首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract— We have conducted an electron microprobe study of minor element distributions among spinels from two type B1 calcium-aluminum-rich inclusions (CAIs): Allende TS-23 and Leoville 3537–2. We show that by maintaining the petrologic context (edge, middle, and center of the inclusion plus their host silicate phase), four populations of spinels are resolvable based on their minor element contents. One population resides within the edge area (mainly mantle melilite) and is characterized by the highest V contents. Unlike Leoville 3537–2, many edge grains from Allende TS-23 also have high-Fe contents (up to 4.0 wt%) and low-Cr values. Based on their V and Ti concentrations (which is positively correlated), middle and center grains define a trend that is divided into three populations: spinels enclosed by melilite, fassaite, and anorthite. The overall range in Ti concentration based on fractional crystallization should be much less than a factor of 2; however, the observed range is considerably larger. The minor element contents of these grains are interpreted as recording alteration, primary fractional crystallization, and a complex igneous history that may involve remelting and recrystallization. From our data, Allende TS-23 has experienced more alteration than Leoville 3537–2, which is consistent with previous petrologic studies of silicates within these objects; yet both objects have likely been remelted (at least one additional melting event, possibly two, postdating the initial formation of these CAIs). By invoking a remelting history, the large range ir Ti concentrations and the different populations of spinels can be explained. Although our data suggest that more than one generation of spinels exist within these objects, we are unable to establish any population of relic spinel grains that predate the initial melting event.  相似文献   

2.
Roger N. Clark 《Icarus》1980,44(2):388-409
The reflectance spectra of Ganymede, Europa, Callisto, and Saturn's rings are analyzed using recent laboratory reflectance studies of water frost, water ice, and water and mineral mixtures. It is found that the spectra of the icy Galilean satellites are characteristic of water ice (e.g., ice blocks or possibly very large ice crystals ? 1 cm) or frost on ice rather than pure water frost, and that the decrease in reflectance at visible wavelengths is caused by other mineral grains in the surface. The spectra of Saturn's rings are more characteristic of water frost with some other mineral grains mixed in the frost but not on the surface. The impurities on all these objects are not in spectrally isolated patches but appear to be intimately mixed with the water. The impurity grains appear to have reflectance spectra typical of minerals containing Fe3+. Some carbonaceous chondrite meteorite spectra show the necessary spectral shape. Ganymede is found to have more water ice on the surface than previously thought (~90 wt%), as is Callisto (30–90 wt%). The surface of Europa has a vast frozen water surface with only a few percent impurities. Saturn's rings also have only a few percent impurities. The amount of bound water or bound OH for these objects is 5 ± 5 wt% averaged over the entire surface. Thus with the small amount of nonicy material present on these objects, no hydrated minerals can be ruled out. A new absorption feature is identified in Ganymede, Callisto, and probably Europa at 1.5 μm which is also seen in the spectra of Io but not in Saturn's rings. This feature has not been seen in laboratory studies and its cause is unknown.  相似文献   

3.
We consider small-scale spheroidal clusters of weakly interacting massive particles in our Galaxy as non-compact gravitational microlenses and predict the appearance of caustics in the plane of a lensed source. The crossing of these caustics by a lensed star can produce a large variety of light curves, including some observed in actual microlensing events that have been interpreted as manifestations of binary gravitational lenses. We consider also observable effects during the gravitational microlensing of stars of non-zero angular size with a given brightness distribution across their disks by such an exotic objects as natural wormholes and objects whose space-time environment is described with the NUT metric. We demonstrate that, under certain conditions, the microlensing light curves, chromatic and polarizational effects due to the properties of the lens and the star disk brightness distributions can differ considerably from those observed for a Schwarzschild gravitational lens, so that their analysis can facilitate the identification of such objects.  相似文献   

