首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The howardite, eucrite and diogenite (HED) clan of meteorites are ultramafic and mafic igneous rocks and impact-engendered fragmental debris derived from a thoroughly differentiated asteroid. Earth-based telescopic observation and data returned from vestan orbit by the Dawn spacecraft make a compelling case that the asteroid (4) Vesta is the parent asteroid of HEDs, although this is not universally accepted. Diogenites are petrologically diverse and include dunitic, harzburgitic and noritic lithologic types in addition to the traditional orthopyroxenites. Diogenites form the lower crust of Vesta. Cumulate eucrites are gabbroic rocks formed by accumulation of pigeonite and plagioclase from a mafic magma at depth within the crust, while basaltic eucrites are melt compositions that likely represent shallow-level dikes and sills, and flows. Some basaltic eucrites are richer in incompatible trace elements compared to most eucrites, and these may represent mixed melts contaminated by partial melts of the mafic crust. Differentiation occurred within a few Myr of formation of the earliest solids in the Solar System. Evidence from oxygen isotope compositions and siderophile element contents favor a model of extensive melting of Vesta forming a global magma ocean that rapidly (period of a few Myr) segregated and crystallized to yield a metallic core, olivine-rich mantle, orthopyroxene-rich lower crust and basaltic upper crust. The igneous lithologies were subjected to post-crystallization thermal processing, and most eucrites show textural and mineral-compositional evidence for metamorphism. The cause of this common metamorphism is unclear, but may have resulted from rapid burial of early basalts by later flows caused by high effusion rates on Vesta. The observed surface of Vesta is covered by fragmental debris resulting from impacts, and most HEDs are brecciated. Many eucrites and diogenites are monomict breccias indicating a lack of mixing. However, many HEDs are polymict breccias. Howardites are the most thoroughly mixed polymict breccias, yet only some of them contain evidence for residence in the true regolith. Based on the numbers of meteorites, compositions of howardites, and models of magma ocean solidification, cumulate eucrites and their residual ferroan mafic melts are minor components of the vestan crust.  相似文献   

2.
Howardites and polymict eucrites are fragments of regolith breccias ejected from the surface of a differentiated (eucritic) parent body, perhaps, of the asteroid Vesta. The first data are presented demonstrating that howardites contain, along with foreign fragments of carbonaceous chondrites, also fragments of ordinary chondrites, enstatite meteorites, ureilites, and mesosiderites. The proportions of these types of foreign meteoritic fragments in howardites and polymict eucrites are the same as in the population of cosmic dust particles obtained from Antarctic and Greenland ice. The concentrations of siderophile elements in howardites and polymict eucrites are not correlated with the contents of foreign meteoritic particles. It is reasonable to believe that cosmogenic siderophile elements are concentrated in howardites and polymict eucrites mostly in submicrometer-sized particles that cannot be examined mineralogically. The analysis of the crater population of the asteroid Vesta indicates that the flux of chondritic material to the surface of this asteroid should have been three orders of magnitude higher than the modern meteoritic flux and have been comparable with the flux to the moon’s surface during its intense meteoritic bombardment. This provides support for the earlier idea about a higher meteoritic activity in the solar system as a whole at approximately 4 Ga. The lithification of the regolith (into regolith breccia) of the asteroid Vesta occurred then under the effect of thermal metamorphism in the blanket of crater ejecta. Thus, meteorite fragments included in howardites provide record of the qualitative composition of the ancient meteorite flux, which was analogous to that of the modern flux at the Earth surface.  相似文献   

