首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The greatest thicknesses of permafrost in Great Britain most likely occurred during the last glacial–interglacial cycle, as this is when some of the coldest conditions occurred during the last 1 000 000 years. The regional development of permafrost across Great Britain during the last glacial–interglacial cycle was modelled from a ground surface temperature history based on mean annual temperatures and the presence of glacier ice. To quantify the growth and decay of permafrost, modelling was undertaken at six locations across Great Britain that represent upland glaciated, lowland glaciated, upland unglaciated and lowland unglaciated conditions. Maximum predicted permafrost depths derived in this academic study range between several tens of metres to over 100 m depending upon various factors including elevation, glacier ice cover, geothermal heat flux and air temperature. In general, the greatest maximum permafrost thicknesses occur at upland glaciated locations, with minimum thickness at lowland sites. Current direct geological evidence for permafrost is from surface or shallow processes, mainly associated with the active layer. Further research is recommended to identify the imprint of freeze/thaw conditions in permanently frozen porous rocks from beneath the active layer.  相似文献   

2.
Pleistocene permafrost had a major but generally unappreciated effect on the landscape of Wisconsin, second only to glaciation. Evidence for continuous permafrost during the last part of the Wisconsin Glaciation includes ice-wedge casts seen both in outcrop (generally in gravel pits) and as polygonal networks (on aerial photographs). Other important evidence includes fossil tundra organisms. Other features that are probably the result of permafrost in Wisconsin include talus cones, block streams, solifluction rubble at the base of most hillslopes, fluvial cobble gravel, gullies that are today inactive, lake-ice collapse trenches, and ice-walled-lake plains. Permafrost caused accelerated regional erosion of the landscape; most topographic features formed before the last permafrost melted have been highly modified or even destroyed, whereas those formed after are much better preserved. In addition, the presence of permafrost influenced many glacial processes and landforms. Permafrost was present until about 14000 yr BP in the southern part of the state to about 10000 yr BP in the northern part.  相似文献   

3.
晚更新世以来青藏高原多年冻土形成及演化的探讨   总被引:6,自引:4,他引:6  
王绍令 《冰川冻土》1989,11(1):69-75,99,100
  相似文献   

4.
The Kunlun Range, a reactivated orogenic belt, constitutes the northern margin of the Tibetan Plateau. The extreme relief and major landforms of the Kunlun Range are a product of late Cenozoic tectonics and erosion. However, well-developed late Quaternary terraces that occur along the northern slope of the Kunlun Range probably resulted from climatic change rather than surface uplift. The terrace sequences formed in thick Quaternary valley fills and have total incision depths of 50–60 m. Optically stimulated luminescence dating was employed to place time controls on the valley fills and associated terraces. Dating results suggest that periods of significant aggradation were synchronous between different rivers and correspond to the last glacial stage. The abrupt change from aggradation to incision occurred between 21.9 ± 2.7 and 16 ± 2.2 ka, coincident with the last glacial–interglacial transition. Additional terraces developed during the late glacial period and early to middle Holocene. Based on a broader set of chronological data in northern Tibet, at least four regional incision periods can be recognized. Chronological data, terrace elevation profiles, and climate proxy records suggest that these terracing periods were triggered by cool and/or wet climatic conditions. A geometric survey of the riverbed longitudinal profile suggests that surface uplift serves as a potential dynamic forcing for long-term incision. A model is proposed for terrace formation as a response to climatic perturbation in an uplifted mountain range.  相似文献   

5.
The last glacial shows large variations in climate, which are reflected in the fluvial record in the Niederlausitz, eastern Germany. The entire sequence resembles the fluvial development in other river basins in northwestern Europe, which show contemporaneous changes in depositional style at the onset of a climatic change. During the Middle and the Late Pleniglacial, permafrost conditions resulted in an episodic river discharge. The presence or absence of vegetation, in combination with such ephemeral stream conditions, determined the type of river during each period. A relatively well-developed vegetation cover on the flood plains during the Middle Pleniglacial resulted in a low sediment yield. In combination with the intermittent discharge, this caused the development of an ephemeral anastomosing river system, a river with stable channels and extensive sandy overbank areas. The decline in vegetation cover at ca. 28 ka BP caused an increase in sediment yield and peak discharges, which resulted in the development of a sandy braided river in adjustment to these new conditions. Following the coldest period at around 20 ka, precipitation was so low that fluvial activity was limited and aeolian deposition took place in the valley. © 1997 by John Wiley & Sons, Ltd.  相似文献   

