首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
西湖引水前后氮 , 磷 , 叶绿素 A 含量的年周期变化   总被引:2,自引:1,他引:2  
马玖兰 《湖泊科学》1996,8(2):144-150
研究了杭州西湖引水前后主要湖区水体中的氮、磷、叶绿素a的年周期动态变化。结果表明:外湖等五个湖区的总氮含量在春季和秋季有两个高峰值,与引水前相比变化不大。硝酸盐氮各湖区均在1~4月呈现高峰。各湖区的总磷含量5月开始急剧上升,9月后降至最低;氮、磷在各湖区的年平均含量也略有差异,一般以岳湖和北里湖湖区的含量较高,而三潭内湖和小南湖湖区相对较低。对各湖区水样检测的相关分析表明:总磷和叶绿素a的年周期动态变化密切相关,而可溶性磷与各湖区的叶绿素a含量相关不显著,但其动态变化一致。从西湖水质改善的程度来看,引水工程只是治理西湖的一项重要措施,但不是根本措施,还需进一步加强截污、科学疏挖、控制游船数量等综合治理。  相似文献   

2.
西湖叶绿素a周年动态变化及藻类增长潜力试验   总被引:21,自引:2,他引:19  
吴洁  钱天鸣  虞左明 《湖泊科学》2001,13(2):143-148
通过1999年1-12月对杭州西湖主要湖区叶绿素a含量及水量理化指标的逐月测定,分析了西湖主要湖区叶绿素a含量周年动态变经特征及各种环境生态因子对叶绿素a的影响,并对湖水进行了藻类增长潜力试验,研究结果表明,西湖主要湖区叶绿素a含量总体保持在同一水平,年变化在41.16-191.26mg/m^3之间,年均值为为99.98mg/m^3。叶绿素a妗有明显的季节变化特征,夏季和初秋为高峰、冬季最低,水体总磷浓度与叶绿素a年周期动态变化一致,叶绿素a含量的季节变化与水温变化呈显著正相关,西湖为典型的蓝藻型湖,叫氮年均值为2.08mg/L总磷年均值为0.121mg/L,N:P大于17,水体中磷对藻类增长的促进作用比氮更加明显。  相似文献   

3.
洱海叶绿素a浓度的季节动态和空间分布   总被引:3,自引:0,他引:3  
2010年5月至2011年4月,对洱海叶绿素a的季节动态、空间分布及其与环境因子的关系进行研究.结果表明,水体中叶绿素a浓度存在明显的季节变化,其变化范围为4.11~24.30μg/L,年平均值为10.4±6.5μg/L,最小值出现在2011年3月,最大值出现在2010年9月.叶绿素a浓度在夏、秋季较高,冬、春季较低.在空间变化上,叶绿素a浓度在南部湖区最大,其次是北部湖区,中部湖区最低.Pearson相关系数和主成分分析表明,洱海叶绿素a浓度在不同湖区中与水温和透明度均呈极显著相关.总氮在北部和南部湖区与叶绿素a浓度均存在一定的相关性,而总磷与叶绿素a浓度在南部湖区存在一定的相关性.根据修正的卡尔森营养状态指数,洱海综合TSI值为50.6,水质处于中营养状态.  相似文献   