4.
We report trace element analyses by laser ablation inductively coupled plasma mass spectrometry (LA‐ICP‐MS) of metal grains from nine different CR chondrites, distinguishing grains from chondrule interior (“interior grains”), chondrule surficial shells (“margin grains”), and the matrix (“isolated grains”). Save for a few anomalous grains, Ni‐normalized trace element patterns are similar for all three petrographic settings, with largely unfractionated refractory siderophile elements and depleted volatile Au, Cu, Ag, S. All three types of grains are interpreted to derive from a common precursor approximated by the least‐melted, fine‐grained objects in CR chondrites. This also excludes recondensation of metal vapor as the origin of the bulk of margin grains. The metal precursors were presumably formed by incomplete condensation, with evidence for high‐temperature isolation of refractory platinum‐group‐element (PGE)‐rich condensates before mixing with lower temperature PGE‐depleted condensates. The rounded shape of the Ni‐rich, interior grains shows that they were molten and that they equilibrated with silicates upon slow cooling (1–100 K h?1), largely by oxidation/evaporation of Fe, hence their high Pd content, for example. We propose that Ni‐poorer, amoeboid margin grains, often included in the pyroxene‐rich periphery common to type I chondrules, result from less intense processing of a rim accreted onto the chondrule subsequent to the melting event recorded by the interior grains. This means either that there were two separate heating events, which formed olivine/interior grains and pyroxene/margin grains, respectively, between which dust was accreted around the chondrule, or that there was a single high‐temperature event, of which the chondrule margin records a late “quenching phase,” in which case dust accreted onto chondrules while they were molten. In the latter case, high dust concentrations in the chondrule‐forming region (at least three orders of magnitude above minimum mass solar nebula models) are indicated.  相似文献   

5.
We discuss the precipitation and growth of grains in carbon-rich nova ejecta with a view to understanding the evolution of infrared luminosity of such objects. An initial phase of rapid grain growth is followed by an extended period of slower growth due to thinning out of the expanding gas. The period of rapid grain growth is attended by an equally rapid rise of infrared luminosity which reaches a maximum and thereafter declines more slowly after grains have grown to a significant fraction of their final radius. This behaviour of luminosity and also a rapid decline of grain temperature from 2000–900 K predicted in an optically thin model is shown to be in good agreement with data for Nova Serpentis 1970. Comparison of our model calculations with observations provide tentative estimates of various parameters of interest for dust grains condensing in Nova Serpentis 1970.  相似文献   

6.
Using statistical orbital ranging, we systematically study the orbit computation problem for transneptunian objects (TNOs). We have automated orbit computation for large numbers of objects, and, more importantly, we are able to obtain orbits even for the most sparsely observed objects (observational arcs of a few days). For such objects, the resulting orbit distributions include a large number of high-eccentricity orbits, in which TNOs can be perturbed by close encounters with Neptune. The stability of bodies on the computed orbits has therefore been ascertained by performing a study of close encounters with the major planets. We classify TNO orbit distributions statistically, and we study the evolution of their ephemeris uncertainties. We find that the orbital element distributions for the most numerous single-apparition TNOs do not support the existence of a postulated sharp edge to the belt beyond 50 AU. The technique of statistical ranging provides ephemeris predictions more generally than previously possible also for poorly observed TNOs.  相似文献   

7.
Here, we report on a kinetically controlled vapour phase condensation experiment using a low-calcium Ca–Fe–SiO–H2–O2 vapour. Under these conditions of extreme disequilibrium, the condensate properties become predictable. They are amorphous solids with (predictable) deep metastable eutectic compositions. This study also shows how chemical evolution of the condensate grains will lead to chemically complex amorphous solids. The highly disordered structure of the deep metastable eutectic condensates is the very key to this predictable chemical evolution to grains with a silicate mineral composition, yet being amorphous. We compare our results with astronomical observations of dust around young stellar objects.  相似文献   

