首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wet chemistry kinetics and powder and polarized extended X-ray absorption fine structure (EXAFS and P-EXAFS) spectroscopy were combined to investigate the mechanism of Ni uptake on montmorillonite, at pH 8, high ionic strength (0.2 M Ca(NO3)2), initial Ni concentration of 660 μM, and solid concentration of 5.3 g/L. Approximately 20% of Ni sorbed within the first 24 h; thereafter, the Ni uptake rate slowed, and 12% of the initial Ni concentration remained in solution after 206 d of reaction time. Powder EXAFS spectra collected on wet pastes at 1, 14, 90, and 206 d showed the presence of Ni-Ni pairs at ∼3.08 Å in an amount that gradually increased with time. Results were interpreted by the nucleation of a Ni phase having either an α-Ni-hydroxide- or a Ni-phyllosilicate-like local structure. The latter possibility was confirmed by recording P-EXAFS spectra of a highly textured, self-supporting montmorillonite film prepared in the same conditions as the wet samples and equilibrated for 14 d. The orientation distribution of the c*-axes of individual clay particles off the film plane, as measured by quantitative texture analysis, was 32.8° full width at half maximum, and this value was used to correct from texture effect the effective numbers of Ni and Si nearest neighbors determined by P-EXAFS. Ni atoms were found to be surrounded by 2.6 ± 0.5 Ni atoms at 3.08 Å in the in-plane direction and by 4.2 ± 0.5 Si atoms at 3.26 Å in the out-of-plane direction. These structural parameters, but also the orientation and angular dependence of the Ni and Si shells, strongly support the formation of a Ni phyllosilicate having its layers parallel to the montmorillonite layers. The neoformation of a phyllosilicate on metal uptake on montmorillonite, documented herein for the first time, has important geochemical implications because this dioctahedral smectite is overwhelmingly present in the environment. The resulting sequestration of sorbed trace metals in sparingly soluble phyllosilicate structure may durably decrease their migration and bioavailability at the Earth’s surface and near surface.  相似文献   

2.
The sorption capacity of montmorillonite clay minerals for small cations, such as Ni2+, can be greatly enhanced by modifying the clay mineral with Al(III). In this study, the mechanisms of Ni uptake by Al-modified montmorillonite were studied using extended x-ray absorption fine structure (EXAFS) spectroscopy of powders and polarized EXAFS spectroscopy of self-supporting clay films to delineate the binding structure of Ni formed as a function of the reaction conditions. Analysis of powder EXAFS spectra of wet pastes, collected from Ni-treated Al-modified montmorillonites reacted at pH 5-8, 25°C or 80°C (to accelerate the reaction process), and reaction times ranging from 1 month to 9 yrs, showed that Ni was surrounded on average by 6 O atoms at a distance of 2.05 Å and 6 Al atoms at 3.01 Å, suggesting the incorporation of Ni into a gibbsite-like structure. Only at pH 8, Ni-containing precipitates were congruently formed. Polarized EXAFS spectroscopy of self-supporting Ni-reacted Al-modified montmorillonite clay films showed a pronounced angular dependency of the spectra of the Ni-doped gibbsite, indicating that the orientation of this Ni-doped gibbsite coincided with the layering of the montmorillonite. Data analysis suggested that Ni is included slightly above and below the vacant octahedral sites of the postulated interstitial gibbsite monolayer. This newly identified mechanism of metal uptake by Al-modified montmorillonite provides a large metal sorption capacity and, because the metal is included in a monolayer gibbsite or gibbsite “islands” formed in the interstitial space of the clay mineral, it potentially leads to a permanent sequestration of the metal from the environment.  相似文献   

