首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 67 毫秒
1.
The pipe shapes, infill and emplacement processes of the Attawapiskat kimberlites, including Victor, contrast with most of the southern African kimberlite pipes. The Attawapiskat kimberlite pipes are formed by an overall two-stage process of (1) pipe excavation without the development of a diatreme (sensu stricto) and (2) subsequent pipe infilling. The Victor kimberlite comprises two adjacent but separate pipes, Victor South and Victor North. The pipes are infilled with two contrasting textural types of kimberlite: pyroclastic and hypabyssal-like kimberlite. Victor South and much of Victor North are composed of pyroclastic spinel carbonate kimberlites, the main features of which are similar: clast-supported, discrete macrocrystal and phenocrystal olivine grains, pyroclastic juvenile lapilli, mantle-derived xenocrysts and minor country rock xenoliths are set in serpentine and carbonate matrices. These partly bedded, juvenile lapilli-bearing olivine tuffs appear to have been formed by subaerial fire-fountaining airfall processes.

The Victor South pipe has a simple bowl-like shape that flares from just below the basal sandstone of the sediments that overlie the basement. The sandstone is a known aquifer, suggesting that the crater excavation process was possibly phreatomagmatic. In contrast, the pipe shape and internal geology of Victor North are more complex. The northwestern part of the pipe is dominated by dark competent rocks, which resemble fresh hypabyssal kimberlite, but have unusual textures and are closely associated with pyroclastic juvenile lapilli tuffs and country rock breccias±volcaniclastic kimberlite. Current evidence suggests that the hypabyssal-like kimberlite is, in fact, not intrusive and that the northwestern part of Victor North represents an early-formed crater infilled with contrasting extrusive kimberlites and associated breccias. The remaining, main part of Victor North consists of two macroscopically similar, but petrographically distinct, pyroclastic kimberlites that have contrasting macrodiamond sample grades. The juvenile lapilli of each pyroclastic kimberlite can be distinguished only microscopically. The nature and relative modal proportion of primary olivine phenocrysts in the juvenile lapilli are different, indicating that they derive from different magma pulses, or phases of kimberlite, and thus represent separate eruptions. The initial excavation of a crater cross-cutting the earlier northwestern crater was followed by emplacement of phase (i), a low-grade olivine phenocryst-rich pyroclastic kimberlite, and the subsequent eruption of phase (ii), a high-grade olivine phenocryst-poor pyroclastic kimberlite, as two separate vents nested within the original phase (i) crater. The second eruption was accompanied by the formation of an intermediate mixed zone with moderate grade. Thus, the final pyroclastic pipe infill of the main part of the Victor North pipe appears to consist of at least three geological/macrodiamond grade zones.

In conclusion, the Victor kimberlite was formed by several eruptive events resulting in adjacent and cross-cutting craters that were infilled with either pyroclastic kimberlite or hypabyssal-like kimberlite, which is now interpreted to be of probable extrusive origin. Within the pyroclastic kimberlites of Victor North, there are two nested vents, a feature seldom documented in kimberlites elsewhere. This study highlights the meaningful role of kimberlite petrography in the evaluation of diamond deposits and provides further insight into kimberlite emplacement and volcanism.  相似文献   


2.
K.M. Masun  B.J. Doyle  S. Ball  S. Walker 《Lithos》2004,76(1-4):75-97
The 613±6 Ma Anuri kimberlite is a pipelike body comprising two lobes with a combined surface area of approximately 4–5 ha. The pipe is infilled with two contrasting rock types: volcaniclastic kimberlite (VK) and, less common, hypabyssal kimberlite (HK).

