首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sensitivities to the potential impact of Climate Change on the water resources of the Athabasca River Basin (ARB) and Fraser River Basin (FRB) were investigated. The Special Report on Emissions Scenarios (SRES) of IPCC projected by seven general circulation models (GCM), namely, Japan’s CCSRNIES, Canada’s CGCM2, Australia’s CSIROMk2b, Germany’s ECHAM4, the USA’s GFDLR30, the UK’s HadCM3, and the USA’s NCARPCM, driven under four SRES climate scenarios (A1FI, A2, B1, and B2) over three 30-year time periods (2010–2039, 2040–2069, 2070–2100) were used in these studies. The change fields over these three 30-year time periods are assessed with respect to the 1961–1990, 30-year climate normal and based on the 1961–1990 European Community Mid-Weather Forecast (ECMWF) re-analysis data (ERA-40), which were adjusted with respect to the higher resolution GEM forecast archive of Environment Canada, and used to drive the Modified ISBA (MISBA) of Kerkhoven and Gan (Adv Water Resour 29(6):808–826, 2006). In the ARB, the shortened snowfall season and increased sublimation together lead to a decline in the spring snowpack, and mean annual flows are expected to decline with the runoff coefficient dropping by about 8% per °C rise in temperature. Although the wettest scenarios predict mild increases in annual runoff in the first half of the century, all GCM and emission combinations predict large declines by the end of the twenty-first century with an average change in the annual runoff, mean maximum annual flow and mean minimum annual flow of −21%, −4.4%, and −41%, respectively. The climate scenarios in the FRB present a less clear picture of streamflows in the twenty-first century. All 18 GCM projections suggest mean annual flows in the FRB should change by ±10% with eight projections suggesting increases and 10 projecting decreases in the mean annual flow. This stark contrast with the ARB results is due to the FRB’s much milder climate. Therefore under SRES scenarios, much of the FRB is projected to become warmer than 0°C for most of the calendar year, resulting in a decline in FRB’s characteristic snow fed annual hydrograph response, which also results in a large decline in the average maximum flow rate. Generalized equations relating mean annual runoff, mean annual minimum flows, and mean annual maximum flows to changes in rainfall, snowfall, winter temperature, and summer temperature show that flow rates in both basins are more sensitive to changes in winter than summer temperature.  相似文献   

2.
Peruvian Pacific drainage catchments only benefit from 2% of the total national available freshwater while they concentrate almost 50% of the population of the country. This situation is likely to lead a severe water scarcity and also constitutes an obstacle to economic development. Catchment runoff fluctuations in response to climate variability and/or human activities can be reflected in extreme events, representing a serious concern (like floods, erosion, droughts) in the study area. To document this crucial issue for Peru, we present here an insightful analysis of the water quantity resource variability of this region, exploring the links between this variability and climate and/or anthropogenic pressure. We first present a detailed analysis of the hydroclimatologic variability at annual timescale and at basin scale over the 1970–2008 period. In addition to corroborating the influence of extreme El Niño events over precipitation and runoff in northern catchments, a mean warming of 0.2 °C per decade over all catchments was found. Also, higher values of temperature and potential and actual evapotranspiration were found over northern latitudes. We chose to apply the Budyko-Zhang framework that characterizes the water cycle as a function of climate only, allowing the identification of catchments with significant climatic and anthropogenic influence on water balance. The Budyko-Zhang methodology revealed that 11 out of 26 initial catchments are characterized by low water balance disparity related to minor climatic and anthropogenic influence. These 11 catchments were suitable for identifying catchments with contrasting change in their hydroclimatic behavior using the Budyko trajectories. Our analysis further reveals that six hydrological catchment responses can be characterized by high sensitivity to climate variability and land use changes.  相似文献   