6.
Troy L Péwé 《Geoforum》1973,4(3):15-26
Ice wedge casts are the most accurate and widespread indicators of past permafrost. Many ice wedge casts exist in Alaska, some in areas of existing ice wedges. In addition to indicating paleotemperature conditions and a wider distribution of permafrost in Wisconsinan time than now, casts in Alaska also indicate permafrost in Iliinoian and pre-lllinoian time. Hundreds of ice wedge casts are now known in temperate North America and are described from about 22 widespread localities coast to coast in Canada and United States. Permafrost existed in late Wisconsinan time, 20,000 to 10,000 years ago, along the glacial border in temperate United States. Later permafrost formed north of the glacial border as the continental ice sheet withdrew exposing drift to the rigorous periglacial climate. Ice wedge casts indicate that the ? 7 °C mean annual air isotherm was about 2000 km farther south in late Wisconsinan time than now.  相似文献   

7.
An assemblage of land snails from an aeolianite deposit on the coast of the southern Greek island of Andikithira is shown to date to 16 000 yr BP and thus represents the period of the last glacial maximum (LGM; Oxygen Isotope Stage 2). The assemblage has no modern analogue. Five of the ten species are extinct on the island and some of these now live only at high elevations (> 950 m). Significantly cooler temperatures, some 5-8°C below present, and slightly drier moisture conditions (lower rainfall, partially offset by reduced evapotranspiration at the lower temperature) are inferred. The large temperature depression at the LGM, well documented in northern and central Europe, extended also to the Mediterranean climate of southern Europe. Late Quaternary climatic changes had a considerable impact on the fauna of this isolated island.  相似文献   

8.
浦庆余 《第四纪研究》1991,11(3):245-259
末次冰期我国西部的冰川长度比现代冰川长2—5倍,雪线低300—1080m;东部多年冻土区南界在33°20′—33°40′N,青藏高原多年冻土区东北部的下界在海拔2200—2600m 处;黄、东海海平面下降130—155m;经向环流加强,北方冷空气增强。末次冰期以后冰川阶段性退缩,多年冻土区阶段性缩小,海平面间歇性上升;8000—6000aB.P.为高温期,出现2—5m 高海面,5600—5000aB.P.气温短暂下降,海平面突然回落,冰川有所前进;3000aB.P.的新冰期和15—19世纪的小冰期,气候、冰川和海平面都有显著变化。哺乳动物的绝灭和迁徙是自然和人为双重影响的结果。这些变化都是全球变化的表现。  相似文献   

9.
On the basis of geomorphological and sedimentological data, we believe that the entire Barents Sea was covered by grounded ice during the last glacial maximum. 14C dates on shells embedded in tills suggest marine conditions in the Barents Sea as late as 22 ka BP; and models of the deglaciation history based on uplift data from the northern Norwegian coast suggest that significant parts of the Barents Sea Ice Sheet calved off as early as 15 ka BP. The growth of the ice sheet is related to glacioeustatic fall and the exposure of shallow banks in the central Barents Sea, where ice caps may develop and expand to finally coalesce with the expanding ice masses from Svalbard and Fennoscandia.The outlined model for growth and decay of the Barents Sea Ice Sheet suggests a system which developed and existed under periods of maximum climatic deterioration, and where its growth and decay were strongly related to the fall and rise of sea level.  相似文献   

10.
上边界条件对多年冻土地温场数值模拟结果的影响分析   总被引:1,自引:1,他引:0  
以玛多地区多年冻土为背景,建立多年冻土地温场的数值计算模型,以不同的方式考虑近 60 a 来的气温变化构成不同的上边界条件,通过模型计算分析不同上边界条件下的不同时期温度场、未来冻土退化特征.结果表明:在上边界条件中采用气象站实测近60 a波动温度值和采用近60 a平均恒定值时,浅层冻土地温差异明显,且越浅层地温与越近时间的上边界条件相关.预测未来100 a冻土地温变化趋势发现,相同升温速率和升温初始温度条件下,上边界采用实测60 a波动温度值对冻土退化过程影响较小;升温初始温度值提高到与趋势线衔接后,冻土退化起始时间从约第45年提前到约第20年;60 a实测温度和升温初始温度值均提高到与其初始温度场上边界条件衔接后,冻土退化起始时间从约第20年提前到约第15年;冻土退化从开始到完全退化经历时间为25 a左右.  相似文献   