3.
4.
Quantifying the amounts of various igneous lithologies in Vesta’s crust allows the estimation of petrologic ratios that describe the asteroid’s global differentiation and subsequent magmatic history. The eucrite:diogenite (Euc:Diog) ratio measures the relative proportions of mafic and ultramafic components. The intrusive:extrusive (I:E) ratio assesses the effectiveness of magma ascent and eruption. We estimate these ratios by counting numbers and masses of eucrites, cumulate eucrites, and diogenites in the world’s meteorite collections, and by calculating their proportions as components of crustal polymict breccias (howardites) using chemical mixing diagrams and petrologic mapping of multiple thin sections. The latter two methods yield a Euc:Diog ratio of ∼2:1, although meteorite numbers and masses give slightly higher ratios. Surface lithologic maps compiled from spectra of Dawn spacecraft instruments (VIR and GRaND) yield Euc:Diog ratios that bracket estimates of Euc:Diog from the meteorites. The I:E ratios from HEDs lie between 0.5–2.1:1, due to uncertainties in identifying cumulate eucrite. Gravity mapping of Vesta by the Dawn spacecraft supports the existence of diogenite plutons in the crust. Quantifying the proportion of high-density diogenitic crust in the gravity map yields I:E ratios of 0.8-1:2:1, values which are bracketed by calculations based on HEDs. The I:E ratio for Vesta is lower than for Earth and Mars, consistent with physical modeling of asteroid-size bodies. Nevertheless, it indicates a significant role for pluton emplacement during the formation of Vesta’s crust. These results are inconsistent with simple differentiation models that produce the crust by crystallization of a global magma ocean, unless residual melts are extracted into crustal magma chambers.  相似文献   

5.
Trace element geochemistry of K-rich impact spherules from howardites   总被引:1,自引:0,他引:1  
The howardite–eucrite–diogenite (HED) achondrites are a group of meteorites that probably originate from the asteroid Vesta. Howardites are complex polymict breccias that sometimes contain, in addition to various rock debris, impact melt glasses which show an impressive range of compositions. In this paper we report on the geochemistry and O isotopes of a series of 6 Saharan polymict breccias (4 howardites and 2 polymict eucrites), and on the trace element abundances of high-K impact spherules found in two of them, Northwest Africa (NWA) 1664 and 1769, which are likely paired.The high-K impact spherules found in the howardites NWA 1664 and NWA 1769 display remarkable trace element patterns. Compared to eucrites or howardites, they all show prominent enrichments in Cs, Rb, K, Li and Ba, strong depletion in Na, while the REE and other refractory elements are unfractionated. These features could not have been generated during impact melting of their host howardites, nor other normal HED target materials. The involvement of Na-poor rocks, and possibly rocks of granitic composition, appears likely. Although these lithologies cannot be well constrained at present, our results demonstrate that the surface of Vesta is certainly more diverse than previously thought. Indeed, despite the large number of available HED meteorites (about 1000 different meteorites), the latter are probably not sufficient to describe the whole surface of their parent body.  相似文献   

6.
We performed instrumental neutron activation analysis on a large suite of antarctic and nonantarctic eucrites, including unbrecciated, brecciated, and polymict eucrites and cumulate and noncumulate eucrites. We evaluate the use of Hf and Ta, two highly incompatible elements, as sensitive indicators of partial melting or fractional crystallization processes. Comparison with rare earth element (REE) data from nonantarctic and antarctic eucrites shows that Hf and Ta are unaffected by the terrestrial alteration that has modified the REE contents and patterns of some antarctic eucrites. The major host phases for Hf and Ta—zircon, baddeleyite, ilmenite, and titanite—are much less susceptible to terrestrial alteration than the phosphate hosts of REEs. The host phases for Hf and Ta are minor or trace phases, so sample heterogeneity is a serious concern for obtaining representative compositions. The trace lithophile and siderophile element contents of noncumulate eucrites do not allow for a single, simple model for the petrogenesis of the howardite-eucrite-diogenite suite. Fractional crystallization models cannot reproduce the compositional relationship between eucrites of the main group-Nuevo Laredo trend and those of the Stannern trend. Equilibrium crystallization models cannot explain the trace element diversity observed among diogenites. Partial melting models cannot explain the W variations among eucrites, unless source regions had different metal contents. We suggest that slight variations in oxygen fugacity of eucrite source regions during partial melting can explain the W variations without requiring different metal contents. This hypothesis may fail to account for eucrite Co contents, however.  相似文献   