3.
Zinc uptake in suspensions (?3.7 g L−1) of MX80 montmorillonite was investigated at pH 4.0 and 7.3, a total Zn concentration ([Zn]total) of 500 μM, and dissolved Si concentrations ([Si]aq) of ∼70 and ∼500 μM in 0.5 M NaCl, by kinetics experiments and polarized extended X-ray absorption fine structure (P-EXAFS) spectroscopy. Differential thermogravimetric analysis verified the cis-vacant character of the montmorillonite. No Zn uptake occurred at pH 4.0, confirming that cation exchange was hampered by the high ionic strength of the suspension. At pH 7.3 and low [Si]aq (∼70 μM), Zn uptake occurred rapidly during the first hour of reaction, and then leveled off to 50 μmol/g montmorillonite at 168 h. The uptake rate is consistent with Zn sorption on pH-dependent edge sites. At pH 7.3 and high [Si]aq (∼500 μM), the initial sorption rate was similar, but Zn sorption continued, reaching 130 μmol/g at 168 h, and was paralleled by Si uptake with a Si/Zn uptake ratio of 1.51(10), suggesting formation of a Zn (hydrous) silicate. P-EXAFS data indicated that the first oxygen coordination shell of sorbed Zn is split into two subshells at 1.97(2) and 2.08(3)-2.12(2) Å for all EXAFS samples. These two distances are assigned to a mixture of tetrahedral (IVZn) and octahedral (VIZn) Zn complexes. The proportion of IVZn was lower in the high [Si]aq samples and decreased with reaction time. Al low [Si]aq and 216 h of reaction, nearest cationic shells of 0.6(4) Al in the film plane and 0.5(4) Si out of the film plane were detected at 3.00(2) and 3.21(2) Å, respectively, and were interpreted as the formation of IVZn and VIZn mononuclear complexes at the edges of montmorillonite platelets, in structural continuity to the (Al, Mg) octahedral sheets. At high [Si]aq, in-plane Zn and Al and out-of-plane Si neighbors were detected at 4 h, indicating the formation of Zn phyllosilicate nuclei at the layer edges. At 313 h, Zn-Al pairs were no longer detected, and Zn atoms were surrounded on average by 3.4(5) in-plane Zn at 3.10(1) Å and 1.7(9) out-of-plane Si at 3.30(2) Å, supporting the precipitation of a Zn phyllosilicate. Thus, dioctahedral Al phyllosilicate may act as a nucleating surface for the heterogeneous formation of trioctahedral Zn phyllosilicate at [Si]aq relevant to natural systems.  相似文献   

4.
NiAl2O4 is a largely inverse spinel, which in detail shows increasing randomisation with temperature of Ni and Al between the octahedral and tetrahedral cation sites of the spinel structure. We have used powder XRD to determine this cation distribution in various samples of NiAl2O4 quenched after annealing between 700 and 1400° C. The inversion parameter (x) can be measured with a precision of ± 0.004 (one standard deviation), and a comparison of different methods of synthesis, X-ray diffraction and refinement techniques, suggests a probable accuracy of better than 0.01. The results are supported by some preliminary single crystal refinements on flux-grown samples.Below 800° C the rate of cation ordering becomes very slow, and, despite reaching an apparently steady state, it is doubtful if our samples attained complete internal equilibrium. Above 1250° C the cation redistribution becomes so fast that the quenching method becomes unreliable. Between 800 and 1250° C inclusive, the degree of inversion changes smoothly from 0.87 at 800° C to 0.79 at 1250° C, and is accompanied by linear changes in u, the oxygen parameter, from 0.2555 to 0.2563 (±0.0002), and a0, the lattice parameter, from 8.0462 to 8.0522 Å (±0.0002 Å).  相似文献   

5.
This paper reports on the new application of polarized extended X-ray absorption fine structure (P-EXAFS) spectroscopy to fine-grained layer silicates taking the Garfield nontronite as a case study. Up to now application of P-EXAFS to structural studies of layer silicates has been restricted to single phyllosilicate crystals (Manceau et al. 1988; Manceau et al. 1990), but we show here that P-EXAFS can rigorously be applied to self-supporting clay films without loss of spatial resolution. The quantitative analysis of P-EXAFS requires however the preparation of highly oriented clay films, the orientation distribution of which can be assessed by texture goniometry. The Fe K-edge linear dichroism measurements were simulated by ab initio EXAFS modeling performed on a nontronite cluster whose structure was refined by distance-valence least-squares calculations. It is shown that ab initio modeling quantitatively accounts for the angular dependence of experimental EXAFS spectra. These calculations allowed for the identification of the fundamental character of single- and multiple-scattering paths of the photoelectron, and the structural interpretation of all spectral features observed up to 6.5?Å for the in-plane and out-of-plane radial structure functions of nontronite. In practice, P-EXAFS measurements allow the determination of the flattening angle of Fe(O,OH)6 octahedra, cations distribution in the octahedral sheet with an enhanced sensitivity, and differentiation between dioctahedral and trioctahedral structures.  相似文献   

