster. We investigate three different ways of scaling time. One of these is appropriate to the first type of cluster, i.e. those that dissipate rapidly; similarly, a second scaling is appropriate only to the second (relaxation-dominated) type. We also develop a hybrid scaling, which is a satisfactory compromise for both types of cluster. Finally we present evidence that the widely used Fokker–Planck method produces models that are in good agreement with N -body models of those clusters that are relaxation-dominated, at least for N -body models with several thousand particles, but that the Fokker–Planck models evolve too fast for clusters that dissipate promptly.  相似文献   

12.
We examine the dynamical destruction of binary systems in star clusters of different densities. We find that at high densities  (104– 105 M pc−3)  almost all binaries with separations  >103  au are destroyed after a few crossing times. At low densities [     ], many binaries with separations  >103  au are destroyed, and no binaries with separations  >104  au survive after a few crossing times. Therefore, the binary separations in clusters can be used as a tracer of the dynamical age and past density of a cluster.
We argue that the central region of the Orion nebula cluster was ∼100 times denser in the past with a half-mass radius of only 0.1–0.2 pc as (i) it is expanding, (ii) it has very few binaries with separations  >103  au and (iii) it is well mixed and therefore dynamically old.
We also examine the origin of the field binary population. Binaries with separations  <102  au are not significantly modified in any cluster, therefore at these separations the field reflects the sum of all star formation. Binaries with separations in the range  102– 104  au are progressively more and more heavily affected by dynamical disruption in increasingly dense clusters. If most star formation is clustered, these binaries must be overproduced relative to the field. Finally, no binary with a separation  >104  au can survive in any cluster and so must be produced by isolated star formation, but only if all isolated star formation produces extremely wide binaries.  相似文献   

13.
We apply the modified acceleration law obtained from Einstein gravity coupled to a massive skew symmetric field,   F μνλ  , to the problem of explaining X-ray galaxy cluster masses without exotic dark matter. Utilizing X-ray observations to fit the gas mass profile and temperature profile of the hot intracluster medium (ICM) with King 'β-models', we show that the dynamical masses of the galaxy clusters resulting from our modified acceleration law fit the cluster gas masses for our sample of 106 clusters without the need of introducing a non-baryonic dark matter component. We are further able to show for our sample of 106 clusters that the distribution of gas in the ICM as a function of radial distance is well fitted by the dynamical mass distribution arising from our modified acceleration law without any additional dark matter component. In a previous work, we applied this theory to galaxy rotation curves and demonstrated good fits to our sample of 101 low surface brightness, high surface brightness and dwarf galaxies including 58 galaxies that were fitted photometrically with the single-parameter mass-to-light ratio ( M / L )stars. The results obtained there were qualitatively similar to those obtained using Milgrom's phenomenological Modified Newtonian Dynamics (MOND) model, although the determined galaxy masses were quantitatively different, and MOND does not show a return to Keplerian behaviour at extragalactic distances. The results obtained here are compared to those obtained using Milgrom's phenomenological MOND model which does not fit the X-ray galaxy cluster masses unless an auxiliary dark matter component is included.  相似文献   

14.
Recent improvements in the capabilities of low-frequency radio telescopes provide a unique opportunity to study thermal and non-thermal properties of the cosmic web. We argue that the diffuse, polarized emission from giant radio relics traces structure formation shock waves and illuminates the large-scale magnetic field. To show this, we model the population of shock-accelerated relativistic electrons in high-resolution cosmological simulations of galaxy clusters and calculate the resulting radio synchrotron emission. We find that individual shock waves correspond to localized peaks in the radio surface brightness map which enables us to measure Mach numbers for these shocks. We show that the luminosities and number counts of the relics strongly depend on the magnetic field properties, the cluster mass and dynamical state. By suitably combining different cluster data, including Faraday rotation measures, we are able to constrain some macroscopic parameters of the plasma at the structure formation shocks, such as models of turbulence. We also predict upper limits for the properties of the warm-hot intergalactic medium, such as its temperature and density. We predict that the current generation of radio telescopes [Low-Frequency Array (LOFAR), Giant Meter Radio Telescope (GMRT), the Murchison Wide-field Array (MWA) and Long Wavelength Array (LWA)] have the potential to discover a substantially larger sample of radio relics, with multiple relics expected for each violently merging cluster. Future experiments [(Square Kilometre Array (SKA)] should enable us to further probe the macroscopic parameters of plasma physics in clusters.  相似文献   

15.
The dynamical signatures of the interaction between galaxies in clusters and the intracluster medium (ICM) can potentially yield significant information about the structure and dynamical history of clusters. To develop our understanding of this phenomenon we present results from numerical modelling of the galaxy–ICM interaction, as the galaxy moves through the cluster. The simulations have been performed for a broad range of ICM temperatures ( kT cl=1, 4 and 8 keV), representative of poor clusters or groups through to rich clusters.
There are several dynamical features that can be identified in these simulations. For supersonic galaxy motion, a leading bow shock is present, and also a weak gravitationally focused wake or tail behind the galaxy (analogous to Bondi–Hoyle accretion). For galaxies with higher mass replenishment rates and a denser interstellar medium (ISM), the dominant feature is a dense ram-pressure stripped tail. In line with other simulations, we find that the ICM/galaxy–ISM interaction can result in complex time-dependent dynamics, with ram-pressure stripping occurring in an episodic manner.
In order to facilitate this comparison between the observational consequences of dynamical studies and X-ray observations we have calculated synthetic X-ray flux and hardness maps from these simulations. These calculations predict that the ram-pressure stripped tail will usually be the most visible feature, though in nearby galaxies the bow shock preceding the galaxy should also be apparent in deeper X-ray observations. We briefly discuss these results and compare them with X-ray observations of galaxies where there is evidence of such interactions.  相似文献   