7.
The abundances of U and Th in 19 achondrites and two pallasite olivines have been measured by radiochemical neutron activation analysis. Brecciated eucrites are enriched relative to chondrites in both elements by factors between 10 and 20, perhaps as a result of a magmatic differentiation process. Two unbrecciated eucrites are far less enriched, possibly due to their origin as igneous cumulates. The diogenites Johnstown and Shalka contain approximately chondritic levels of U and Th, but Ellemeet is 10 times lower. The abundances in three howardites are in good agreement with those expected from major element data for a mixing model with eucrite and diogenite end members. The high O18 basaltic achondrites Nakhla, Shergotty and Angra dos Reis have a range of U and Th abundances similar to the brecciated eucrites and howardites, but have systematically higher Th/U ratios. The Bishopville aubrite has U and Th abundances and Th/U ratios similar to those of several enstatite chondrites, suggesting a genetic relationship. The Norton County aubrite has a low Th/U, similar to that observed in recrystallized and metamorphosed terrestrial ultrabasic rocks, indicating a more complex history. Pallasite olivines have low U and Th contents (0.5.4 ppb and 1.4.3 ppb, respectively) similar to those in terrestrial dunites. The Goalpara ureilite has very low U (<0–6 ppb) and Th (2.7 ppb) abundance consistent with an origin from carbonaceous chondrites by partial melting.  相似文献   

8.
Combined petrographic, electron microprobe and instrumental neutron activation analysis (INAA) studies of igneous lithic clasts separated from mesosiderites and howardites and INAA investigation only of whole rock eucrites and diogenites have been performed to help elucidate the differentiation processes that occurred on asteroidal sized bodies. Although similar to eucrites in mineralogy and major element chemistry, trace element abundances in basaltic lithic clasts give evidence for more complex differentiation episodes than have been observed for eucrites. These complex fractionations include sequential melting and expulsion of liquid from the source region and remelting of cumulate materials, followed by a second fractional crystallization episode. Rare earth element (REE) abundances in a basaltic clast from Petersburg suggest that the source region which produced this melt was noticably different from that which produced the eucrites Pasamonte and Bereba.Pyroxenites from mesosiderites show slight enrichments in Sc and Mn when compared with average diogenites. This suggests that the pyroxenites in mesosiderites are not fragments of diogenites sensu stricto. A plagioclase clast from the Johnstown diogenite contains light REE abundances that are not in equilibrium with the pyroxene phase. This implies that some of the plagioclase in diogenites may be a foreign component not directly related to the diogenites. This component probably formed on the same parent body as the diogenites however.The characteristics which are inferred for the heat source are that it was spatially and temporally variable. This suggests that heating of the differentiated meteorite parent bodies may in part have been from outside the parent body.  相似文献   

9.
The isotopic composition of noble gases was investigated in the Dhofar 007 meteorite. Petrographic and mineralogical observations suggested that it is a brecciated cumulate eucrite with high contents of siderophile elements. The concentrations of noble gases in Dhofar 007 are identical to those of other eucrites. Its cosmic ray exposure age was estimated as 11.8 ± 0.8 Ma, which coincides with a maximum on the histogram of comic ray exposure ages of eucrite meteorites. It can be supposed that, similar to other eucrites, Dhofar 007 was ejected from the surface of their parent body (presumably, asteroid Vesta) about 12.0 Ma ago. The crystallization age of the Dhofar 007 eucrite was estimated from the ratio of plutonogenic Xe to Nd as 4476 ± 22 Ma. The potassium-argon age is much younger, 3.7–4.1 Ga, which indicates partial loss of radiogenic argon during the history of the meteorite, most likely related to impact metamorphic events.  相似文献   