8.
We have carried out a systematic study involving SEM, EPMA, and TEM analyses to determine the textures and compositions of sulfides and sulfide–metal assemblages in a suite of minimally to weakly altered CM and CR carbonaceous chondrites. We have attempted to constrain the distribution and origin of primary sulfides that formed in the solar nebula, rather than by secondary asteroidal alteration processes. Our study focused primarily on sulfide assemblages associated with chondrules, but also examined some occurrences of sulfides within the matrices of these meteorites. Although sulfides are a minor phase in carbonaceous chondrites, we have determined that primary sulfide grains are actually a major proportion of the sulfide grains in weakly altered CM chondrites and have survived aqueous alteration relatively unscathed. In minimally altered CR chondrites, we have determined that essentially all of the sulfides are of primary origin, confirming the observations of Schrader et al. ( 2015 ). The pyrrhotite–pentlandite intergrowth (PPI) grains formed from crystallization of monosulfide solid solution (mss) melts, while sulfide-rimmed metal (SRM) grains formed from sulfidization of Fe,Ni metal. Micron-sized metal inclusions in some PPI grains may have formed by co-crystallization of metal and sulfide from a sulfide melt that experienced S volatilization during the chondrule formation event, or alternatively, may be a remnant of sulfidization of Fe,Ni metal that also occurred during chondrule formation. Sulfur fugacity for SRM grains ranged from −18 to −10 (log units) largely in agreement with predicted solar nebular values. Our observations show that understanding the formation mechanisms of primary sulfide grains provides clues to solar nebular conditions, such as the sulfur fugacity during chondrule formation.  相似文献   

9.
This paper reviews spectra obtained with the SWS on board of ISO of dust shells around O-rich objects. These spectra reveal the presence of many new emission features between 10 and 45 μm. These bands are generally much narrower than the well-known 10 and 20 μm silicates features. The strength of these features relative to the underlying broad continuum varies from source to source (≅ 5-50%). The 10 μm region shows evidence for the presence of Al2O3 grains. At longer wavelength, the spectra are dominated by features due to crystalline olivine and pyroxene. The exact peak position of these features shows that the emitting grains consist of the Mg-rich end-members of these minerals with an Fe-content of < 10%. The underlying continuum is attributed to amorphous silicate grains. These observations of aluminum-rich and magnesium-rich compounds compare well with the thermodynamic condensation sequence of minerals expected for O-rich outflows. The observations also imply that freeze out (ie., kinetics) of this condensation sequence at different temperatures is an important characteristic of dust formation in these objects. It is suggested that the absence of Fe-rich silicates is a natural consequence of the low temperature at which gaseous Fe reacts with Mg-rich silicates in these outflows, resulting in amorphous grains with little characterizing spectral detail. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
We have investigated the chemistry of phosphorus-bearing compounds in the circumstellar envelopes of both oxygen-rich and carbon-rich evolved stars. In accordance with thermodynamic calculations of photospheric chemistry, we have assumed that the dominant forms of phosphorus in the inner circumstellar envelope (CSE) are PS and HCP in each case. In the C-rich case, we can reproduce the observed CP abundance reasonably well if it is the photodaughter of HCP. In the O-rich case we find, for the same amount of P available in PS, that large abundances of atomic P are available for reaction but that a low abundance of PO can be produced. We have not extensively explored the effect of additional neutral processes since our results are partly compromised by the fact that neither HCP nor PS is detected in the three CSEs where searches have been made; our models predict column densities in excess of the published upper limits. Sensitive searches for these molecules at higher frequencies are required before their presence in circumstellar envelopes can definitely be ruled out. Dust condensation may incorporate all the available P into refractory grains and so we suggest that searches for P-bearing molecules may have the greatest opportunity for success in more evolved objects, such as protoplanetary nebulae, where P has been released from grains through the action of strong shock waves.  相似文献   

11.
Thermal observations of large asteroids at millimeter wavelengths have revealed high amplitude rotational lightcurves. Such lightcurves are important constraints on thermophysical models of asteroids, and provide unique insight into the nature of their surface and subsurface composition. A better understanding of asteroid surfaces provides insight into the composition, physical structures, and processing history of these surviving remnants from the formation of our solar system. In addition, detailed observations of the larger asteroids, accompanied by thermophysical models with appropriate temporal and spatial resolution, promise to decrease uncertainties in their flux predictions. Of particular interest are the near-Earth objects, which can be observed at large phase angles, permitting better assessment of the thermal response of their unilluminated surfaces. The high sensitivity of ALMA will enable us to detect many small bodies in all the major groups, to obtain lightcurves for a large sample of main-belt and near-Earth objects, to resolve the surfaces of some large objects, and to separate the emission from primary and secondary objects in binary pairs. In addition to the science goals of asteroid studies, these bodies may also prove useful operationally because those with known shapes and well-characterized lightcurves could be employed for flux calibration by ALMA and other high frequency instruments.  相似文献   