6.
Summary ?Sheet silicates of the serpentine–kaolin-group (serpentine, kaolinite, dickite, nacrite, halloysite), the talc–pyrophyllite-group (talc, pyrophyllite), the smectite-group (montmorillonite), and illite (as a mineral of the mica-group) were investigated to obtain information concerning their cathodoluminescence behaviour. The study included analyses by cathodoluminescence (CL microscopy and spectroscopy), electron paramagnetic resonance (EPR), X-Ray diffraction (XRD), scanning electron microscopy (SEM) and trace element analysis. In general, all dioctahedral clay minerals exhibit a visible CL. Kaolinite, dickite, nacrite and pyrophyllite have a characteristic deep blue CL, whereas halloysite emission is in the greenish-blue region. On the contrary, the trioctahedral minerals (serpentine, talc) and illite do not show visible CL. The characteristic blue CL is caused by an intense emission band around 400 nm (double peak with two maxima at 375 and 410 nm). EPR measurements indicate that this blue emission can be related to radiation induced defect centres (RID), which occur as electron holes trapped on apical oxygens (Si–O centre) or located at the Al–O–Al group (Al substituting Si in the tetrahedron). Additional CL emission bands were detected at 580 nm in halloysite and kaolinite, and between 700 and 800 nm in kaolinite, dickite, nacrite and pyrophyllite. Time-resolved spectral CL measurements show typical luminescence kinetics for the different clay minerals, which enable differentiation between the various dioctahedral minerals (e.g. kaolinite and dickite), even in thin section. Received December 3, 2001; revised version accepted February 27, 2002  相似文献   

7.
Interaction of heavy metals with clay minerals can dominate solid-solution reactions in soil, controlling the fate of the metals in the environment. In this study we used powdered and polarized extended X-ray absorption fine structure (EXAFS) spectroscopy and X-ray absorption near edge spectroscopy (XANES) to investigate Cu sorbed on Llano vermiculite and compare the results to reported Cu sorption mechanism on Wyoming (WY) smectite and reduced South African (SA) vermiculite. Analysis of the Cu K-edge spectra revealed that Cu sorbed on Llano vermiculite at high ionic strength (I) has the greatest degree of covalent bond character, followed by Cu sorbed on montmorillonite at high I, and Cu sorbed on reduced SA vermiculite at high I. Cu sorbed on clay minerals at low I has the least covalent character. EXAFS data from Cu sorbed Ca- and K-equilibrated Llano vermiculites showed the presence of a second-shell Al, Si, or Mg backscatterer at 3.02 Å. This distance is consistent with Cu sorbing via a corner-sharing monodentate or bidentate bond. Polarized XANES and EXAFS results revealed that the angle between the Cu atom and the mineral sorption sites is 68° with respect to the [001] direction. From the bond angle and the persistence of the second-shell backscatterer when the interlayer is collapsed (K-equilibration), we conclude that Cu adsorption on the Llano vermiculite is not occurring in the interlayer but rather Cu is adsorbing onto the edges of the vermiculite. Results from this research provide evidence that Cu forms inner-sphere and outer-sphere complexes on clay minerals, and does not form the vast multinuclear surface precipitates that have been observed for Co, Zn, and Ni.  相似文献   

8.
Employing first-principles methods, the docking sites for H were determined and H, Al, and vacancy defects were modeled with an infinite periodic array of super unit cells each consisting of 27 contiguous symmetry nonequivalent unit cells of the crystal structure of stishovite. A geometry optimization of the super-cell structure reproduces the observed bulk structure within the experimental error when P1 translational symmetry was assumed and an array of infinite extent was generated. A mapping of the valence electrons for the structure displays mushroom-shaped isosurfaces on the O atom, one on each side of the plane of the OSi3 triangle in the nonbonded region. An H atom, placed in a cell near the center of the super cell, was found to dock upon geometry optimization at a distance of 1.69 Å from the O atom with the OH vector oriented nearly perpendicular to the plane of the triangle such that the OH vector makes a angle of 91° with respect to [001]. However, an optimization of a super cell with an Al atom replacing Si and an H atom placed nearby in a centrally located cell resulted in an OH distance of 1.02 Å with the OH vector oriented perpendicular to [001] as observed in infrared studies. The geometry-optimized position of the H atom was found to be in close agreement with that (0.44, 0.12, 0.0) determined in an earlier study of the theoretical electron density distribution. The docking of the H atom at this site was found to be 330 kJ mol–1 more stable than a docking of the atom just off the shared OO edge of the octahedra as determined for rutile. A geometry optimization of a super cell with a missing Si generated a vacant octahedra that is 20% larger than that of the SiO6 octahedra. The valence electron density distribution displayed by the two-coordinate O atoms that coordinate the vacant octahedral site is very similar to those displayed by the bent SiOSi angles in coesite. The internal distortions induced by the defect were found to diminish rather rapidly with distance, with the structure annealing to that observed in the bulk crystal to within about three coordination spheres.  相似文献   