10.
Howardites can be divided into two main groups, Ni-rich (>350ppm Ni) and Ni-poor (<150ppm Ni). In the Ni-rich group Ni occurs principally in metal grains associated with melt rocks and is largely derived from projectiles which caused the melting. The metal in Bununu, Kapoeta and Malvern melt rocks plots in the meteoritic Ni-Co range and in Bununu and Kapoeta is enriched in P. By contrast, most metal grains in primary lithic and crystal clasts in howardites are Ni-poor and plot mainly in the composition field of pristine lunar anorthosite metal. However, there are variations in the abundance and exact composition of primary metal from howardite to howardite and each therefore represents a discrete source region. The matrix metal in Bholgati, Bununu, and Kapoeta shows the diversity of compositions expected in a polymict breccia, with compositions plotting in and between the anorthositic and meteoritic Ni-Co fields. Other howardites show a more limited range of matrix metal compositions, because of limited metal-bearing clasts.Petersburg differs from other howardites in several ways. The metal in primary clasts has a unique NiCo ratio of about 40, which indicates derivation from a different reservoir from other howardite primary clasts. The metal in the matrix consists of large grains intergrown with silicates with compositions clustering tightly at 3.3% Ni, 0.2% Co. This is interpreted as equilibration, possibly as the result of deeper burial for Petersburg than for other howardites.  相似文献   

11.
Diogenites contain equilibrated orthopyroxene-olivine assemblages. Mn is very regularly partitioned between olivine and orthopyroxene in pallasites, diogenites and synthetic eucrite melts, with an FeOMnO partition ratio for olivine versus orthopyroxene of 1.6 by weight over a very wide range of FeO contents. In contrast to diogenites, Fe and Mn are not regularly partitioned between the olivine and orthopyroxene of mesosiderites and these minerals were not in equilibrium. Mesosiderite olivine differs from diogenite olivine in FeMn and CaMn ratios. Lack of olivine-orthopyroxene equilibrium suggests that olivine in mesosiderites was derived not from a pyroxenite component analogous to diogenites but from dunites.  相似文献   

12.
We report neutron activation data for major, minor and trace elements determined in whole rock howardites and silicates from mesosiderites. Compositions of howardites and mesosiderites are similar, and intermediate between those of eucrites and diogenites. Relative to howardites mean mesosiderite abundances are slightly nearer the diogenites. Literature data indicate that mesosiderites have a higher normative silica component than howardites. It appears that this partly results from a higher content of a highly evolved igneous component, and partly from in situ reduction of FeO to Fe followed by magnetic separation of metal prior to analysis. Removal of a portion of the FeO in this manner yields a higher normative SiO2 component for the nonmagnetic fraction. Petrographic observations demonstrate the formation of SiO2 which may have resulted from a combination of various factors including accretion of a reducing agent together with the Fe-Ni metal, extensive reaction during the long cooling period, and catalysis by the finely divided metal.In the mesosiderites Mincy, Lowicz and Veramin the light rare earth elements (REE) are enriched. The resulting REE pattern is qualitatively similar to that in terrestrial basalts thought to have been formed by small degrees of partial melting. Of several partial melting models tested, the best match to the REE patterns is provided by one involving ~2–4% partial melting of a source containing low REE abundances. It appears that the light REE enrichment is not associated with the hypothetical silica enriched igneous phase.Since numerous properties separate mesosiderite silicates from howardites, it is clear that they are not composed of precisely the same material. Whether or not they originated on the same parent body is unresolved. If parent body regoliths were mixed vertically and horizontally on a planet-wide basis, then separate bodies would be required.  相似文献   

13.
ALHA 76005 is a basaltic achondrite containing few. if any, orthopyroxenes. Its bulk major and trace element composition is like that of a non-cumulate eucrite, and unlike that of a howardite. It contains a variety of igneous clasts which differ in their textures, pyroxene/plagioclase ratios and pyroxene and plagioclase compositions. One clast, No. 4, was found to have the REE pattern of a cumulate eucrite and an oxygen isotopic composition different from that of the bulk meteorite. Both the chemical and oxygen isotopic composition of clast No. 4 suggest that it was derived from a source different from its host. These observations lead to the conclusion that ALHA 76005 is a polymict eucrite.  相似文献   