3.
Climate projections over the next two to four decades indicate that most of Australia’s wheat-belt is likely to become warmer and drier. Here we used a shire scale, dynamic stress-index model that accounts for the impacts of rainfall and temperature on wheat yield, and a range of climate change projections from global circulation models to spatially estimate yield changes assuming no adaptation and no CO2 fertilisation effects. We modelled five scenarios, a baseline climate (climatology, 1901–2007), and two emission scenarios (“low” and “high” CO2) for two time horizons, namely 2020 and 2050. The potential benefits from CO2 fertilisation were analysed separately using a point level functional simulation model. Irrespective of the emissions scenario, the 2020 projection showed negligible changes in the modelled yield relative to baseline climate, both using the shire or functional point scale models. For the 2050-high emissions scenario, changes in modelled yield relative to the baseline ranged from ?5 % to +6 % across most of Western Australia, parts of Victoria and southern New South Wales, and from ?5 to ?30 % in northern NSW, Queensland and the drier environments of Victoria, South Australia and in-land Western Australia. Taking into account CO2 fertilisation effects across a North–south transect through eastern Australia cancelled most of the yield reductions associated with increased temperatures and reduced rainfall by 2020, and attenuated the expected yield reductions by 2050.  相似文献   

4.
利用博斯腾湖流域开都河、黄水沟和清水河的出山口水文站月径流量和气象站月平均数据,开展变化特征分析和径流变化对气候因子的响应研究。结果表明,博斯腾湖流域年际气候变化以气温上升为主,降水量增加趋势不显著;域内主要河流径流量持续上升。突变检验发现,三条入湖河流90年代之前径流量增加主要是域内降水量增加的结果,随后受气温上升导致冰雪消融加快也对径流量的增加有贡献。相关分析结果显示,博斯腾湖三条入湖河流年径流量变化主要受4月和7月降水因子影响。此外,开都河的径流变化还表现出对8月气温和降水的显著响应,同时开都河流域集水区冰川的面积和占比均大于黄水沟和清水河流域,这表明冰川融水补给对开都河径流的影响大于黄水沟和清水河。所建立的气候因子-径流量多元线性回归模型,能够很好的模拟开都河、黄水沟和清水河的径流变化过程,证明了博斯腾湖流域水文变化受气候因子的显著影响。  相似文献   

5.
The potential hydrologic impact of climatic change on three sub-basins of the South Saskatchewan River Basin (SSRB) within Alberta, namely, Oldman, Bow and Red Deer River basins was investigated using the Modified Interactions Soil-Biosphere-Atmosphere (MISBA) land surface scheme of Kerkhoven and Gan (Advances in Water Resources 29:808–826 2006). The European Centre for Mid-range Weather Forecasts global re-analysis (ERA-40) climate data, Digital Elevation Model of the National Water Research Institute, land cover data and a priori soil parameters from the Ecoclimap global data set were used to drive MISBA to simulate the runoff of SSRB. Four SRES scenarios (A21, A1FI, B21 and B11) of four General Circulation Models (CCSRNIES, CGCM2, ECHAM4 and HadCM3) of IPCC were used to adjust climate data of the 1961–1990 base period (climate normal) to study the effect of climate change on SSRB over three 30-year time periods (2010–2039, 2040–2069, 2070–2099). The model results of MISBA forced under various climate change projections of the four GCMs with respect to the 1961–1990 normal show that SSRB is expected to experience a decrease in future streamflow and snow water equivalent, and an earlier onset of spring runoff despite of projected increasing trends in precipitation over the 21st century. Apparently the projected increase in evaporation loss due to a warmer climate over the 21st century will offset the projected precipitation increase, leading to an overall decreasing trend in the basin runoff of SSRB. Finally, a Gamma probability distribution function was fitted to the mean annual maximum flow and mean annual mean flow data simulated for the Oldman, Bow and Red Deer River Basins by MISBA to statistically quantify the possible range of uncertainties associated with SRES climate scenarios projected by the four GCMs selected for this study.  相似文献   