The HK is an archetypal kimberlite composed of macrocrysts of olivine, spinel, mica, rare eclogitic garnet and clinopyroxene with microphenocrysts of olivine and groundmass spinel, phlogopite, apatite and perovskite in a serpentine–calcite–phlogopite matrix. The Ba enrichment of phlogopite, the compositional trends of both primary spinel and phlogopite, as well as the composition of the mantle-derived xenocrysts, are also characteristic of kimberlite. The present-day country rocks are granitoids; however, the incorporation of sedimentary xenoliths in the HK shows that the Archean granitoid basement terrain, at least locally, was capped by younger Proterozoic sediments at the time of emplacement. The sediments have since been removed by erosion. HK is confined to the deeper eastern parts of the Anuri pipe. It is suggested that the HK was emplaced prior to the dominant VK as a separate phase of kimberlite. The HK must have ascended to high stratigraphic levels to allow incorporation of Proterozoic sediments as xenoliths.

Most of the Anuri kimberlite is infilled with VK which is composed of variable proportions of juvenile lapilli, discrete olivine macrocrysts, country rock xenoliths and mantle-derived xenocrysts. It is proposed that the explosive breakthrough of a second batch of kimberlite magma formed the western lobe resulting in the excavation of the main pipe. Much of the resulting fragmented country rock material was deposited in extra crater deposits. Pyroclastic eruption(s) of kimberlite must have occurred to form the common juvenile lapilli present in the VKs. The VK is variable in nature and can be subdivided into four types: volcaniclastic kimberlite breccia, magmaclast-rich volcaniclastic kimberlite breccia, finer grained volcaniclastic kimberlite breccia and lithic-rich volcaniclastic kimberlite breccia. The variations between these subtypes reflect different depositional processes. These processes are difficult to determine but could include primary pyroclastic deposition and/or resedimentation.

There is some similarity between Anuri and the Lac de Gras kimberlites, with variable types of VK forming the dominant infill of small, steep-sided pipes excavated into crystalline Archean basement and sedimentary cover.  相似文献   


3.
The Orapa A/K1 Diamond Mine, Botswana, exposes the crater facies of a bilobate kimberlite pipe of Upper Cretaceous age. The South Crater consists of layered volcaniclastic deposits which unconformably cross‐cut massive volcaniclastic kimberlite of diatreme facies in the North Pipe. Based on the depositional structure, grain‐size, sorting and composition of kimberlite in the South Crater, six units are distinguished in the ~70 m thick stratiform crater‐fill sequence and talus slope deposits close to the crater wall, which represents a multistage infill of the volcanic crater. Monolithic basalt breccias (Unit 1) near the base of the crater‐fill are interpreted as rock‐fall avalanche deposits, generated by the sector collapse of the crater walls. These deposits are overlain by a basal imbricated lithic breccia and upper massive sub‐unit (Unit 2), interpreted as the deposits of a pyroclastic flow that entered the South Crater from another source. Vertical degassing structures within the massive sub‐unit show evidence for elutriation of fines and probably were formed after emplacement by fluidization due to air entrainment. Units 3 and 5 are thinly stratified deposits, characterized by diffuse bedding, reverse and normal grading, coarse lenticular beds, mudstone beds, small‐scale scour channels and load casts. These units are attributed to rapidly emplaced sheet floods on the crater floor. Units 3 and 5 are directly overlain by poorly sorted volcaniclastic kimberlite (Units 4 and 6) rich in basalt boulders, attributed to debris flows formed by the collapse of crater walls. Unit 7 comprises medium sandstones to cobble conglomerates representing talus fans, which were active throughout the deposition of Units 1 to 6. The study demonstrates that much of the material infilling the South Crater is derived externally after eruption, including primary pyroclastic flow deposits probably from another kimberlite pipe. These findings have important implications for predicting diamond grade. Results may also aid the interpretation of crater sequences of ultra‐basic, basaltic and intermediate volcanoes, together with the deposits of topographic basins in sub‐aerial settings.  相似文献   