9.
The distribution of iron atoms in the octahedral sheet of a series of dioctahedral smectites with varying unit-cell composition and iron content was investigated by Fe K-edge XAS spectroscopy. First-step analysis reveals that the patterns corresponding to backscattering by atoms located between 3 and 4 Å from the absorbing atom are very sensitive to the relative amount of light (Si, Al, Mg) and heavy (Fe) atoms. Detailed modelling of this domain then provides valuable information on the number of iron atoms surrounding octahedral iron. By comparing the number of iron neighbours deduced from EXAFS with that determined from unit-cell composition assuming a statistical distribution, three groups of montmorillonites can be distinguished: (1) clay samples from Wyoming display an ordered distribution of iron atoms; (2) clay samples from Georgia, Milos, China and Washington exhibit a close to random distribution of iron atoms; (3) clay samples from North Africa, Germany, Texas and Arizona display extensive iron clustering. These results complement previously obtained IR results and show that the combination of these two spectroscopic techniques could provide an additional crystal-chemistry-based framework for typological analysis of montmorillonite deposits.  相似文献   

10.
Yavapaiite, KFe(SO4)2, is a rare mineral in nature, but its structure is considered as a reference for many synthetic compounds in the alum supergroup. Several authors mention the formation of yavapaiite by heating potassium jarosite above ca. 400°C. To understand the thermal decomposition of jarosite, thermodynamic data for phases in the K-Fe-S-O-(H) system, including yavapaiite, are needed. A synthetic sample of yavapaiite was characterized in this work by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and thermal analysis. Based on X-ray diffraction pattern refinement, the unit cell dimensions for this sample were found to be a = 8.152 ± 0.001 Å, b = 5.151 ± 0.001 Å, c = 7.875 ± 0.001 Å, and β = 94.80°. Thermal decomposition indicates that the final breakdown of the yavapaiite structure takes place at 700°C (first major endothermic peak), but the decomposition starts earlier, around 500°C. The enthalpy of formation from the elements of yavapaiite, KFe(SO4)2, ΔH°f = −2042.8 ± 6.2 kJ/mol, was determined by high-temperature oxide melt solution calorimetry. Using literature data for hematite, corundum, and Fe/Al sulfates, the standard entropy and Gibbs free energy of formation of yavapaiite at 25°C (298 K) were calculated as S°(yavapaiite) = 224.7 ± 2.0 J.mol−1.K−1 and ΔG°f = −1818.8 ± 6.4 kJ/mol. The equilibrium decomposition curve for the reaction jarosite = yavapaiite + Fe2O3 + H2O has been calculated, at pH2O = 1 atm, the phase boundary lies at 219 ± 2°C.  相似文献   

11.
The influence of aqueous silica on the hydrolysis of iron(III) nitrate and chloride salts in dilute aqueous solutions (mFe ∼ 0.01 mol/kg) was studied at ambient temperature using X-ray absorption fine structure (XAFS) spectroscopy at the Fe K-edge. Results show that in Si-free iron nitrate and chloride solutions at acid pH (pH < 2.5), Fe is hexa-coordinated with 6 oxygens of H2O- and/or OH-groups in the first coordination sphere of the metal, at an Fe-O distance of 2.00 ± 0.01 Å. With increasing pH (2.7 < pH < 13), these groups are rapidly replaced by bridging hydroxyls (-OH-) or oxygens (-O-), and polymerized Fe hydroxide complexes form via Fe-(O/OH)-Fe bonds. In these polymers, the first atomic shell of iron represents a distorted octahedron with six O/OH groups and Fe-O distances ranging from 1.92 to 2.07 Å. The Fe octahedra are linked together by their edges (Fe-Fe distance 2.92-3.12 Å) and corners (Fe-Fe distance ∼3.47 ± 0.03 Å). The Fe-Fe coordination numbers (Nedge = 1-2; Ncorner = 0.5-0.7) are consistent with the dominant presence of iron dimers, trimers and tetramers at pH 2.5 to 2.9, and of higher-polymerized species at pH > 3.At pH > 2.5 in the presence of aqueous silica, important changes in Fe(III) hydrolysis are detected. In 0.05-m Si solutions (pH ∼ 2.7-3.0), the corner linkages between Fe octahedra in the polymeric complexes disappear, and the Fe-Fe distances corresponding to the edge linkages slightly increase (Fe-Feedge ∼ 3.12-3.14 Å). The presence of 1 to 2 silicons at 3.18 ± 0.03 Å is detected in the second atomic shell around iron. At basic pH (∼12.7), similar structural changes are observed for the iron second shell. The Fe-Si and Fe-Fe distances and coordination numbers derived in this study are consistent with (1) Fe-Si complex stoichiometries Fe2Si1-2 and Fe3Si2-3 at pH < 3; (2) structures composed of Fe-Fe dimers and trimers sharing one or two edges of FeO6-octahedra; and (3) silicon tetrahedra linked to two neighboring Fe octahedra via corners. At higher Si concentration (0.16 m, polymerized silica solution) and pH ∼ 3, the signal of the Fe second shell vanishes indicating the destruction of the Fe-Fe bonds and the formation of different Fe-Si linkages. Moreover, ∼20 mol.% of Fe is found to be tetrahedrally coordinated with oxygens in the first coordination shell (RFe-O = 1.84 Å). This new finding implies that Fe may partially substitute for Si in the tetrahedral network of the silica polymers in Si-rich solutions.The results of this study demonstrate that aqueous silica can significantly inhibit iron polymerization and solid-phase formation, and thus increase the stability and mobility of Fe(III) in natural waters. The silica “poisoning” of the free corner sites of iron-hydroxide colloids should reduce the adsorption and incorporation of trace elements by these colloids in Si-rich natural waters.  相似文献   