6.
Estimates are made of changes in effective runoff at a high spatial resolution for the island of Ireland under different climate change scenarios. The first part of the investigation examines changes in annual and seasonal effective runoff for the whole land area of Ireland. The rainfall-runoff model HYSIM is used to carry out the hydrological simulations. The output from the HadCM3 Global Climate Model (GCM) is downscaled using statistical techniques to provide precipitation and evaporation data at a 10 km × 10 km resolution; this data is then used to drive the HYSIM model. Simulations are carried out for each of the 825 10 km × 10 km grid cells covering Ireland for the baseline period (1961–1990) and two future scenarios; 2041–2070 and 2061–2090. Parameter values are derived for each square using data from the Soil Survey of Ireland and the CORINE land use database and validation is carried out for selected catchments. The results of these simulations indicate a decrease in annual runoff that is most marked in the east and southeast of the country, whereas an increase is likely for the extreme northwest. The reduction in effective runoff for the east of the country is particularly marked during the summer months. It is these areas that have highest population density and also where greatest population growth is likely to occur. During the winter months an increase in effective runoff is suggested for the western half of country which could have implications for flood frequency, as well as the extent and duration of winter flooding.  相似文献   

7.
利用累积距平法和气候倾向率对1961-2005年嫩江流域右岸气温、降水量和径流量资料进行分析,研究嫩江流域右岸气候变化及其对水资源的影响。结果表明:近45 a来嫩江流域右岸气温显著增高,平均以0.52 ℃/10 a的速率上升,而且四季均为上升趋势, 不同季节增温幅度以冬、春、秋、夏季依次递减,1986年以来为气温升高最显著的时段;降水变化可分为3个阶段: 1961-1982年降水量呈减少趋势,1982-1998年处于增加时期,1998年以来降水量又呈现减少趋势。夏季降水量变化趋势与年降水量变化趋势趋于一致, 降水量总趋势是在波动中微弱上升;嫩江流域右岸主要控制站年径流量与年降水量保持同步变化。  相似文献   

8.
Much attention has recently been focused on the effects that climate variability and human activities have had on runoff. In this study, data from the Kaidu River Basin in the arid region of northwest China were analyzed to investigate changes in annual runoff during the period of 1960–2009. The nonparametric Mann–Kendall test and the Mann–Kendall–Sneyers test were used to identify trend and step change point in the annual runoff. It was found that the basin had a significant increasing trend in annual runoff. Step change point in annual runoff was identified in the basin, which occurred in the year around 1993 dividing the long-term runoff series into a natural period (1960–1993) and a human-induced period (1994–2009). Then, the hydrologic sensitivity analysis method was employed to evaluate the effects of climate variability and human activities on mean annual runoff for the human-induced period based on precipitation and potential evapotranspiration. In 1994–2009, climate variability was the main factor that increased runoff with contribution of 90.5 %, while the increasing percentage due to human activities only accounted for 9.5 %, showing that runoff in the Kaidu River Basin is more sensitive to climate variability than human activities. This study quantitatively distinguishes the effects between climate variability and human activities on runoff, which can do duty for a reference for regional water resources assessment and management.  相似文献   

9.
The natural Australian landscape sustains a mosaic of wetlands that range from permanently wet to temporary. This diversity of wetland types and habitats provides for diverse biotic communities, many of which are specific to individual wetlands. This paper explores the prospects for southern Australian wetlands under modified water regime and salinity induced by climatic changes. Extended droughts predicted as a consequence of climate change (lower rainfall and higher temperatures) combined with human-induced changes to the natural hydrological regime will lead to reductions in the amount of water available for environmental and anthropogenic uses. Reduced runoff and river flows may cause the loss of some temporary wetland types that will no longer hold water long enough to support hydric communities. Species distributions will shift and species extinctions may result particularly across fragmented or vulnerable landscapes. Accumulation of salts in wetlands shift species-rich freshwater communities to species-poor salt tolerant communities. Wetlands will differ in ecological response to these changes as the salinity and drying history of each wetland will determine its resilience: in the short term some freshwater communities may recover but they are unlikely to survive and reproduce under long term increased salinity and altered hydrology. In the long term such salinized wetlands with altered hydrology will need to be colonized by salt tolerant species adapted for the new hydrological conditions if they are to persist as functional wetlands. As the landscape becomes more developed, to accommodate the need for water in a warmer drying climate, increasing human intervention will result in a net loss of wetlands and wetland diversity.  相似文献   