11.
Trend of climatic changes in geological history of the Earth was determined by gradual decrease in the global surface temperature. Substantial deviations from this trend depended on the prevalent type of volcanism: predominantly explosive volcanism at convergent boundaries between lithospheric plates led to cooling and onset of glacial epochs, while intense intraplate volcanism strengthened greenhouse effect and resulted in global warming. During cold epochs, orogenic processes played an important role in climatic variations. The most frequent and regular climatic variations are controlled by the Earth position in solar orbit (Milankovitch cycles). The Late Cenozoic variations of cold climate were interrelated with orogenic processes caused by collision between the Indian and North Asian lithospheric plates. The first event of considerable cooling in the Northern Hemisphere (2.8–2.5 Ma ago) coincided with a rapid growth of mountains throughout the collision belt. The Tibetan Plateau formed in South Asia. In Central Asia, the large (> 1.5 × 106 km2) Khangai-Altai-Sayan mountain system appeared 3 Ma ago. Total area subjected to orogenic processes in Central and South Asia exceeded 9 × 106 km2. The intense intraplate volcanism suggests that sublithospheric mantle was involved into orogenic processes. Alternation of glacial and interglacial climatic epochs during the last 1.8 m.y. is recorded in Central Asia. These climatic variations are compatible with the Milankovitch cycles. As is established, climatic events recognizable in the Baikal sedimentary record are correlative with interglacial and glacial epochs detectable in volcanic lavas of the East Sayan Mountains. There are indications of lava eruptions into ice during the cold periods. It is assumed therefore that all the cooling epochs detectable in the Baikal sedimentary record after 1.8 Ma were associated with development of mountain glaciation that formed glacial sheet up to 3 km thick and 100 000 km2 in size. During the Brunhes Chron, there were eight glaciations at least. The endogenic (volcanism and orogeny) and exogenic (glaciation) processes during the last 3 m.y. are shown to be correlative. The intermittent development and degradation of thick ice sheets was responsible for oscillation of lithospheric load on the asthenosphere, and this caused periodical magma generation in marginal parts of volcanic provinces.  相似文献   

12.
The development of a thin peat layer over metamorphic rock during the last cold stage in the Louisa and Melaleuca Plains and at Birch's Inlet, Tasmania, has recently been reported. This paper presents results of a numerical model on permafrost growth and decay, which explores the possibility of the development of a thin layer of permafrost for this particular depositional setting at the end of the last cold stage in Tasmania. The increase in thermal conductivity of peat sediments under frozen conditions results in a preferred penetration of the cold winter wave (in comparison to the summer wave) into the subsurface. The results of the model calculations suggest the development of a several metres‐thick permafrost layer, even under slightly positive mean annual temperatures in the region.  相似文献   

13.
Sedimentary, palynologic, and 14C analysis of 480 cm of freshwater marl and swamp-peat deposits, formed under the influence of fluctuating artesian springs, provides a paleoenvironmental and paleoclimatic record of approximately 65,000 yr for northwestern Tasmania.The Holocene (Pollen Zone 1, 11,000-0 yr B.P.) climate was warm and moist, and forest vegetation was dominant throughout the area. During the later part of the last glacial stage (Pollen Zone 2, 35,000–11,000 yr B.P.) the climate was generally drier, and grassy open environments were widespread. The driest part of this period occurred between 25,000 to 11,000 yr B.P., when temperatures in western Tasmania were markedly reduced during the last major phase of glaciation. Prior to 35,000 yr B.P. (Pollen Zones 3–9) a long “interstadial complex” dating to the middle of the last glacial stage is recognized. During this period the climate was generally moist, and forest and scrub communities were more important than during the later part of the last glacial stage, except during Pollen Zone 5 when high Gramineae plus Compositae values suggest drier conditions. High Gramineae and Compositae values also occur in Pollen Zone 10 at the base of the diagram. They suggest that a phase of drier and cooler climatic conditions occurred during the early part of the last glacial stage.  相似文献   