4.
2005-2017年北部太湖水体叶绿素a和营养盐变化及影响因素   总被引:7,自引:0,他引:7  
利用国家生态观测网络太湖湖泊生态系统研究站对北部太湖14个监测点2005-2017年的营养盐和叶绿素a浓度逐月监测数据,分析了北部太湖2005年以来水体营养盐和叶绿素a变化特征,探讨了叶绿素变化的影响因素.结果表明,2015年以来,北部太湖水体叶绿素a浓度呈现显著增高特征,特别是5-7月的蓝藻水华灾害关键期,水体叶绿素a浓度增幅更加明显;营养盐方面,氮、磷对治理的响应完全不同:水体总氮、溶解性总氮、氨氮的降幅很明显,甚至在春末夏初的蓝藻生长旺盛期出现了供给不足的征兆;但水体总磷降幅却不明显,加之蓝藻水华的磷"泵吸作用",近3 a来水体总磷浓度反而有升高趋势,溶解性总磷浓度也无明显下降趋势.不同湖区的营养盐变化也不相同:西北湖区溶解性总氮、溶解性总磷浓度显著高于梅梁湾、贡湖湾和湖心区,而且后3个湖区的水质呈现均一化趋势.统计分析表明,北部太湖水体叶绿素a浓度与颗粒氮、颗粒磷、总磷、高锰酸盐指数均呈显著正相关,与溶解态氮呈负相关;5-7月水华关键期北部太湖水体叶绿素a浓度与上半年(1-6月)逐日水温积温、总降雨量、年平均水位均呈显著正相关关系.从研究结果可以看出,近年来北部太湖水体叶绿素a浓度的波动很大程度上受水文气象因子的影响;2007年以来太湖流域一系列生态修复工程的实施,虽然明显降低了湖泊氮浓度,但由于流域和湖体的氮磷本底较高,磷的缓冲能力大,致使水体营养盐水平仍未降到能显著抑制蓝藻生长的水平,年际之间的水文气象条件差异成为蓝藻水华暴发强度差异的主控因素.为此,仍需加大对太湖流域氮、磷负荷的削减,使湖体氮、磷浓度降低到能显著影响蓝藻生长的水平,才能摆脱水文气象条件对蓝藻水华情势的决定作用.  相似文献   

5.
通过对杭州西湖综合保护工程钱塘江引水范围内多个湖区水体和底泥中铝盐含量的调查分析,研究了工程絮凝剂余铝对西湖水体、底泥铝盐及沉水植物附着物的影响.结果表明:(1)引水工程输入的絮凝剂残余铝盐导致各湖区入水口水中铝离子含量普遍高于湖心,高出7.86%~288.55%不等,但底泥中Al_2O_3含量在整个湖区分布较为均匀;(2)约0.04~0.20 m/s流速下,沉水植物很容易成为残余铝盐絮凝物的附着受体;(3)秋、冬季水体中铝离子浓度较高,对西湖水生生物存在更大的生物潜在危害,有必要重视秋、冬季的沉水植物恢复工作.引水工程对西湖水体的影响是长久且难以预见的,在引水的同时应尽量减少其负面影响,可减少絮凝剂的使用或选择环保型絮凝剂,并选择合适的水生植物.  相似文献   

6.
经引水等综合整治后,西湖外湖、西里湖总磷(TP)浓度累计下降58%和78%,总氮(TN)浓度累计下降16.7%和7.7%,透明度提高100%~200%,富营养状态得到极大缓解.比较1986年治理前,西湖各湖区因来水、引水和排水格局差异较大,TP浓度的年内变化特点及驱动因素也存在较大差异:杨公堤以西的上游湖区因优质水源补充TP浓度总体较低,同时受流域降雨径流面源输入影响,呈现时段性升高;杨公堤和苏堤之间的中游湖区优质水源补充量最大,湖区水体更新最快,TP浓度最低且变化相对最为稳定;苏堤以东的外湖区水体更新相对最慢,在夏、秋高温季节因底泥污染释放,TP浓度出现峰值.因外来引水量大且未经脱氮处理,西湖各湖区TN年内变化基本与钱塘江取水口TN浓度变化一致,同时因流域降雨径流面源输入而出现时段性波动.基于TP质量平衡模型分析,各湖区水质空间差异主要受水体年交换次数影响,其次受单位水体的年污染负荷影响.  相似文献   

7.
太湖不同富营养水平湖区轮虫季节变化的比较   总被引:5,自引:4,他引:1  
2003年10月-2004年9月对太湖不同富营养水平湖区(太湖大太湖湖区、梅梁湾和五里湖)轮虫的季节变化进行了研究.五里湖营养水平最高,太湖大太湖湖区最低;轮虫的种类数、数量和生物量都是五里湖最高,太湖大太湖湖区最低.回归分析表明,轮虫数量与总氮和叶绿素a浓度呈显著正相关;轮虫生物量与叶绿素a浓度呈极显著正相关.结果表明,太湖三个湖区轮虫群落结构显著不同,同时表明太湖水体富营养化对轮虫的群落结构有明显的影响.  相似文献   