16.
Using high-resolution cosmological N -body simulations, we investigate the survival of dark matter satellites falling into larger haloes. Satellites preserve their identity for some time after merging. We compute their loss of mass, energy and angular momentum as they are dissolved by dynamical friction, tidal forces and collisions with other satellites. We also analyse the evolution of their internal structure. Satellites with less than a few per cent of the mass of the main halo may survive for several billion years, whereas larger satellites rapidly sink into the centre of the main halo potential well and lose their identity. Penetrating encounters between satellites are frequent and may lead to significant mass loss and disruption. Only a minor fraction of cluster mass (10–15 per cent on average) is bound to substructure at most redshifts of interest. We discuss the application of these results to the survival and extent of dark matter haloes associated with galaxies in clusters, and to their interactions. We find that a minor fraction of galaxy-size dark matter haloes are disrupted by redshift z  = 0. The fraction of satellites undergoing close encounters is similar to the observed fraction of interacting or merging galaxies in clusters at moderate redshift.  相似文献   

17.
We have previously reported a measure     which both quantifies and distinguishes between a (relatively smooth) large-scale radial density gradient and multiscale (fractal) subclustering. Here, we extend the applicability of     to clusters which deviate significantly from an overall circular shape.
    varies systematically as clusters assume a more elongated shape, and it is therefore possible to correct for the effect, if the elongation of the cluster is also quantified.     therefore remains a useful and robust analytical technique for classifying and quantifying the internal structure of star clusters, even when their overall shape is far from circular.
The corrections required are small for individual clusters which are not extremely elongated (not more than three times longer than they are wide) of the same order as the uncertainty in the value of     for a particular cluster type. We therefore recommend that no correction be applied to the calculation of     for individual clusters, unless they are more than three times longer than their width, but that correction for elongation be applied when     is used for statistical analyses of large numbers of observed or simulated clusters.  相似文献   

18.
The new approach outlined in Paper I to follow the individual formation and evolution of binaries in an evolving, equal point-mass star cluster is extended for the self-consistent treatment of relaxation and close three- and four-body encounters for many binaries (typically a few per cent of the initial number of stars in the cluster mass). The distribution of single stars is treated as a conducting gas sphere with a standard anisotropic gaseous model. A Monte Carlo technique is used to model the motion of binaries, their formation and subsequent hardening by close encounters, and their relaxation (dynamical friction) with single stars and other binaries. The results are a further approach towards a realistic model of globular clusters with primordial binaries without using special hardware. We present, as our main result, the self-consistent evolution of a cluster consisting of 300 000 equal point-mass stars, plus 30 000 equal-mass binaries over several hundred half-mass relaxation times, well into the phase where most of the binaries have been dissolved and evacuated from the core. The cluster evolution is about three times slower than found by Gao et al. Other features are rather comparable. At every moment we are able to show the individual distribution of binaries in the cluster.  相似文献   

19.
If a galaxy resides in a cluster, then its passage through the pervasive intracluster medium will produce a detectable signature in the X-ray emission from the cluster. Such features have now been detected in a number of systems. The simplest kinematic information that can be extracted from this signature is the galaxy's direction of motion on the plane of the sky. This paper explores the constraints on cluster dynamics that could be derived from such information. In particular, we show that it is possible to define a projected anisotropy parameter, B ( r ), which is directly analogous to the usual orbital anisotropy parameter. We describe an estimator for this quantity, ( R ), which can be derived in a robust and straightforward manner. We present a simple dynamical model for a cluster consisting of a Michie distribution function of galaxies orbiting in a truncated singular isothermal sphere potential. Using this model, we demonstrate the ambiguity between the distribution of mass and the distribution of galaxy orbits when interpreting the traditional measures of cluster kinematics (the projected density of galaxies and their line-of-sight velocity dispersion). As an example, we show how two very different dynamical models can fit the kinematic properties of the Coma cluster. We demonstrate that the measurement of using a relatively small sample of wake directions ( N wake≈50) would provide an effective mechanism for lifting this degeneracy. Thus, by combining X-ray measurements of wake directions with number counts and line-of-sight velocities derived from optical data, it will prove possible to measure both the orbit distribution and the form of the gravitational potential in clusters of galaxies. The requisite X-ray observations lie within reach of the soon-to-be-launched AXAF satellite.  相似文献   

20.
Rich and massive clusters of galaxies at intermediate redshift are capable of magnifying and distorting the images of background galaxies. A comparison of different mass estimators among these clusters can provide useful information about the distribution and composition of cluster matter and its dynamical evolution. Using the hitherto largest sample of lensing clusters drawn from the literature, we compare the gravitating masses of clusters derived from the strong/weak gravitational lensing phenomena, from the X-ray measurements based on the assumption of hydrostatic equilibrium, and from the conventional isothermal sphere model for the dark matter profile characterized by the velocity dispersion and core radius of galaxy distributions in clusters. While there is excellent agreement between the weak lensing, X-ray and isothermal sphere model-determined cluster masses, these methods are likely to underestimate the gravitating masses enclosed within the central cores of clusters by a factor of 2–4 as compared with the strong lensing results. Such a mass discrepancy has probably arisen from the inappropriate applications of the weak lensing technique and the hydrostatic equilibrium hypothesis to the central regions of clusters, as well as from assuming an unreasonably large core radius for both luminous and dark matter profiles. Nevertheless, it is pointed out that these cluster mass estimators may be safely applied on scales greater than the core sizes. Namely, the overall clusters of galaxies at intermediate redshift can still be regarded as the dynamically relaxed systems, in which the velocity dispersion of galaxies and the temperature of X-ray emitting gas are good indicators of the underlying gravitational potentials of clusters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号