10.
Worldwide, 98% of total electricity is currently produced by thermoelectric power and hydropower. Climate change is expected to directly impact electricity supply, in terms of both water availability for hydropower generation and cooling water usage for thermoelectric power. Improved understanding of how climate change may impact the availability and temperature of water resources is therefore of major importance. Here we use a multi-model ensemble to show the potential impacts of climate change on global hydropower and cooling water discharge potential. For the first time, combined projections of streamflow and water temperature were produced with three global hydrological models (GHMs) to account for uncertainties in the structure and parametrization of these GHMs in both water availability and water temperature. The GHMs were forced with bias-corrected output of five general circulation models (GCMs) for both the lowest and highest representative concentration pathways (RCP2.6 and RCP8.5). The ensemble projections of streamflow and water temperature were then used to quantify impacts on gross hydropower potential and cooling water discharge capacity of rivers worldwide. We show that global gross hydropower potential is expected to increase between +2.4% (GCM-GHM ensemble mean for RCP 2.6) and +6.3% (RCP 8.5) for the 2080s compared to 1971–2000. The strongest increases in hydropower potential are expected for Central Africa, India, central Asia and the northern high-latitudes, with 18–33% of the world population living in these areas by the 2080s. Global mean cooling water discharge capacity is projected to decrease by 4.5-15% (2080s). The largest reductions are found for the United States, Europe, eastern Asia, and southern parts of South America, Africa and Australia, where strong water temperature increases are projected combined with reductions in mean annual streamflow. These regions are expected to affect 11–14% (for RCP2.6 and the shared socio-economic pathway (SSP)1, SSP2, SSP4) and 41–51% (RCP8.5–SSP3, SSP5) of the world population by the 2080s.  相似文献   

11.
Daily rainfall and temperature data were extracted from the multi-ensemble HadRM3H regional climate model (RCM) integrations for control (1960–1990) and future (2070–2100) time-slices. This dynamically downscaled output was bias-corrected on observed mean statistics and used as input to hydrological models calibrated for eight catchments which are critical water resources in northwest England. Simulated daily flow distributions matched observed from Q95 to Q5, suggesting that RCM data can be used with some confidence to examine future changes in flow regime. Under the SRES A2 (UKCIP02 Medium-High) scenario, annual runoff is projected to increase slightly at high elevation catchments, but reduce by ~16% at lower elevations. Impacts on monthly flow distribution are significant, with summer reductions of 40–80% of 1961–90 mean flow, and winter increases of up to 20%. This changing seasonality has a large impact on low flows, with Q95 projected to decrease in magnitude by 40–80% in summer months, with serious consequences for water abstractions and river ecology. In contrast, high flows (> Q5) are projected to increase in magnitude by up to 25%, particularly at high elevation catchments, providing an increased risk of flooding during winter months. These changes will have implications for management of water resources and ecologically important areas under the EU Water Framework Directive.  相似文献   

12.
A monthly water balance (WB) model was developed for the Yukon River Basin (YRB). The WB model was calibrated using mean monthly values of precipitation and temperature derived from the Precipitation-elevation Regression on Independent Slopes Model (PRISM) data set and by comparing estimated mean monthly runoff with runoff measured at Pilot Station, Alaska. The calibration procedure used the Shuffled Complex Evolution global search. Potential hydrologic effects of climate change were assessed for the YRB by imposing changes in precipitation and temperature derived from selected Inter-governmental Panel for Climate Change (IPCC) climate simulations. Scenarios from five general circulation model (GCM) simulations were used to provide a range of potential changes. Results from the scenarios indicate an increase in annual runoff in the twenty-first century for the YRB with simulated increases in precipitation having the greatest effect on increases in runoff. Simulated increases in temperature were found to alter the timing of snow accumulation and melt.  相似文献   