8.
洪泽湖叶绿素a浓度的时空变化特征   总被引:2,自引:0,他引:2  
叶绿素a浓度是衡量藻类生物量及评价水体营养状态的重要指标.基于洪泽湖2012年12月至2013年11月的水质监测数据,利用统计手段分析湖区叶绿素a浓度的时空变化规律,并进一步探究叶绿素a浓度与各项水质理化因子的响应关系.从时间维度上看,洪泽湖叶绿素a浓度季节变化规律在不同湖区有所差异,东部湖区叶绿素a浓度随季节变化曲线呈"双峰型",分别在3月和8月达到峰值.北、西部湖区叶绿素a浓度在春季变化平缓,并在秋季达到峰值.从空间维度上看,3个湖区之间叶绿素a浓度在春、冬两季存在显著差异,其余季节差异不显著.典范对应分析表明洪泽湖不同月份、不同湖区叶绿素a浓度与水质理化因子之间存在不同的响应关系.本研究为探究洪泽湖藻类时空异质性原因、宏观掌控其营养状态以及制定相应水质改善措施提供参考依据.  相似文献   

9.
杭州西湖底泥疏浚工程的生态效应   总被引:22,自引:3,他引:19  
杭州西湖一直被富营养化问题所困扰。迄今为止,先后采用了多种工程措施进行治理。通过对杭州市政府1999-2002年对西湖实施的底泥疏浚工程前后沉积物中营养物质含量、水质以及水生生物群落各主要类群等方面的研究,评价了此次工程对减轻西湖的营养盐内负荷、控制湖泊富营养化的效果,探讨该工程的生态风险及对西湖水生生态系统重建的影响。研究结果表明:疏浚工程降低了西湖各层沉积物中的有机物、氮和磷含量,尤其是沉积物表层10cm中的有机质、总氮和有机磷含量均有明显的下降;疏浚后西湖水体与富营养化相关的主要指标均有不同程度的改善;水体中浮游植物密度、生物量有不同程度的降低,群落中蓝藻比例下降;浮游动物群落的种类有所增加;疏浚后底栖大型无脊椎动物群落快速恢复;疏浚后的水生生物群落指示水体富营养化程度有所减轻。  相似文献   

10.
2012-2018年巢湖水质变化趋势分析和蓝藻防控建议   总被引:4,自引:3,他引:1  
巢湖自1990s中期至2012年间水质明显改善,但是近年来水质改善效果变缓,2018年蓝藻水华面积显著增加,为有效评估巢湖水体环境的变化,通过对20122018年巢湖17个点位的逐月调查数据分析阐述了近年来巢湖水质和藻情的变化特征,并在流域空间尺度上分析了巢湖流域水污染治理的进展和不足,为后续治理方向的调整和确定提供支撑.20122018年湖区调查数据显示:巢湖湖体总磷和总氮浓度显著升高,铵态氮浓度显著下降,水华蓝藻总量显著升高.在空间上,各污染指标水平呈现由西向东呈逐渐降低的趋势,但是各指标在不同湖区随时间的变化趋势差异明显,西部湖区的总磷、总氮和水华蓝藻指标近年来略有下降或持平,中部和东部湖区则显著升高,所以巢湖湖体总氮和总磷浓度的升高主要源于中、东部湖区的升高,这也是这两个湖区水华蓝藻变动的主要驱动因素.主要入湖河口数据显示:西部4条主要入湖污染河流(南淝河、十五里河、塘西河和派河)水质明显改善,但仍处于较高污染水平,中东部入湖河流(兆河、双桥河和柘皋河)总磷浓度明显升高,是中东部湖区水体营养盐升高的主要原因.中东部河流入湖污染的增加加剧了该区域湖体的富营养化水平,尤其是总磷浓度明显提升,导致中东部湖区夏季水华蓝藻的优势种从鱼腥藻种类演替为微囊藻种类.夏季微囊藻的大量繁殖,使得2018年巢湖中东部湖区部分月份水华面积异常增高.因此,巢湖流域的治理应该在持续强化流域西部合肥市污染治理的同时,增加对流域中部和东部治理的关注和投入.  相似文献   