4.
The Ilchulbong tuff cone, Cheju Island, South Korea   总被引:3,自引:0,他引:3  
The Ilchulbong mount of Cheju Island, South Korea, is an emergent tuff cone of middle Pleistocene age formed by eruption of a vesiculating basaltic magma into shallow seawater. A sedimentological study reveals that the cone sequence can be represented by nine sedimentary facies that are grouped into four facies associations. Facies association I represents steep strata near the crater rim composed mostly of crudely and evenly bedded lapilli tuff and minor inversely graded lapilli tuff. These facies suggest fall-out from tephra finger jets and occasional grain flows, respectively. Facies association II represents flank or base-of-slope deposits composed of lenticular and hummocky beds of massive or backset-stacked deposits intercalated between crudely to thinly stratified lapilli tuffs. They suggest occasional resedimentation of tephra by debris flows and slides during the eruption. Facies association III comprises thin, gently dipping marginal strata, composed of thinly stratified lapilli tuff and tuff. This association results from pyroclastic surges and cosurge falls associated with occasional large-scale jets. Facies association IV comprises a reworked sequence of massive, inversely graded and cross-bedded (gravelly) sandstones. These facies represent post-eruptive reworking of tephra by debris and stream flows. The facies associations suggest that the Ilchulbong tuff cone grew by an alternation of vertical and lateral accumulation. The vertical buildup was accomplished by plastering of wet tephra finger jets. This resulted in oversteepening and periodic failure of the deposits, in which resedimentation contributed to the lateral growth. After the eruption ceased, the cone underwent subaerial erosion and faulting of intracrater deposits. A volcaniclastic apron accumulated with erosion of the original tuff cone; the faulting was caused by subsidence of the subvolcanic basement within the crater.  相似文献   

5.
Discovery of diamondiferous kimberlites in the Mainpur Kimberlite Field, Raipur District, Chhattisgarh in central India, encouraged investigation of similar bodies in other parts of the Bastar craton. The earlier known Tokapal ultramafic intrusive body, located beyond the 19-km milestone in Tokapal village along the Jagdalpur–Geedam road, was reinterpreted as crater-facies kimberlite. Its stratigraphic position in the Meso-Neoproterozoic intracratonic sedimentary Indravati basin makes it one of the oldest preserved crater-facies kimberlite systems. Ground and limited subsurface data (dug-, tube-wells and exploratory boreholes) have outlined an extensive surface area (>550 ha) of the kimberlite. The morphological and surface color features of this body on enhanced satellite images suggest that there is a central feeder surrounded by a collar and wide pyroclastic apron. Exploration drilling indicates that the central zone probably corresponds to a vent overlain by resedimented volcaniclastic (epiclastic) rocks that are surrounded by a 2-km-wide spread of pyroclastic rocks (lapilli tuff, tuff/ash beds and volcaniclastic breccia). Drill-holes also reveal that kimberlitic lapilli tuffs and tuffs are sandwiched between the Kanger and Jagdalpur Formations and also form sills within the sedimentary sequence of the Indravati basin. The lapilli tuffs are commonly well stratified and display slumping. Base surges and lava flows occur in the southern part of the Tokapal system. The geochemistry and petrology of the rock correspond to average Group I kimberlite with a moderate degree of contamination. However, the exposed rock is intensely weathered and altered with strong leaching of mobile elements (Ba, Rb, Sr). Layers of vesicular fine-grained glassy material represent kimberlitic lava flows. Tuffs containing juvenile lapilli with pseudomorphed olivine macrocrysts are set in a talc–serpentine–carbonate matrix with locally abundant spinel and sphene. Garnet has not been observed, and phlogopite is very rare. Very limited microdiamond testing (two 18-kg samples) proved negative; however, the composition of chromite grains indicate crystallization in the diamond stability field.  相似文献   