14.
In this paper, nine sediment sequences in the inner desert, desert-loess transitional zone (agro-pastoral transitional zone) and the northern margin of the Loess Plateau were investigated to study the sediments of Mu Us (Maowusu) and Otindaq (Hunshandake) sandy land in northern China since the last glaciation. All of these sequences consisted of the upper Holocene dark paleosol and the lower aeolian sand formed during the last glacial stage. The Mu Us and Otindaq sandy land became the active desert since the last glaciation and covered a larger sandy area than at present. Mu Us sandy land began to show a landform of sandy desert and expanded southward towards the northern boundaries of the Loess Plateau. The Holocene was characterized by the advent of warmer and wetter climatic conditions in northern China, resulting in the rapid growth of surface vegetation and Mu Us and Otindaq sandy land became a steppe. The thickness of surface soil reached up to as much as 50–80 cm. Thick paleosol covered the drift sands, and served as a protective layer for the steppe and farmland. Although the last glacial cycle is far away, paleo-aeolian sands formed during that period are still the material sources of regional desertification. Unreasonable cultivation destroying the Holocene paleosol, combined with dry climate and strong wind would result in activation of paleo- aeolian sand leading to the desertification of the study areas.  相似文献   

15.
青藏高原改则地区多年冻土特征   总被引:2,自引:1,他引:1  
改则地区地处青藏高原腹地, 气候寒冷干燥, 位于青藏高原大片连续多年冻土南界附近. 2010年"青藏高原多年冻土本底调查"项目在改则地区采用坑探、物探和钻探等多种方法对区域内多年冻土开展了大规模野外考察工作. 根据现场钻探资料和后来的地温观测资料, 并结合坑探和物探资料对改则地区多年冻土特征进行分析, 结果显示: 改则地区多年冻土上限深度在2.6~8.5 m之间, 部分地区存在融化夹层; 多年冻土含冰量在12%~35%之间, 主要为多冰冻土, 而且一般仅在上限附近发育有高含冰量多年冻土; 多年冻土温度普遍较高, 在-1.5~0℃之间; 多年下限深度一般小于60 m, 部分地区甚至在10 m左右; 多年冻土分布的下界海拔高度约为4 700 m, 海拔5 100 m以上区域普遍发育有多年冻土; 区域内多年冻土特征受局地因素影响明显, 特别是与坡向、植被覆盖、岩性和含水量等关系密切; 现场记录资料和后来的测温资料都显示改则地区部分多年冻土正处于退化状态.  相似文献   

16.
Groundwater in China’s permafrost region is vital for humans and cold-climate ecosystems. Permafrost responses to global warming have significantly changed the spatio-temporal patterns and distribution of properties associated with the groundwater system. The main areas of current and past studies on permafrost hydrogeology in China include four aspects: groundwater distribution and dynamics in permafrost regions, interplay between groundwater and permafrost, the impact of permafrost degradation on groundwater, and the regional effect of groundwater changes on the environment in permafrost regions. Over the last 10 years, the development and use of coupled heat-transport and groundwater models have focused on the hydrogeology of permafrost, and on groundwater development and distribution in permafrost regions. Progress in groundwater-related research on issues surrounding permafrost regions of China are comprehensively summarized and discussed in this review paper, which should provide a theoretical basis for further study of the groundwater system and its effects on the ecological environment under climate change.  相似文献   