11.
太湖真光层深度的计算及遥感反演   总被引:4,自引:3,他引:1  
真光层是浮游植物进行光合作用的水层,真光层反演有利于初级生产力的进一步估算.利用2007-01-07和2006-084-01两期陆地卫星TM数据与同步水质参数数据,建立太湖水体非色素颗粒物浓度和叶绿素a浓度的反演模型,反演出太湖冬、夏两季的非色素颗粒物、叶绿素a浓度.然后根据在太湖建立的真光层深度与非色素颗粒物、叶绿素a浓度之间的关系模型,计算得到太湖冬、夏两季真光层深度空间分布.结果表明,就整个湖区而言,冬季真光层深度变化范围为0.27-2.28m,均值为0056±0.22m,夏季真光层深度变化范围为0.21-2.03m,均值为0.98±0.24m.从空间上看,冬季时真光层深度的变化规律为:南太湖<西部沿岸<湖心区<胥口湾<贡湖湾<梅梁湾<东太湖<竺山湾;夏季时的变化规律为:西部沿岸<梅梁湾<东太湖<湖心区<贡湖湾<竺山湾<南太湖<胥口湾.从季节上看,夏季真光层深度显著大于冬季,但不同湖区真光层深度季节变化也存在一定差异,其中梅梁湾、贡湖湾、西部沿岸、湖心区、胥口湾、南太湖夏季真光层深度大于冬季,而竺山湾和东太湖夏冬变化则不是很明显.  相似文献   

12.
千岛湖叶绿素a的时空分布及其与影响因子的相关分析   总被引:11,自引:6,他引:5  
为了解千岛湖在大量放养鲢鳙鱼后叶绿素a的时空分布格局及其与主要环境因子的相关性,本文于2007年1月至2009年12月对千岛湖叶绿素a及其他10个水质理化指标进行了每月定期采样及监测.结果表明:上游河流区和过渡区叶绿素a含量存在明显的季节变化,其共同特点是每年会形成春季和夏末秋初的双高峰.叶绿素a含量在空间分布上具有一...  相似文献   

13.
Ecological restoration of eutrophic lakes using aquatic macrophytes is an important and practical technology. Here, we investigated the response of phytoplankton and zooplankton to a large-scale 2015-built aquatic macrophyte enclosure (AME, 200,000 m2) screened of by a PVC net in Baima Lake, a eutrophic lake, from spring to autumn of 2019. AME significantly improved water quality by increasing water transparency, and reducing total nitrogen, total phosphorus, and chlorophyll-a content during the growing season. AME significantly decreased phytoplankton abundance and biomass and marginally increased zooplankton abundance and biomass. Phytoplankton and zooplankton communities were closely related to environmental factors, such as water temperature, conductivity, total phosphorus, chemical oxygen demand, and chlorophyll-a inside and outside the AME. The zooplankton:phytoplankton biomass ratio inside was slightly higher than outside the AME. Zooplankton and phytoplankton biomass were significantly positively correlated inside and outside the AME, as were chlorophyll-a and total phosphorus. We found phosphorus to be a key factor limiting primary productivity in Baima Lake, and that bottom-up effects were the main driver to control phytoplankton in the AME. Using aquatic macrophytes to reduce nutrient loads is an effective way to manage eutrophication in Baima Lake.  相似文献   