14.
A few eucrites have anomalous oxygen isotopic compositions. To help understand their origin and identify additional samples, we have analyzed the oxygen isotopic compositions of 18 eucrites and four diogenites. Except for five eucrites, these meteorites have Δ17O values that lie within 2σ of their mean value viz., −0.242 ± 0.016‰, consistent with igneous isotopic homogenization of Vesta. The five exceptional eucrites—NWA 1240, Pasamonte (both clast and matrix samples), PCA 91007, A-881394, and Ibitira—have Δ17O values that lie, respectively, 4σ, 5σ, 5σ, 15σ, and 21σ away from this mean value. NWA 1240 has a δ18O value that is 5σ below the mean eucrite value. Four of the five outliers are unbrecciated and unshocked basaltic eucrites, like NWA 011, the first eucrite found to have an anomalous oxygen isotopic composition. The fifth outlier, Pasamonte, is composed almost entirely of unequilibrated basaltic clasts. Published chemical data for the six eucrites with anomalous oxygen isotopic compositions (including NWA 011) exclude contamination by chondritic projectiles as a source of the oxygen anomalies. Only NWA 011 has an anomalous Fe/Mn ratio, but several anomalous eucrites have exceptional Na, Ti, or Cr concentrations. We infer that the six anomalous eucrites are probably derived from five distinct Vesta-like parent bodies (Pasamonte and PCA 91007 could come from one body). These anomalous eucrites, like the isotopically normal, unbrecciated eucrites with 4.48 Gyr Ar-Ar ages, are probably deficient in brecciation and shock effects because they were sequestered in small asteroids (10 km diameter) during the Late Heavy Bombardment following ejection from Vesta-like bodies. The preservation of Vesta’s crust and the lack of deeply buried samples from the hypothesized Vesta-like bodies are consistent with the removal of these bodies from the asteroid belt by gravitational perturbations from planets and protoplanets, rather than by collisional grinding.  相似文献   

15.
Electron microprobe analyses have been performed on 300 olivine grains found in 11 howardites. The olivine compositions almost continuously range from Fa 8 to Fa 89 with two prominent populations at Fa 13 and Fa 30. The tail of the fayalite contents distribution may correspond to the succession of several small clusters of Fe-rich olivine grains. Most howardites have olivine populations in common that would result from the fragmentation of different rocks of the howardites parent body. The distribution of the olivine grains between several groups of different FeOMnO ratios indicates olivine crystallization from distinct magmas. The chemical characteristics of the olivines of the pallasites, diogenites and mesosiderites are found among the olivines of the howardites and suggests a common parent body for these different types of meteorites. The differentiation model of the eucrites parent body proposed by Stolper (1977) is extended to the partial fusion of distinct assemblages silicates + metal which could proceed from recrystallizations, under different oxidation-reduction conditions, of a primordial chondritic material depleted in volatile elements.  相似文献   

16.
Both the host phase and glass veins of the Cachari eucrite have been analyzed by microprobe and neutron activation analysis for their chemical compositions and by mass spectrometry for their 39Ar-40Ar gas retention ages. Cachari is chemically similar to other non-cumulate eucrites. The vesicular glass veins vary from pure glass, to devitrified glass, to areas that are substantially crystalline. The glassy areas have nearly the same concentrations of major and trace elements as the unmelted portions of Cachari, but some differences, probably due to preferential dissolution, occur along melt contacts. The glass formed by shock melting of Cachari host or of rock identical to it. 39Ar-40Ar data for the host and glass suggest distinctly different ages of 3.04 ±.07 Gy and 3.47 ±.04 Gy, respectively. The time of glass formation, which may also be the time of brecciation, is most likely given by the 3.0 Gy age of the host. The higher age for the glass is interpreted to represent incomplete Ar degassing during the 3.0 Gy event due to the greater resistance to Ar diffusion shown by the glass compared to the host. Event ages significantly younger than 4.5 Gy have now been determined for several eucrites and howardites and suggest a long dynamic regolith history for the parent body.  相似文献   