12.
The effect of temperature on the sorption of cations onto a dioctahedral smectite was investigated by running batch experiments at 25, 40, 80 and 150°C. We measured the distribution coefficient (Kd) of Cs+, Ni2+ and 14 lanthanides (Ln3+) between solutions and the montmorillonite fraction of the MX80 bentonite at various pH and ionic strengths. Up to 80°C we used a conventional experimental protocol derived from Coppin et al. (2002). At 150°C, the experiments were conducted in a PTFE reactor equipped with an internal filter allowing the sampling of clear aliquots of solution.The results show a weak but measurable influence of the temperature on the elements sorption. Kd’s for Ni2+ and Ln3+ increase by a factor 2 to 5 whereas temperature raises from 25 to 150°C. This effect seems higher at high ionic strength. The estimated apparent endothermic sorption enthalpies are 33 ± 10 kJ.mol−1 and 39 ± 15 kJ.mol−1 for Ni2+ and Eu3+, respectively. On the other hand, the temperature effect on Cs+ sorption is only evidenced at low ionic strength and under neutral conditions where the Kd decreases by a factor 3 between 25 and 150°C. Apparent exothermic sorption enthalpy for Cs+ on the montmorillonite is −19 ± 5 kJ.mol−1.Experiments conducted at the four temperatures with the coexistence of all of the cations in the reacting solution (100 ppb of each element in the starting solution) or only one of them, produced similar values of Kd. This suggests the absence of competition between the sorbed cations, and consequently a low degree of saturation of the available sites. A fractionation of the lanthanides spectrum is also observed at high pH and high ionic strength whatever the temperature.The conclusion of this study is that the temperature dependence on sorption reflects, as the fractionation of REE or the pH and ionic strength effects, the chemical process which controls the overall reaction. In the case of an exchange dominated reaction (low pH and low ionic strength), the temperature effect is negligible. In the case of surface complexation (high pH and high ionic strength), the observed increase of Kd with temperature reflects either an increase of the sorption equilibrium constant with temperature or an endothermic property for reactions describing the montmorillonite surface chemistry.  相似文献   