14.
河蚬(Corbicula fluminea)为太湖优势大型底栖动物,通过受控实验研究其对富营养水体的水质改善效果.根据太湖河蚬的自然丰度设置4组密度处理,分别为无河蚬对照组、低密度河蚬组(生物量为130 g/m2)、中密度河蚬组(260 g/m2)和高密度河蚬组(520 g/m2).结果表明:河蚬滤食显著降低悬浮物浓度与叶绿素a含量,低、中、高密度河蚬组水体悬浮物浓度较对照组分别降低了20.85%、34.90%和53.79%,叶绿素a浓度分别降低了23.29%、48.32%和71.17%;放置河蚬还降低了水体TN、TP浓度,但是中密度河蚬组与高密度河蚬组没有显著差异.分析认为,河蚬通过滤食作用降低水体浊度、改善光照条件,有利于底栖藻类的生长及沉水植物的恢复,对富营养水体的生态修复具有重要意义;就太湖而言,河蚬对水质的改善效果可能受沉积物再悬浮造成的营养盐释放等因素的制约.  相似文献   

15.
太湖水质时空特性及其与蓝藻水华的关系   总被引:16,自引:5,他引:11  
张晓晴  陈求稳 《湖泊科学》2011,23(3):339-347
以太湖2005-2007年的连续监测资料为基础,运用聚类分析和自相关分析方法,针对总无机磷,总无机氮、水温等环境理化因素与叶绿素a进行时空序列分析,初步归纳了当前太湖水质指标变化的空间特点、时问周期性及其与蓝藻水华暴发的关系.结果表明,太湖水质的空间分布大致分为三个人湖河口、四个湖湾、湖心区、西部湖区、东部湖区等十个区...  相似文献   

16.
Mogan Lake is the largest recreational area near Ankara, which is the capital city of Turkey. Increased macrophyte growth in the water body and the present levels of urban development within the catchment are reflected in declining water quality and aesthetic deterioation. A study of the water quality of the lake was undertaken to quantify the variation of phosphorus, nitrogen, and chlorophyll-a concentrations during ice-free seasons from 1992 to 1994. Its total phosphorus and chlorophyll-a concentrations indicate a meso-eutrophic status. The total phosphorus budget of Mogan Lake was measured for a period of 22 months. The estimation of nutrient loading using Dillon-Rigler nutrient budget shows that an artificial load caused too high phosphorus inputs. The management implications of phosphorus loading and budget are discussed.  相似文献   

17.
滤水速率的快慢是决定滤食性河蚌对水质改善与否的关键,但受蚌龄大小、食物多少和季节变化的影响.以背角无齿蚌(Anodonta woodiana)为研究对象,设置幼龄蚌组、成年蚌组和无蚌对照组,在惠州西湖生态修复后的清水态和未修复的富营养化水体同时进行中型系统原位实验,测定了各处理组水层中氮、磷、总悬浮物(TSS)浓度和浮游藻类生物量(用叶绿素a(Chl.a)浓度表示)的季节变化,以研究蚌龄、食物和季节变化对背角无齿蚌水质改善的影响.结果表明,与对照组相比,背角无齿蚌提高了清水态水体总磷(TP)和铵态氮浓度,但对总氮(TN)、TSS和浮游藻类Chl.a浓度的影响不显著,表明其不能有效改善清水态水体水质;富营养化水体中,背角无齿蚌虽对水中TN浓度影响不显著,但显著降低了TP浓度、浮游藻类Chl.a浓度和TSS浓度;表明背角无齿蚌可改善富营养化水体水质;且富营养化水体中幼龄蚌的滤水速率显著高于成年蚌;幼龄蚌的滤水速率春季最大(0.132±0.018 L/(g·h)),夏季最小.因此,在富营养化水体修复前期,可通过放养本地滤食性河蚌,如背角无齿蚌,以改善水质,春季放养幼龄蚌更佳,为接下来的修复创造有利条件;而在生态修复后期的清水态水体中,单独的河蚌对水质改善效果不明显.本研究可为水生态系统保护和富营养化水体生态修复提供参考.  相似文献   