17.
Basalt magmas, derived by the partial melting of planetary interiors, have compositions that reflect the pre-accretionary history of the material from which the planet formed, the planets, subsequent evolutionary history, the chemistry and mineralogy of the source regions, and the intensive thermodynamic parameters operating at the source and emplacement sites. Studies of basalt suites from the Earth, its Moon, and the eucrite parent body reveal compositional differences intrinsic to their source regions which are, in turn, a characteristic of the planet and its formational and evolutionary history.Major interplanetary differences are observed in iron, , TiO2, Al2O3, Na2O, Cr, Ni, and in volatile element abundances. The most primitive mare basalts have Mg#s 0.6, on the Earth they are 0.70–0.72 for mid-ocean ridge basalts (MORBs) and up to 0.9 for Archean peridotitic komatiites. Eucrites have Mg#s approaching 0.5 (excepting Binda). These differences reflect inherent differences in of their sources. Striking differences in the TiO2 abundances of the planetary basalts reflect both inter- and intra-planetary variations in source chemistry. Primitive MORBs and primitive oceanic intraplate tholeiites have a factor of 2–3 difference in TiO2 at comparable Mg# (0.7–1.2 vs 2–3 wt.% respectively). Three major titania groups are recognized in the mare suite; high TiO2 (8–13 wt.%), low TiO2 (2–5 wt.%) and very low TiO2 (<1 wt.%). The eucrites have TiO2 contents <1 wt.%.The mare basalts and eucrites have pronounced Na2O depletion relative to all terrestrial basalts. This is a consequence of the preplanetary accretion loss of volatiles from the material that formed the Moon and the eucrite parent bodies.Mare basalts have consistently lower Al2O3 contents than the terrestrial basalts. This may be due either to an inherently lower content of Al2O3 in the mare sources or it may reflect Al2O3 retention in an aluminous phase.The transition metals are fractionated in all three basalt suites. For terrestrial basalts this may reflect core-separation; however, in the case of the Moon and eucrite parent bodies pre-accretionary separation of metal and silicates is a more reasonable explanation. A pronounced Cr anomaly is observed in terrestrial MORBs but not in the mare basalts. This appears to be related to fO2 differences in the respective mantles.Overall rare earth element abundances are comparable between all three objects. Mare basalts have a pronounced negative Eu anomaly which is inherited from their source region and is record of plagioclase removal from crystallizing magma ocean early in lunar history (4.4–4.6 Ga). Early separation of plagioclase on the Earth appears to have been a relatively unimportant process.  相似文献   

18.
Seventy-one carbonaceous chondritic microclasts of average size 150 μm have been found in three howardites (Yamato-793497, Jodzie, Kapoeta). All carbonaceous chondritic microclasts are made of a fine-grained phyllosilicate-rich matrix supporting a variety of minerals such as olivine, pyroxene, spinel, iron oxides, iron-nickel sulfides, and calcium carbonates. Such a mineralogy is typical of chondritic C2 matter. Half of the carbonaceous chondritic microclasts are tochilinite-rich, and have been tentatively called CM2 microclasts. The other half are magnetite-rich, and have been tentatively called CR2 microclasts. The absence of a correlation between the CM2/CR2 ratio in carbonaceous chondritic microclasts and in numerous millimeter-sized clasts found in the same sections argues for carbonaceous chondritic microclasts being true micrometeorites rather than fragments of larger objects. Dynamical simulations show that it is possible for asteroidal dust to encounter Vesta (the howardite’s putative parent-asteroid) at velocity low enough (<1 km.s−1) to prevent fragmentation. Because the micrometeorite flux in the inner Solar System has been decreasing with time, we argue that carbonaceous chondritic microclasts have been trapped in Vesta’s regolith early in the history of the Solar System and are fossil micrometeorites. Because both microclasts and clasts found in howardites are related to C2 chondritic matter, we propose that C2 matter represents the bulk, or at least a significant fraction of the primordial howardite parent-asteroid. Considering the abundance of C2 matter among fossil micrometeorites, we speculate that the C2 fossil micrometorites are the so far unidentified agent of the late chondritic veneer that endowed the Earth’s mantle with an excess of siderophile elements relative to the contents predicted by the core-mantle separation models. The discovery that C2 fossil micrometeorites are similar to C2 modern Antarctic micrometeorites supports recent models proposing a micrometeoritic origin for the Earth’s oceans and volatile species.  相似文献   