6.
火山碎屑密度流是一种危险的火山活动现象,也是一种重要的盆地物源供给方式,对其沉积机制的研究具有灾害预防和油气勘探的双重意义。松辽盆地东南隆起区九台营城煤矿地区白垩系营城组古火山机构保存良好,发育有典型的火山碎屑密度流沉积物。本文在精细刻画火山碎屑岩的岩石结构、沉积构造的基础上,运用薄片观察和沉积物粒度统计的方法,从物质来源、搬运机制和就位方式角度系统地分析了火山碎屑密度流的整个沉积过程,并结合国内外火山学、沉积学的研究进展探讨了不同浓度火山碎屑密度流的沉积机制。研究区内的火山碎屑密度流沉积物可以划分为五种微相:①块状熔结角砾凝灰岩微相;②无序含集块凝灰角砾岩微相;③逆粒序或双粒序角砾凝灰岩微相;④正粒序角砾凝灰岩微相;⑤韵律层理凝灰岩微相。第一种微相具有熔结结构,可能形成于高挥发分岩浆喷发柱的垮塌,火山碎屑密度流的就位温度较高;后四种微相具有正常火山碎屑岩结构,可能形成于火山口的侧向爆炸,火山碎屑密度流的就位温度中等。沉积块状熔结角砾凝灰岩微相的火山碎屑密度流具有黏性碎屑流的流体特征,沉积物整体冻结就位;沉积无序含集块凝灰角砾岩微相和逆粒序或双粒序角砾凝灰岩微相的火山碎屑密度流具有颗粒流的流体特征,沉积物整体冻结就位;沉积正粒序角砾凝灰岩微相和韵律层理凝灰岩微相的火山碎屑密度流具有湍流的流体特征,沉积物连续加积就位。火山碎屑密度流的颗粒浓度是一个连续变量,但流体性质可能会发生突变,稀释的火山碎屑密度流的沉积机制符合下部流动边界模型,稠密的火山碎屑密度流的沉积机制符合层流(碎屑流或颗粒流)模型。  相似文献   

7.
The Catoca kimberlite pipe is among the world’s largest primary diamond deposits. The Catoca volcanic edifice is only slightly eroded. Kimberlitic rocks of various facies compose a crater of about 1 km in diameter and a diatreme. The structure of the pipe and mining conditions of the deposit are complicated by intense intrapipe tectonic processes related to large-amplitude subsidence. Based on geological data, we propose a structural model of the deposit and a paleovolcanological model of the Catoca pipe formed during a full cycle beginning with a stage of active volcanism and completed by stages of gradually waning volcanic activity and sedimentation. It is suggested that the banded tuffisitic kimberlite of the crater zone was deposited at the stage of active volcanic eruption from specific pyroclastic suspension as a low-viscosity mixture of crystals and aqueous sol rich in serpentine.  相似文献   