18.
淀山湖蓝藻水华高发期叶绿素a动态及相关环境因子分析   总被引:22,自引:3,他引:19  
根据2008年5-9月专项监测数据,分析蓝藻水华高发期淀山湖叶绿素a浓度的动态变化,及其与pH、溶解氧、TN、TP等环境因子的相互关系.结果表明,淀山湖蓝藻水华高发期叶绿素a存在明显的时间变化和空间分异,特别是叶绿素a的峰值共对应了3次水华暴发过程.其叶绿素a对数与总磷对数呈极显著正相关,与硝酸盐氮、TN/TP呈负相关...  相似文献   

19.
分析湖泊中磷浓度的变化特征,揭示其变化的驱动机制,是有效实施湖泊水体磷浓度控制的前提.本文整理分析了太湖70年来(1949 2020年)水体磷浓度监测历史资料,对比了太湖不同湖区、不同时间尺度水体磷浓度的差异性及波动性,发现影响太湖磷浓度变化的原因既有人为的因素,也有自然的因素.无论是污染较轻的1950年,还是污染负荷相对较重的近30年,太湖水体磷浓度一直存在较大时空差异性.暴雨引发入湖河流携带磷污染的扩散、风浪扰动引起的内源释放及蓝藻水华期间藻类生物量的大幅时空变化,都加剧了太湖水体磷浓度的不稳定性.近20年的太湖水污染治理对磷浓度的时空分布影响明显,1998年的太湖水污染治理"零点行动",2007年以来的水利调度等系列水污染治理工程,以及2017年以来的藻情变化等,都对太湖水体磷浓度的时空格局产生了影响.然而,高强度治理投入下太湖水体磷浓度依然偏高,其原因与流域建设用地比例增加、人口增加、耕地种植结构变化等外源负荷因素发生变化有关,也与湖体沉水植被退化、出入流结构发生变化、气候变化引发的蓝藻水华扩张等内源强度及水体表观磷浓度决定因素的生态环境变化有关.近70年来太湖水体磷浓度的变化过程对类似大型浅水湖泊的磷控制策略具有启示意义:大型浅水湖泊存在磷浓度较大波动的自然属性,在水环境保护目标考核中应充分考虑其不确定性,制定切实可行的控制目标;在控制策略上应将外源负荷控制放在首位,在流域污水处理厂深度除磷及流域土地利用调整等方面采取措施,实现入湖磷负荷的大幅削减,同时实施湖体生态修复与食物链调控措施,才能逐步实现湖泊水体磷浓度的控制目标.  相似文献   

20.
磷是湖泊生态系统物质和能量循环的重要组成部分,是湖泊富营养化防治的重要控制性指标.为分析太湖富营养化与人类活动的关系,掌握总磷(TP)的时空变化规律及驱动因子,本文收集整理了1980—2020年太湖TP浓度数据并分析了TP的时序、时空和年内变化特征.结果表明,1980s经济社会快速发展之初,伴随着工业和三产用水量激增,废污水排放量和入湖负荷大增,1985—1995年太湖TP浓度急剧升高.随着治理与保护措施的实施,到1995年达到峰值后逐步走低,2009年后进入了窄幅波动期.从空间上看,不同时段TP浓度分布格局较好地反映了入湖污染物的输入分布.通过分时段对比分析可能影响太湖TP浓度变化的驱动因子,分别讨论了经济社会发展、用水量、废污水排放量,入湖水量、入湖河流TP浓度、入湖TP负荷,蓝藻水华、水温,高等水生植物,底泥释放,太湖换水周期变化等.结果表明,近10年来入湖TP负荷增加,蓝藻水华强度加大,水温升高,高等水生植物面积减少,这些因素会导致太湖TP浓度上升.2008—2019年净入湖TP负荷比1998—2007年增加了33.9%,而近10年太湖换水周期缩短了17.7%,在一定程度上抵消了影响太湖TP浓度升高的驱动因子的不利影响,太湖TP浓度不升反降.为此建议在新一轮太湖治理中积极开展控源截污、节水减排、水资源调控、高等水生植被恢复、重点污染湖区清淤疏浚等针对性措施以期获得更好的太湖TP浓度控制效果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号