13.
《Geochimica et cosmochimica acta》1999,63(19-20):3193-3203
Formation of secondary Ni precipitates is an important mechanism of Ni retention in neutral and alkaline clay/water systems. However, the structure and composition of these secondary phases, and their stability is still disputable. Using existing structure refinement data and new ab-initio FEFF 7 calculations we show that Ni-edge X-ray absorption fine structure spectroscopy alone may not be able to unequivocally discriminate four possible candidate compounds: α-Ni(OH)2, the isostructural but Al-substituted layered double hydroxide (Ni-Al LDH), and 1:1 and 2:1 Ni-containing phyllosilicates. Hence, we investigated the potential of diffuse reflectance spectroscopy (DRS) in determining in situ the Ni phase forming in the presence of four sorbents, pyrophyllite, talc, gibbsite, and amorphous silica. The 3A2g3T1g(F) band (ν2) of octahedrally coordinated Ni2+ could be reliably extracted from the reflectance spectra of wet pastes. In the presence of the Al-free talc and amorphous silica, the ν2 band was at ≈14,900 cm−1, but shifted to 15,300 cm−1 in the presence of Al-containing pyrophyllite and gibbsite. This shift suggests that Al is dissolved from the sorbent and substitutes for Ni in brucite-like hydroxide layers of the newly forming precipitate phase, causing a decrease of the Ni-O distances and, in turn, an increase of the crystal-field splitting energy. Comparison with Ni model compounds showed that the band at 14,900 cm−1 is a unique fingerprint of α-Ni(OH)2, and the band at 15,300 cm−1 of Ni-Al LDH. Although the complete transformation of α-Ni(OH)2 into a Ni phyllosilicate causes a significant contraction of the Ni hydroxide sheet as indicated by band positions intermediate to those of α-Ni(OH)2 and Ni-Al LDH, incipient states of silication do not influence Ni-O distances and cannot be detected by DRS. The first evidence for the formation of a precipitate was obtained after 5 min (pyrophyllite), 7 hr (talc), 24 hr (gibbsite), and 3 days (amorphous silica). For both pyrophyllite and talc, where sufficiently long time series were available, the ν2 energy slightly increased as long as the Ni uptake from solution continued (3 days for pyrophyllite, 30 days for talc). This may be explained by a relative decrease of relaxed surface sites due to the growth of crystallites. Our study shows that the formation of both α-Ni(OH)2 and Ni-Al LDH may effectively decrease aqueous Ni concentrations in soils and sediments. However, Ni-Al LDH seems to be thermodynamically favored when Al is available.  相似文献   

14.
Several designs proposed for high-level nuclear waste (HLW) repositories include steel waste canisters surrounded by montmorillonite clay. This work investigates montmorillonite stability in the presence of native Fe, magnetite and aqueous solutions under hydrothermal conditions. Two series of experiments were conducted. In the first, mixtures of Na-montmorillonite, magnetite, native Fe, calcite, and NaCl solutions were reacted at 250 °C, Psat for between 93 and 114 days. In the second series, the starting mixtures included Na-montmorillonite, native Fe and solutions of FeCl2 which were reacted at temperatures of 80, 150, and 250 °C, Psat, for 90-92 days. Experiments were analysed using XRD, FT-IR, TEM, ICP-AES, and ICP-MS. In the first series of experiments, native Fe oxidised to produce magnetite and the starting montmorillonite material was transformed to Fe-rich smectite only when the Fe was added predominantly as Fe metal rather than Fe oxide (magnetite). The Fe-rich smectite was initially Fe(II)-rich, which oxidised to produce an Fe(III)-rich form on exposure to air. The expansion of this material on ethylene glycol solvation was much reduced compared to the montmorillonite starting material. TEM imaging shows that partial loss of tetrahedral sheets occurred during transformation of the montmorillonite, resulting in adjacent layers becoming H-bonded with a 7 Å repeat. The reduced swelling property of the Fe-smectite product may be due predominantly to the structural disruption of smectite layers and the formation of H-bonds. Solute activities corresponded to the approximate stability field calculated for hypothetical Fe(II)-saponite. In the second series of experiments, significant smectite alteration was only observed at 250 °C and the product contained a small proportion of a 7 Å repeat structure, observable by XRD. In these experiments, solute activities coincide with berthierine. The experiments indicate that although bentonite is still a desirable choice of backfill material for HLW repositories, some loss of expandability may result if montmorillonite is altered to Fe-rich smectite at the interface between steel canisters and bentonite.  相似文献   

15.
Formation of aqueous aluminate-borate complexes was characterized at 25°C using 27Al NMR spectroscopy, and at 50-200°C via measurements of gibbsite and boehmite solubility in the presence of boric acid. 27Al spectra performed at pH = 9 in Al-B solution with m(B) = 0.02 show the presence of two peaks at 80.5 and 74.5 ppm which correspond to Al(OH)4 and a single Al-substituted Q1Al dimer, Al(OH)3OB(OH)2, respectively. In 0.08 m and 0.2 m borate solution, a third peak appears at 68.5 ppm which can be assigned to the Q2Al trimer Al(OH)2O2(B(OH)2)2. These chemical shifts are close to those measured for Al(OH)3OSi(OH)3 and Al(OH)2O2(Si(OH)3)2 (74 and 69.5 ppm, respectively; Pokrovski et al., Min. Mag.62a (1998), 1194) which demonstrates the similar structure of Al-B and Al-Si complexes formed in alkaline solutions. Gibbsite and boehmite solubility were measured in weakly basic solutions as a function of boric acid concentration at 50°C and 78 to 200°C, respectively. Equilibrium was reached within several days at m(B) = 0.01-0.1, but more slowly at higher boron concentrations, and at 50°C and m(B) = 0.2, Al concentration increased continuously during at least 3 months as a result of the sluggish formation of Al-polyborates. The equilibrium constant of the reaction Al(OH)4 + B(OH)30(aq) = Al(OH)3OB(OH)2 + H2O decreases very slowly with increasing temperature to 200°C. The log K values are 1.58 ± 0.10, 1.46 ± 0.10, 1.52 ± 0.15, and 1.25 ± 0.15 at 50, 78, 150 and 200°C, respectively, which result in the following values of the standard thermodynamic properties for this reaction: ΔrG0 = −9.22 ± 3.25 kJ/mol, ΔrH0 = −4.6 ± 2.5 kJ/mol, ΔrS0 = 15.5 ± 6.9 J/mol K. The thermodynamic data generated in this study indicate that Al-B complexes can dominate aqueous aluminum speciation in solutions containing ≥0.7 g/L of boron at temperature to at least 400°C.  相似文献   