13.
This paper is the second of a series describing a scenario-neutral methodology to assess the sensitivity and vulnerability of British catchments to changes in flooding due to climate change. In paper one, nine flood sensitivity types were identified from response surfaces generated for 154 catchments. The response surfaces describe changes in 20-year return period flood peaks (RP20) in response to a large set of changes in precipitation, temperature and potential evapotranspiration. In this paper, a recursive partitioning algorithm is used to link families of sensitivity types to catchment properties, via a decision tree. The tree shows 85 % success characterising the four sensitivity families, using five properties and nine paths. Catchment annual average rainfall is the primary partitioning factor, with drier catchments having a more variable response to climate (precipitation) change than wetter catchments and higher catchment losses and permeability being aggravating factors. The full sensitivity-exposure-vulnerability methodology is illustrated for two catchments: sensitivity is estimated by using the decision tree to identify the sensitivity family (and its associated average response surface); exposure is defined from a set of climate model projections and combined with the response surface to estimate the resulting impacts (changes in RP20); vulnerability under a range of adaptive capacity thresholds is estimated from the set of impacts. Even though they are geographically close, the two catchments show differing vulnerability to climate change, due to their differing properties. This demonstrates that generalised response surfaces characterised by catchment properties are useful screening tools to quantify the vulnerability of catchments to climate change without the need to undertake a full climate change impact study.  相似文献   

14.
The objective of this study is to assess the climate projections over South America using the Eta-CPTEC regional model driven by four members of an ensemble of the Met Office Hadley Centre Global Coupled climate model HadCM3. The global model ensemble was run over the twenty-first century according to the SRES A1B emissions scenario, but with each member having a different climate sensitivity. The four members selected to drive the Eta-CPTEC model span the sensitivity range in the global model ensemble. The Eta-CPTEC model nested in these lateral boundary conditions was configured with a 40-km grid size and was run over 1961–1990 to represent baseline climate, and 2011–2100 to simulate possible future changes. Results presented here focus on austral summer and winter climate of 2011–2040, 2041–2070 and 2071–2100 periods, for South America and for three major river basins in Brazil. Projections of changes in upper and low-level circulation and the mean sea level pressure (SLP) fields simulate a pattern of weakening of the tropical circulation and strengthening of the subtropical circulation, marked by intensification at the surface of the Chaco Low and the subtropical highs. Strong warming (4–6°C) of continental South America increases the temperature gradient between continental South America and the South Atlantic. This leads to stronger SLP gradients between continent and oceans, and to changes in moisture transport and rainfall. Large rainfall reductions are simulated in Amazonia and Northeast Brazil (reaching up to 40%), and rainfall increases around the northern coast of Peru and Ecuador and in southeastern South America, reaching up to 30% in northern Argentina. All changes are more intense after 2040. The Precipitation–Evaporation (P–E) difference in the A1B downscaled scenario suggest water deficits and river runoff reductions in the eastern Amazon and S?o Francisco Basin, making these regions susceptible to drier conditions and droughts in the future.  相似文献   

15.
利用线性回归分析法、突变检验法等分析博斯腾湖流域1980~2018年的年均气温、年降水量、年蒸发量等气候因子变化趋势和突变现象及其对开都河径流量的影响.结果表明:1980~2018年博斯腾湖流域年均气温呈波动中上升趋势,其变化速率为0.15℃(10a)-1,年降水量则以0.765mm(10a)-1的速率增加,而年蒸发量...  相似文献   

16.
Summary Within the study region in southern Israel, the annual average rainfall during the period 1961–1990 increased by up to ~ 30%, with only minor changes in the control stations representing the central and northern parts of the country. The retreat of aridity is made even more pronounced by an appreciable decrease in the coefficient of variation (CV) in nearly all of the 30 rain stations within the study region. The geographical area where maximum CV reductions were found correlates well with the area where intensive land-use variations took place with the initial operation of the National Water Carrier in 1964. A global climate change in the sea surface temperatures starting in the early 1960's may have had an effect to increase seasonal rainfall. Current research is aimed at resolving this issue.With 6 Figures  相似文献   

17.
Scenarios of CO2-induced climatic change, based on models produced by the Goddard Institute for Space Studies (GISS) and the Geophysical Fluid Dynamics Lab (GFDL), were used to estimate future changes in water supply in the Great Lakes Basin. The major components of annual Net Basin Supply, surface runoff and lake evaporation, were estimated using the Thornthwaite water balance model and the mass transfer approach, respectively. Two scenarios were derived from each climatic change model, one based on present normal winds, the other assuming reduced wind speeds. A third scenario was derived from GFDL, using wind speeds generated by the GFDL model. Results varied from a decrease in Net Basin Supply of 28.9% for GISS-normal winds, to a decrease of 11.7% for GFDL-reduced wind speeds. All five scenarios projected decreases. These differences in projection will have to be considered when performing climate impact studies, since economic activities affected by lake levels would probably experience different impacts under these scenarios.  相似文献   