8.
This paper reviews key characteristics of kimberlites on the Ekati property, NWT, Canada. To date 150 kimberlites have been discovered on the property, five of which are mined for diamonds. The kimberlites intrude Archean basement of the central Slave craton. Numerous Proterozoic diabase dykes intrude the area. The Precambrian rocks are overlain by Quaternary glacial sediments. No Phanerozoic rocks are present. However, mudstone xenoliths and disaggregated sediment within the kimberlites indicate that late-Cretaceous and Tertiary cover (likely <200 m) was present at the time of emplacement. The Ekati kimberlites range in age from 45 to 75 Ma. They are mostly small pipe-like bodies (surface area mostly <3 ha but up to 20 ha) that typically extend to projected depths of 400–600 m below current surface. Pipe morphologies are strongly controlled by joints and faults. The kimberlites consist primarily of variably bedded volcaniclastic kimberlite (VK). This is dominated by juvenile constituents (olivine and lesser kimberlitic ash) and variable amounts of exotic sediment (primarily mud), with minor amounts of xenolithic wall-rock material (generally <5%). Kimberlite types include: mud-rich resedimented VK (mRVK); olivine-rich VK (oVK); sedimentary kimberlite; primary VK (PVK); tuffisitic kimberlite (TK) and magmatic kimberlite (MK). The presence and arrangement of these rock types varies widely. The majority of bodies are dominated by oVK and mRVK, but PVK is prominent in the lower portions of certain kimberlites. TK is rare. MK occurs primarily as precursor dykes but, in a few cases, forms pipe-filling intrusions. The internal geology of the kimberlites ranges from simple single-phase pipes (RVK or MK), to complex bodies with multiple, distinct units of VK. The latter include pipes infilled with steep, irregular VK blocks/wedges and at least one case in which the pipe is occupied by well-defined sub-horizontal VK phases, including a unique, 100-m-thick graded sequence. The whole-rock compositions of VK samples suggest significant loss of kimberlitic fines during eruption followed by variable dilution by surface sediment and concurrent incorporation of kimberlitic ash. Diamond distribution within the kimberlites reflects the amount and nature of mantle material sampled by individual kimberlite phases, but is modified considerably by eruption and depositional processes. The characteristics of the Ekati kimberlites are consistent with a two-stage emplacement process: (1) explosive eruption/s causing vent clearing followed by formation of a significant tephra rim/cone of highly fragmented, olivine-enriched juvenile material with varying amounts of kimberlitic ash and surface sediments (predominantly mud); and (2) infilling of the vent by direct deposition from the eruption column and/or resedimentation of crater rim materials. The presence of less fragmented, juvenile-rich PVK in the lower portions of certain pipes and the intrusion of large volumes of MK to shallow levels in some bodies suggest emplacement of relatively volatile-depleted, less explosive kimberlite in the later stages of pipe formation and/or filling. Explosive devolatilisation of CO2-rich kimberlite magma is interpreted to have been the dominant eruption mechanism, but phreatomagmatism is thought to have played a role and, in certain cases, may have been dominant.  相似文献   

9.
The Cretaceous age Fort à la Corne (FALC) kimberlite province comprises at least 70 bodies, which were emplaced near the edge of the Western Canadian Interior Seaway during cycles of marine transgression and regression. Many of the bodies were formed during a marine regression by a two-stage process, firstly the excavation of shallow, but wide, craters and then subsequent infilling by xenolith-poor, crater-facies, subaerial, primary pyroclastic kimberlite. The bodies range in size up to 2000 m in diameter but are mainly less than 200 m thick and thus comprise relatively thin, but high volume, pyroclastic kimberlite deposits. Each body is composed of contrasting types of kimberlite reflecting different volcanic histories and, therefore, are considered separately.

The 140/141 kimberlite is the largest delineated body in the province, estimated to have an areal extent below glacial Quaternary sediments in excess of 200 ha. The infilling of the 140/141 crater is complex, resulting from multiple phases of kimberlite. The central part of the infill is dominated by several contrasting phases of kimberlite. One of these phases is a primary pyroclastic airfall mega-graded bed up to 130 m in thickness. The constituents grade in size from very fine to coarse macrocrystic kimberlite, through to a basal breccia. The mega-graded bed is a widespread feature within parts of the body examined to date and at this current stage of evaluation appears to explain a variable diamond distribution within a tested portion of the pipe. A second different phase of kimberlite is interpreted as representing a younger nested crater within the mega-graded bed. Centrally located thicker intersections (>450 m) of this younger kimberlite may indicate a vent for the kimberlite crater. The thickness of the mega-graded bed increases with proximity to the younger kimberlite in the study area.

Macrodiamond minibulk sample grades from the mega-graded bed have been obtained from nine large diameter drill holes, located within the northwest part of the body from an area of 20 ha, which represents approximately 10% of the currently modeled kimberlite outline. Diamond grade increases with depth within the mega-graded bed and also increases, within the same unit, towards the centrally positioned younger kimberlite. Macrodiamond sample grades vary from low at the top of the mega-graded bed, to considerably higher grades near the base. Total sample grade per drill hole varies from moderate near the vent feature to lower grades 200–300 m from the vent feature. Macrodiamond stone frequency measured in stones per tonne shows a pronounced relationship with depth and proximity to the vent feature within the mega-graded bed. There is a strong correlation between depth and increased stones per tonne, and a similar correlation between stones per tonne and proximity to the vent feature. The data supports the emplacement model of the mega-graded bed and, in turn, this information is useful in understanding the macrodiamond distribution within this bed.  相似文献   