12.
We investigate shattering and coagulation of dust grains in turbulent interstellar medium (ISM). The typical velocity of dust grain as a function of grain size has been calculated for various ISM phases based on a theory of grain dynamics in compressible magnetohydrodynamic turbulence. In this paper, we develop a scheme of grain shattering and coagulation and apply it to turbulent ISM by using the grain velocities predicted by the above turbulence theory. Since large grains tend to acquire large velocity dispersions as shown by earlier studies, large grains tend to be shattered. Large shattering effects are indeed seen in warm ionized medium within a few Myr for grains with radius   a ≳ 10−6  cm. We also show that shattering in warm neutral medium can limit the largest grain size in ISM  ( a ∼ 2 × 10−5 cm)  . On the other hand, coagulation tends to modify small grains since it only occurs when the grain velocity is small enough. Coagulation significantly modifies the grain size distribution in dense clouds (DC), where a large fraction of the grains with   a < 10−6 cm  coagulate in 10 Myr. In fact, the correlation among   RV   , the carbon bump strength and the ultraviolet slope in the observed Milky Way extinction curves can be explained by the coagulation in DC. It is possible that the grain size distribution in the Milky Way is determined by a combination of all the above effects of shattering and coagulation. Considering that shattering and coagulation in turbulence are effective if dust-to-gas ratio is typically more than ∼1/10 of the Galactic value, the regulation mechanism of grain size distribution should be different between metal-poor and metal-rich environments.  相似文献   

13.
We discuss the composition and size distribution of the dust in the coma of Comet Hale-Bopp. We do this using a model fit for the infrared emission measured by the Infrared Space Observatory (ISO) and the measured degree of linear polarization of scattered light at various phase angles and wavelengths. The effects of particle shape on the modeled optical properties of the dust grains are taken into account. Both the short wavelength (7-44 μm) and the long wavelength (44-120 μm) infrared spectrum are fitted using the same dust parameters, as well as the degree of linear polarization at twelve different wavelengths in the optical to near-infrared domains. We constrain our fit by forcing the abundances of the major rock forming chemical elements to be equal to those observed in meteorites. The infrared spectrum at long wavelengths reveals that large grains are needed in order to fit the spectral slope. The size and shape distribution we employ allows us to estimate the sizes of the crystalline silicates. The ratios of the strength of various forsterite features show that the crystalline silicate grains in Hale-Bopp must be submicrometer-sized. On the basis of our analysis the presence of large crystalline silicate grains in the coma can be excluded. Because of this lack of large crystalline grains combined with the fact that we do need large amorphous grains to fit the emission spectrum at long wavelengths, we need only approximately 4% of crystalline silicates by mass (forsterite and enstatite) to reproduce the observed spectral features. After correcting for possible hidden crystalline material included in large amorphous grains, our best estimate of the total mass fraction of crystalline material is ∼7.5%, which is significantly lower than deduced in previous studies in which the typical derived crystallinity is ∼20-30%. The implications of this low abundance of crystalline material on the possible origin and evolution of the comet are discussed. We conclude that the crystallinity we observe in Hale-Bopp is consistent with the production of crystalline silicates in the inner Solar System by thermal annealing and subsequent radial mixing to the comet forming region (∼30 AU).  相似文献   