18.
Changes in growing seasons for 2041–2060 across Africa are projected using a regional climate model at 90-km resolution, and confidence in the predictions is evaluated. The response is highly regional over West Africa, with decreases in growing season days up to 20% in the western Guinean coast and some regions to the east experiencing 5–10% increases. A longer growing season up to 30% in the central and eastern Sahel is predicted, with shorter seasons in parts of the western Sahel. In East Africa, the short rains (boreal fall) growing season is extended as the Indian Ocean warms, but anomalous mid-tropospheric moisture divergence and a northward shift of Sahel rainfall severely curtails the long rains (boreal spring) season. Enhanced rainfall in January and February increases the growing season in the Congo basin by 5–15% in association with enhanced southwesterly moisture transport from the tropical Atlantic. In Angola and the southern Congo basin, 40–80% reductions in austral spring growing season days are associated with reduced precipitation and increased evapotranspiration. Large simulated reductions in growing season over southeastern Africa are judged to be inaccurate because they occur due to a reduction in rainfall in winter which is over-produced in the model. Only small decreases in the actual growing season are simulated when evapotranspiration increases in the warmer climate. The continent-wide changes in growing season are primarily the result of increased evapotranspiration over the warmed land, changes in the intensity and seasonal cycle of the thermal low, and warming of the Indian Ocean.  相似文献   

19.
A sustainable water resources management depends on sound information about the impacts of climate change. This information is, however, not easily derived because natural runoff variability interferes with the climate change signal. This study presents a procedure that leads to robust estimates of magnitude and Time Of Emergence (TOE) of climate-induced hydrological change that also account for the natural variability contained in the time series. Firstly, natural variability of 189 mesoscale catchments in Switzerland is sampled for 10 ENSEMBLES scenarios for the control (1984–2005) and two scenario periods (near future: 2025–2046, far future: 2074–2095) applying a bootstrap procedure. Then, the sampling distributions of mean monthly runoff are tested for significant differences with the Wilcoxon-Mann–Whitney test and for effect size with Cliff’s delta d. Finally, the TOE of a climate change induced hydrological change is determined when at least eight out of the ten hydrological projections significantly differ from natural variability. The results show that the TOE occurs in the near future period except for high-elevated catchments in late summer. The significant hydrological projections in the near future correspond, however, to only minor runoff changes. In the far future, hydrological change is statistically significant and runoff changes are substantial. Temperature change is the most important factor determining hydrological change in this mountainous region. Therefore, hydrological change depends strongly on a catchment’s mean elevation. Considering that the hydrological changes are predicted to be robust in the near future highlights the importance of accounting for these changes in water resources planning.  相似文献   

20.
This paper assesses the implications of climate policy for exposure to water resources stresses. It compares a Reference scenario which leads to an increase in global mean temperature of 4 °C by the end of the 21st century with a Mitigation scenario which stabilises greenhouse gas concentrations at around 450 ppm CO2e and leads to a 2 °C increase in 2100. Associated changes in river runoff are simulated using a global hydrological model, for four spatial patterns of change in temperature and rainfall. There is a considerable difference in hydrological change between these four patterns, but the percentages of change avoided at the global scale are relatively robust. By the 2050s, the Mitigation scenario typically avoids between 16 and 30% of the change in runoff under the Reference scenario, and by 2100 it avoids between 43 and 65%. Two different measures of exposure to water resources stress are calculated, based on resources per capita and the ratio of withdrawals to resources. Using the first measure, the Mitigation scenario avoids 8-17% of the impact in 2050 and 20-31% in 2100; with the second measure, the avoided impacts are 5-21% and 15-47% respectively. However, at the same time, the Mitigation scenario also reduces the positive impacts of climate change on water scarcity in other areas. The absolute numbers and locations of people affected by climate change and climate policy vary considerably between the four climate model patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号