17.
Many moraines formed between Daduka and Chibai in the Tsangpo River valley since Middle Pleistocene. A prominent set of lacustrine and alluvial terraces on the valley margin along both the Tsangpo and Nyang Rivers formed during Quaternary glacial epoch demonstrate lakes were created by damming of the river. Research was conducted on the geological environment, contained sediments, spatial distribution, timing, and formation and destruction of these paleolakes. The lacustrine sediments 14C (10537±268 aBP at Linzhi Brick and Tile Factory, 22510±580 aBP and 13925±204 aBP at Bengga, 21096±1466 aBP at Yusong) and a series of ESR (electron spin resonance) ages at Linzhi town and previous data by other experts, paleolakes persisted for 691~505 kaBP middle Pleistocene ice age, 75–40 kaBP the early stage of last glacier, 27–8 kaBP Last Glacier Maximum (LGM), existence time of lakes gradually shorten represents glacial scale and dam moraine supply potential gradually cut down, paleolakes and dam scale also gradually diminished. This article calculated the average lacustrine sedimentary rate of Gega paleolake in LGM was 12.5 mm/a, demonstrates Mount Namjagbarwa uplifted strongly at the same time, the sedimentary rate of Gega paleolake is more larger than that of enclosed lakes of plateau inland shows the climatic variation of Mount Namjagbarwa is more larger and plateau margin uplifted more quicker than plateau inland. This article analyzed formation and decay cause about the Zelunglung glacier on the west flank of Mount Namjagbarwa got into the Tsangpo River valley and blocked it for tectonic and climatic factors. There is a site of blocking the valley from Gega to Chibai. This article according to moraines and lacustrine sediments yielded paleolakes scale: the lowest lake base altitude 2850 m, the highest lake surface altitude 3585 m, 3240 m and 3180 m, area 2885 km2, 820 km2 and 810 km2, lake maximum depth of 735 m, 390 m and 330 m. We disclose the reason that previous experts discovered there were different age moraines dividing line of altitude 3180 m at the entrance of the Tsangpo Grand Canyon is dammed lake erosive decay under altitude 3180 m moraines in the last glacier era covering moraines in the early ice age of late Pleistocene, top 3180 m in the last glacier moraine remained because ancient dammed lakes didn’t erode it under 3180 m moraines in the early ice age of late Pleistocene exposed. The reason of the top elevation 3585 m moraines in the middle Pleistocene ice age likes that of altitude 3180 m. There were three times dammed lakes by glacier blocking the Tsangpo River during Quaternary glacial period. During other glacial and interglacial period the Zelunglung glacier often extended the valley but moraine supplemental speed of the dam was smaller than that of fluvial erosion and moraine movement, dam quickly disappeared and didn’t form stable lake.  相似文献   

18.
MODIS LST产品青藏高原冻土图的精度验证   总被引:4,自引:4,他引:0  
利用遥感数据可以大大提高青藏高原多年冻土分类和制图效率,并降低在环境恶劣、地形复杂的高寒区域所需的观测要求,从而避免人力和物力的巨大消耗。为了验证基于MODIS LST产品制作的青藏高原冻土图的精度,通过选取青藏高原东部的温泉区域和西北部的西昆仑山地区对1:400万青藏高原冻土图、1:300万青藏高原冻土图、基于MODIS LST产品青藏高原冻土图进行综合验证,以此评估基于MODIS LST产品的青藏高原冻土图精度。结果表明,利用遥感数据制作的青藏高原冻土图较已有冻土图能够更好反映多年冻土的空间分布特征,同时存在差异的地方大多是多年冻土与季节冻土过渡的边缘区域,形成原因主要是制图时间差异,此外还有坡度、坡向、植被、积雪等多重因素的综合影响。  相似文献   

19.
中国的多年冻土──过去与现在   总被引:14,自引:0,他引:14       下载免费PDF全文
邱国庆  程国栋 《第四纪研究》1995,15(1):13-22,97
中国多年冻土区的总面积约占中国陆地面积的22.4%,达2150000km2。多年冻土的分布特征受气候条件在三度空间的变化所制约。自晚更新世以来,其分布情况已有相当的变化。在东次冰期最盛期,东北地区多年冻土南界曾推进到北纬41—42°,在全新世暖期,南界向北退缩,但晚更新世形成的冰楔和多年冻土至今仍存在于大兴安岭北部,全新世中期严寒期冻土有所扩展并形成冰楔。随着气候变化,中国西部高山和高原区高海拔冻土的分布下界已上移800—1000m,但高山和高原的主要部分仍处于冰缘环境,有的地方在全新世还发育了共生型多年冻土。  相似文献   

20.
末次间冰期以来沙漠-黄土边界带移动与气候变化   总被引:41,自引:5,他引:41       下载免费PDF全文
位于现代季风区边缘的沙漠-黄土边界带,具有高度不稳定性。末次间冰期以来历经多次北进南退移动和暖湿、冷干变化。依据古风成砂-黄土-古土壤叠覆更替的沉积序列和磁化率等气候代用指标分析,对末次间冰期以来,尤其是特征时期边界带的位置进行了讨论。其中,盛冰期时移动幅度最大,南界可能达30°N左右;末次间冰期和全新世气候鼎盛期最靠西北,南界在古长城以北。全球冰期-间冰期波动导致的气候变化以及东亚冬夏季风强弱变化是控制边界带移动和气候变化的根本因素。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号