10.
The Efate Pumice Formation (EPF) is a trachydacitic volcaniclastic succession widespread in the central part of Efate Island and also present on Hat and Lelepa islands to the north. The volcanic succession has been inferred to result from a major, entirely subaqueous explosive event north of Efate Island. The accumulated pumice-rich units were previously interpreted to be subaqueous pyroclastic density current deposits on the basis of their bedding, componentry and stratigraphic characteristics. Here we suggest an alternative eruptive scenario for this widespread succession. The major part of the EPF is distributed in central Efate, where pumiceous pyroclastic rock units several hundred meters thick are found within fault scarp cliffs elevated about 800 m above sea level. The basal 200 m of the pumiceous succession is composed of massive to weakly bedded pumiceous lapilli units, each 2-3 m thick. This succession is interbedded with wavy, undulatory and dune bedded pumiceous ash and fine lapilli units with characteristics of co-ignimbrite surges and ground surges. The presence of the surge beds implies that the intervening units comprise a subaerial ignimbrite-dominated succession. There are no sedimentary indicators in the basal units examined that are consistent with water-supported transportation and/or deposition. The subaerial ignimbrite sequence of the EPF is overlain by a shallow marine volcaniclastic Rentanbau Tuffs. The EPF is topped by reef limestone, which presumably preserved the underlying EPF from erosion. We here propose that the EPF was formed by a combination of initial subaerial ignimbrite-forming eruptions, followed by caldera subsidence. The upper volcaniclastic successions in our model represent intra-caldera pumiceous volcaniclastic deposits accumulated in a shallow marine environment in the resultant caldera. The present day elevated position of the succession is a result of a combination of possible caldera resurgence and ongoing arc-related uplift in the region.  相似文献   

11.
ABSTRACT The Cagayan basin of Northern Luzon, an interarc basin 250 km long and 80 km wide, contains a 900 m thick sequence of Plio-Pleistocene fluvial and pyroclastic deposits. These deposits are divided into two formations, the Ilagan and Awidon Mesa, and three lithofacies associations. The facies, which are interpreted as meandering stream, braided stream, lahar, and pyroclastic flow and fall deposits, occur in a coarsening upward sequence. Meandering stream deposits interbedded with tuffs are overlain by braided stream deposits interbedded with coarser pyroclastic deposits; lahars and ignimbrites. The coarsening upward volcaniclastic deposits reflect the tectonic and volcanic evolution of the adjacent Cordillera Central volcanic arc. Uplift of the arc resulted in the progradation of coarser clastics further into the basin, the development of an alluvial fan, and migration of the basin depocentre away from the arc. The coarsening of the pyroclastic deposits reflects the development of a more proximal calc-alkaline volcanic belt in the maturing volcanic arc. The Cagayan basin sediments serve as an example of the type and sequence of non marine volcaniclastic sediments that may form in other interarc basins. This is because the tectonic and volcanic processes which controlled sedimentation in the Cagayan basin also affect other arc systems and will therefore control or significantly influence volcaniclastic sedimentation in other interarc basins.  相似文献   