16.
An 840-g specimen of the Bruderheim chondrite was subjected to magnetic and heavy-liquid mineral separation procedures, resulting in a number of chemically distinct samples. These samples were analyzed for cosmogenic Al26 by non-destructive gamma-gamma coincidence counting. The observed Al26 specific activities were correlated with the chemical composition of potential target elements by a weighted least-squares fitting technique. The calculated Al26 production rates, in dpm per kilogram of target element, are: Al, 1130 ± 190; Si, 245 ± 31; S, 133 ± 11; Mg, 28 ± 30. Production rates from Ca and Ni + Fe were estimated to be 24 and 2.2 dpm/kg, respectively, from spallation systematics.  相似文献   

17.
The dissolution rate of illite, a common clay mineral in Australian soils, was studied in saline-acidic solutions under far from equilibrium conditions. The clay fraction of Na-saturated Silver Hill illite (K1.38Na0.05)(Al2.87Mg0.46Fe3+0.39Fe2+0.28Ti0.07)[Si7.02Al0.98]O20(OH)4 was used for this study. The dissolution rates were measured using flow-through reactors at 25 ± 1 °C, solution pH range of 1.0-4.25 (H2SO4) and at two ionic strengths (0.01 and 0.25 M) maintained using NaCl solution. Illite dissolution rates were calculated from the steady state release rates of Al and Si. The dissolution stoichiometry was determined from Al/Si, K/Si, Mg/Si and Fe/Si ratios. The release rates of cations were highly incongruent during the initial stage of experiments, with a preferential release of Al and K over Si in majority of the experiments. An Al/Si ratio >1 was observed at pH 2 and 3 while a ratio close to the stoichiometric composition was observed at pH 1 and 4 at the higher ionic strength. A relatively higher K+ release rate was observed at I = 0.25 in 2-4 pH range than at I = 0.01, possibly due to ion exchange reaction between Na+ from the solution and K+ from interlayer sites of illite. The steady state release rates of K, Fe and Mg were higher than Si over the entire pH range investigated in the study. From the point of view of the dominant structural cations (Si and Al), stoichiometric dissolution of illite occurred at pH 1-4 in the higher ionic strength experiments and at pH ?3 for the lower ionic strength experiments. The experiment at pH 4.25 and at the lower ionic strength exhibited lower RAl (dissolution rate calculated from steady state Al release) than RSi (dissolution rate calculated from steady state Si release), possibly due to the adsorption of dissolved Al as the output solutions were undersaturated with respect to gibbsite. The dissolution of illite appears to proceed with the removal of interlayer K followed by the dissolution of octahedral cations (Fe, Mg and Al), the dissolution of Si is the limiting step in the illite dissolution process. A dissolution rate law showing the dependence of illite dissolution rate on proton concentration in the acid-sulfate solutions was derived from the steady state dissolution rates and can be used in predicting the impact of illite dissolution in saline acid-sulfate environments. The fractional reaction orders of 0.32 (I = 0.25) and 0.36 (I = 0.01) obtained in the study for illite dissolution are similar to the values reported for smectite. The dissolution rate of illite is mainly controlled by solution pH and no effect of ionic strength was observed on the dissolution rates.  相似文献   