19.
Mesosiderites are thermal metamorphic breccias consisting of fragments of pyroxene-plagioclase rocks and FeNi metal. The silicate constituent of mesosiderites has a chemical and oxygen isotopic composition analogous to those of meteorites of the HED group: howardites, eucrites, and diogenites. The hypothesis currently most widely accepted for the genesis of mesosiderites is the impact mixing of the material of a differentiated asteroid and an iron meteorite. In contrast to many other classes of meteorites, mesosiderites exhibit no traces of metasomatic processes. The Budulan mesosiderite is the first meteorite of this type in which traces of metasomatism under the effect of an anhydrous fluid were detected. The metasomatic alterations are manifested as chemical zoning of olivine, aggregates of secondary minerals, and the mobilization and redeposition of iron and nickel in the form of metals and sulfides. These alterations were most probably caused by a reaction of olivine with S- and/or CO-bearing gases of endogenic or supergenic provenance. Traces of such metasomatic alterations were previously found in some meteorites and lunar rocks, and these processes could likely play a certain role in the differentiation of chondritic bodies.  相似文献   

20.
PCA (Pecora Escarpment) 02007 and Dhofar 489 are both meteorites from the feldspathic highlands of the Moon. PCA 02007 is a feldspathic breccia consisting of lithified regolith from the lunar surface. It has concentrations of both incompatible and siderophile elements that are at the high end of the ranges for feldspathic lunar meteorites. Dhofar 489 is a feldspathic breccia composed mainly of impact-melted material from an unknown depth beneath the regolith. Concentrations of incompatible and siderophile elements are the lowest among brecciated lunar meteorites. Among 19 known feldspathic lunar meteorites, all of which presumably originate from random locations in the highlands, concentrations of incompatible elements like Sm and Th tend to increase with those of siderophile elements like Ir. Feldspathic meteorites with high concentrations of both suites of elements are usually regolith breccias. Iridium derives mainly from micrometeorites that accumulate in the regolith with duration of surface exposure. Micrometeorites have low concentrations of incompatible elements, however, so the correlation must reflect a three-component system. We postulate that the correlation between Sm and Ir occurs because the surface of the Feldspathic Highlands Terrane has become increasingly contaminated with time in Sm-rich material from the Procellarum KREEP Terrane that has been redistributed across the lunar surface by impacts of moderate-sized, post-basin impacts. The most Sm-rich regolith breccias among feldspathic lunar meteorites are about 3× enriched compared to the most Sm-poor breccias, but this level of enrichment requires only a few percent Sm-rich material typical of the Procellarum KREEP Terrane. The meteorite data suggest that nowhere in the feldspathic highlands are the concentrations of K, rare earths, and Th measured by the Lunar Prospector mission at the surface representative of the underlying “bedrock;” all surfaces covered by old regolith (as opposed to fresh ejecta) are at least slightly contaminated. Dhofar 489 is one of 15 paired lunar-meteorite stones from Oman (total mass of meteorite: 1037 g). On the basis of its unusually high Mg/Fe ratio, the meteorite is likely to have originated from northern feldspathic highlands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号