14.
Abstract— Crystal‐bearing lunar spherules (CLSs) in lunar breccia (14313, 14315, 14318), soil (68001, 24105), and impact‐melt rock (62295) samples can be classified into two types: feldspathic and olivine‐rich. Feldspathic CLSs contain equant, tabular, or acicular plagioclase grains set in glass or a pyroxene‐olivine mesostasis; the less common olivine‐rich CLSs contain euhedral or skeletal olivine set in glass, or possess a barred‐olivine texture. Bulk‐chemical and mineral‐chemical data strongly suggest that feldspathic CLSs formed by impact melting of mixtures of ferroan anorthosite and Mg‐suite rocks that compose the feldspathic crust of the Moon. It is probable that olivine‐rich CLSs also formed by impact melting, but some appear to have been derived from distinctively magnesian lunar materials, atypical of the Moon's crust. Some CLSs contain reversely‐zoned “relic” plagioclase grains that were not entirely melted during CLS formation, thin (≤5 μm thick) rims of troilite or phosphate, and chemical gradients in glassy mesostases attributed to metasomatism in a volatile‐rich (Na‐K‐P‐rich) environment. Crystal‐bearing lunar spherules were rimmed and metasomatized prior to brecciation. Compound CLS objects are also present; these formed by low‐velocity collisions in an environment, probably an ejecta plume, that contained numerous melt droplets. Factors other than composition were responsible for producing the crystallinity of the CLSs. We agree with previous workers that relatively slow cooling rates and long ballistic travel times were critical features that enabled these impact‐melt droplets to partially or completely crystallize in free‐flight. Moreover, incomplete melting of precursor materials formed nucleation sites that aided subsequent crystallization. Clearly, CLSs do not resemble meteoritic chondrules in all ways. The two types of objects had different precursors and did not experience identical rimming processes, and vapor fractionation appears to have played a less important role in establishing the compositions of CLSs than of chondrules. However, the many detailed similarities between CLSs and chondrules indicate that it is more difficult to rule out an origin for some chondrules by impact melting than some have previously argued. Differences between CLSs, chondrules, and their host rocks possibly can be reconciled with an impact‐melt origin for some chondrules when different precursors, the higher gravity of the Moon compared to chondrite parent bodies, and the likely presence of nebular gas during chondrule formation are taken into account.  相似文献   

15.
We present broad-band photometry in the optical, near-infrared and submillimetre, and mid-infrared spectrophotometry of a selection of carbon stars with optically thin envelopes. Most of the observations were carried out simultaneously.   Beside the emission feature at 11.3 μ m due to silicon carbide grains in the circumstellar environment, many of our mid-infrared spectra show an emission feature at 8.6 μ m. All the observed spectral energy distributions exhibit a very large far-infrared flux excess. Both these features are indeed common to many carbon stars surrounded by optically thin envelopes.   We have modelled the observed spectral energy distributions by means of a full radiative transfer treatment, paying particular attention to the features quoted above. The peak at 8.6 μ m is usually ascribed to the presence of hydrogenated amorphous carbon grains. We find also that the feature at 8.6 μ m might be reproduced by assuming that the stars have a circumstellar environment formed of both carbon- and oxygen-rich dust grains, although this is in contrast with what one should expect in a carbon-rich environment. The far-infrared flux excess is usually explained by the presence of a cool detached dust shell. Following this hypothesis, our models suggest a time-scale for the modulation of the mass-loss rate of the order of some 103 yr.  相似文献   

16.
The PLANCK mission, originally devised for cosmological studies, offers the opportunity to observe Solar System objects at millimetric and submillimetric wavelengths. In this paper we concentrate on the asteroids of the Main Belt, a large class of minor bodies in the Solar System. At present, more that 40 000 of these asteroids have been discovered and their detection rate is rapidly increasing. We intend to estimate the number of asteroids that can be detected during the mission and to evaluate the strength of their signal. We have rescaled the instrument sensitivities, calculated by the LFI and HFI teams for sources fixed in the sky, introducing some degradation factors to properly account for moving objects. In this way a detection threshold is derived for asteroidal detection that is related to the diameter of the asteroid and its geocentric distance. We have developed a numerical code that models the detection of asteroids in the LFI and HFI channels during the mission. This code performs a detailed integration of the orbits of the asteroids in the timespan of the mission and identifies those bodies that fall in the beams of PLANCK and their signal strength. According to our simulations, a total of 397 objects will be observed by PLANCK and an asteroidal body will be detected in some beam in 30% of the total sky scan-circles. A significant fraction (in the range from 50 to 100 objects) of the 397 asteroids will be observed with a high S/N ratio. Flux measurements of a large sample of asteroids in the submillimeter and millimeter range are relevant since they allow to analyze the thermal emission and its relation to the surface and regolith properties. Furthermore, it will be possible to check on a wider base, the two standard thermal models, based on a nonrotating or rapidly rotating sphere. Our method can also be used to separate Solar System sources from cosmological sources in the survey. This work is based on PLANCK LFI activities.  相似文献   