18.
We present some of the first analyses of the stable isotopic composition of dissolved silicon (Si) in groundwater. The groundwater samples were from the Navajo Sandstone aquifer at Black Mesa, Arizona, USA, and the Si isotope composition of detrital feldspars and secondary clay coatings in the aquifer were also analyzed. Silicon isotope compositions were measured using high-resolution multi-collector inductively coupled mass spectrometry (HR-MC-ICP-MS) (Nu1700 & NuPlasma HR). The quartz dominated bulk rock and feldspar separates have similar δ30Si of −0.09 ± 0.04‰ and −0.15 ± 0.04‰ (±95% SEM), respectively, and clay separates are isotopically lighter by up to 0.4‰ compared to the feldspars. From isotopic mass-balance considerations, co-existing aqueous fluids should have δ30Si values heavier than the primary silicates. Positive δ30Si values were only found in the shallow aquifer, where Si isotopes are most likely fractionated during the dissolution of feldspars and subsequent formation of clay minerals. However, δ30Si decreases along the flow path from 0.56‰ to −1.42‰, representing the most negative dissolved Si isotope composition so far found for natural waters. We speculate that the enrichment in 28Si is due to dissolution of partly secondary clay minerals and low-temperature silcretes in the Navajo Sandstone. The discovery of the large range and systematic shifts of δ30Si values along a groundwater flow path illustrates the potential utility of stable Si isotopes for deciphering the Si cycling in sedimentary basins, tracing fluid flow, and evaluating global Si cycle.  相似文献   

19.
During ODP Leg 193, 4 sites were drilled in the active PACMANUS hydrothermal field on the crest of the felsic Pual Ridge to examine the vertical and lateral variations in mineralization and alteration patterns. We present new data on clay mineral assemblages, clay and whole rock chemistry and clay mineral strontium and oxygen isotopic compositions of altered rocks from a site of diffuse low-temperature venting (Snowcap, Site 1188) and a site of high-temperature venting (Roman Ruins, Site 1189) in order to investigate the water-rock reactions and associated elemental exchanges.The volcanic succession at Snowcap has been hydrothermally altered, producing five alteration zones: (1) chlorite ± illite-cristobalite-plagioclase alteration apparently overprinted locally by pyrophyllite bleaching at temperatures of 260-310°C; (2) chlorite ± mixed-layer clay alteration at temperatures of 230°C; (3) chlorite and illite alteration; (4) illite and chlorite ± illite mixed-layer alteration at temperatures of 250-260°C; and (5) illite ± chlorite alteration at 290-300°C. Felsic rocks recovered from two holes (1189A and 1189B) at Roman Ruins, although very close together, show differing alteration features. Hole 1189A is characterized by a uniform chlorite-illite alteration formed at ∼250°C, overprinted by quartz veining at 350°C. In contrast, four alteration zones occur in Hole 1189B: (1) illite ± chlorite alteration formed at ∼300°C; (2) chlorite ± illite alteration at 235°C; (3) chlorite ± illite and mixed layer clay alteration; and (4) chlorite ± illite alteration at 220°C.Mass balance calculations indicate that the chloritization, illitization and bleaching (silica-pyrophyllite assemblages) alteration stages are accompanied by different chemical changes relative to a calculated pristine precursor lava. The element Cr appears to have a general enrichment in the altered samples from PACMANUS. The clay concentrate data show that Cr and Cu are predominantly present in the pyrophyllites. Illite shows a significant enrichment for Cs and Cu relative to the bulk altered samples.Considerations of mineral stability allow us to place some constraints on fluid chemistry. Hydrothermal fluid pH for the chloritization and illitization was neutral to slightly acidic and relatively acidic for the pyrophyllite alteration. In general the fluids, especially from Roman Ruins and at intermediate depths below Snowcap, show only a small proportion of seawater mixing (<10%). Fluids in shallow and deep parts of the Snowcap holes, in contrast, show stronger seawater influence.  相似文献   

20.
粘土矿物对形成过渡带气的催化作用研究   总被引:1,自引:0,他引:1  
雷怀彦  关平 《沉积学报》1995,13(2):14-21
本文分析了有机质在粘土矿物中的赋存状态,测定了粘土矿物的表面酸、实验模拟了低演化程度的烃源岩及其抽提物干酪根+不同粘土矿物的催化机制、并通过粘土催化醇脱水反应对粘土过渡带有机质成气机理进行了探讨。研究结果表明,过渡带气的形成主要是受蒙脱石粘土矿物的催化所致,其原因是成岩过程中蒙脱石向混层矿物转化在蒙脱石晶间发生大量的铝代硅,因此在粘土表面产生电荷不平衡而形成酸性,井以路易斯酸和布郎酸作用于有机质,使碳-碳键发生断裂以形成气态烃。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号