17.
Whereas data for the extinction of starlight in the visible show the interstellar grains must be partially hollow, data in the ultraviolet show the vesicular interiors must be irregular. In particular, the absorbing materials responsible for excess extinction over a band centred at 2175 Å are required to be concentrated in irregularly distributed chromophores with dimensions of the order of or less than one-tenth of the whole grain.The laboratory measurements of absorptions produced by microorganisms agree very closely with astronomical observations for a large number of early-type stars. Since the interior structures of microorganisms are indeed highly irregular, the laboratory measurements made with microorganisms suspended in a fluid, can reasonably be transferred to microorganismsin vacuo.The characteristic dimension for the scattering of visible light by rod-like grains has in the past been taken to be rod diameters. An alternate interpretation with the characteristic dimension taken instead to be rod-oengths may turn out to have advantages in respect of data in the ultraviolet, as well as agreeing in scale with bacteria-like objects found in meteorites, and possibly also, in particles entering the Earth's atmosphere from the zodiacal cloud.  相似文献   

18.
《Icarus》1986,66(3):619-624
The recent discovery of ion tracks in interplanetary dust and the increasing evidence for carbon and carburized materials in these objects are strongly suggestive that chemical processing by energetic charged-particle bombardment has occured during the dust lifetimes. The track density gives a measure of the total ion fluence experienced by the grains. We use this information and laboratory data on the modification of icy surfaces by incident ions and electrons to discuss the likelihood that chondritic interplanetary dust particles could have been proceed, by plasma bombardment, from aggregates of particles which had volatile and/or ogranic mantles. Such a processing would leave carbon and carburized deposits and can affect estimates of the temperature of formation of these dust grains.  相似文献   

19.
Observations of present and future X‐ray telescopes include a large number of ipitous sources of unknown types. They are a rich source of knowledge about X‐ray dominated astronomical objects, their distribution, and their evolution. The large number of these sources does not permit their individual spectroscopical follow‐up and classification. Here we use Chandra Multi‐Wavelength public data to investigate a number of statistical algorithms for classification of X‐ray sources with optical imaging follow‐up. We show that up to statistical uncertainties, each class of X‐ray sources has specific photometric characteristics that can be used for its classification. We assess the relative and absolute performance of classification methods and measured features by comparing the behaviour of physical quantities for statistically classified objects with what is obtained from spectroscopy. We find that among methods we have studied, multi‐dimensional probability distribution is the best for both classifying source type and redshift, but it needs a sufficiently large input (learning) data set. In absence of such data, a mixture of various methods can give a better final result.We discuss some of potential applications of the statistical classification and the enhancement of information obtained in this way. We also assess the effect of classification methods and input data set on the astronomical conclusions such as distribution and properties of X‐ray selected sources. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
Abstract— We measured with a secondary ion mass spectrometer Mn/Cr ratios and Cr isotopes in individual grains of Mn-bearing sulfides (i.e., sphalerites, ZnS; alabandites, MnS; and niningerites, MgS) in nine unequilibrated enstatite chondrites (UECs). The goals were to determine whether live 53Mn (half-life ~3.7 Ma) was incorporated in these objects at the time of their isotopic closure and to establish whether Mn-Cr systematics in sulfides in UECs can be used as a high-resolution chronometer to constrain formation time differences between these meteorites. Sulfide grains analysed in four of these UECs, MAC 88136 (EL3), MAC 88184 (EL3), MAC 88180 (EL3), and Indarch (EH4), have clear 53Cr excesses. These 53Cr excesses can be very large (δ53Cr/52Cr ranges up to ~18,400%, the largest 53Cr excess measured so far) and, in some grains, are well correlated with the Mn/Cr ratios. Thus, they were most likely produced by the in situ decay of 53Mn in the meteorite samples. In the remaining five meteorites, no detectable excesses of 53Cr were found, and only upper limits on the initial 53Mn/55Mn ratios could be established. The four meteorites with 53Cr excesses show variations in the inferred 53Mn/55Mn ratios in various sulfide grains of the same meteorite. The Mn-Cr systematics in these sulfides were disturbed (during and/or after the decay of 53Mn) by varying degrees of reequilibration. Provided 53Mn was homogeneously distributed in the region of the early solar system where these objects formed, the data suggest that the time of the last isotopic equilibration of sulfides in EL chondrites occurred at least 3 Ma after a similar episode in EH chondrites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号