12.
The Ebisutoge–Fukuda tephra (Plio‐Pleistocene boundary, central Japan) has a well‐recorded eruptive style, history, magnitude and resedimentation styles, despite the absence of a correlative volcanic edifice. This tephra was ejected by an extremely large‐magnitude and complex volcanic eruption producing more than 400 km3 total volume of volcanic materials (volcanic explosivity index=7), which extended more than 300 km away from the probable eruption centre. Remobilization of these ejecta occurred progressively after the completion of a series of eruptions, resulting in thick resedimented volcaniclastic deposits in spatially separated fluvial basins, more than 100 km from the source. Facies analysis of resedimented volcaniclastic deposits was carried out in distal fluvial basins. The distal tephra (≈100–300 km from the source) comprises two different lithofacies, primary pyroclastic‐fall deposits and reworked volcaniclastic deposits. The resedimented volcaniclastic succession shows five distinct sedimentary facies, interpreted as debris‐flow deposits (facies A), hyperconcentrated flow deposits (facies B), channel‐fill deposits (facies C), floodplain deposits with abundant flood‐flow deposits (facies D) and floodplain deposits with rare flood deposits (facies E). Resedimented volcaniclastic materials at distal locations originated from unconsolidated deposits of a climactic, large ignimbrite‐forming eruption. Factors controlling inter‐ and intrabasinal facies changes are (1) temporal change of introduced volcaniclastic materials into the basin; (2) proximal–distal relationship; and (3) distribution pattern of pyroclastic‐flow deposits relative to drainage basins. Thus, studies of the Ebisutoge–Fukuda tephra have led to a depositional model of volcaniclastic resedimentation in distal areas after extremely large‐magnitude eruptions, an aspect of volcaniclastic deposits that has often been ignored or poorly understood.  相似文献   

13.
广西合山马滩大隆组的沉积序列研究及其环境指示意义   总被引:1,自引:1,他引:1  
马滩地区的大隆组,以火山碎屑岩和硅质岩沉积为主。镜下研究表明,火山碎屑岩可分为凝灰岩、沉凝灰岩和凝灰质沉积岩3亚类共8种岩石微相;硅质岩可分为生物成因硅质岩和生物火山成因硅质岩两亚类共5种岩石微相。这些岩石微相构成了12种主要的岩石相,而岩石相垂向上组成了6种主要的沉积序列。沉积序列指示该区存在两种类型的浊流沉积,一种是水下火山喷发形成的火山碎屑流向高密度浊流进而向低密度浊流演化的沉积,一种是早期沉积的凝灰质和硅质生物颗粒在滑塌作用下形成的浊流沉积。沉积序列研究并结合马滩地区大隆组沉积时期的古地形,表明当时该区不易发育海底扇沉积,而易接受低密度浊流沉积,形成了连续性好的较薄层沉积。  相似文献   

14.
Sedimentation and welding processes of the high temperature dilute pyroclastic density currents and fallout erupted at 7.3 ka from the Kikai caldera are discussed based on the stratigraphy, texture, lithofacies characteristics, and components of the resulting deposits. The welded eruptive deposits, Unit B, were produced during the column collapse phase, following a large plinian eruption and preceding an ignimbrite eruption, and can be divided into two subunits, Units Bl and Bu. Unit Bl is primarily deposited in topographic depressions on proximal islands, and consists of multiple thin (< 1 m) flow units with stratified and cross-stratified facies with various degrees of welding. Each thin unit appears as a single aggradational unit, composed of a lower lithic-rich layer or pod and an upper welded pumice-rich layer. Lithic-rich parts are fines-depleted and are composed of altered country rock, fresh andesite lava, obsidian clasts with chilled margins, and boulders. The overlying Unit Bu shows densely welded stratified facies, composed of alternating lithic-rich and pumice-rich layers. The layers mantle lower units and are sometimes viscously deformed by ballistics. The sedimentary characteristics of Unit Bl such as welded stratified or cross-stratified facies indicate that high temperature dilute pyroclastic density currents were repeatedly generated from limited magma-water interactions. It is thought that dense brittle particles were segregated in a turbulent current and were immediately buried by deposition of hot, lighter pumice-rich particles, and that this process repeated many times. It is also suggested that the depositional temperature of eruptive materials was high and the eruptive style changed from a normal plinian eruption, through surge-generating explosions (Unit Bl), into an agglutinate-dominated fallout eruption (Unit Bu). On the basis of field data, welded pyroclastic surge deposits could be produced only under specific conditions, such as (1) rapid accumulation of pyroclastic particles sufficiently hot to weld instantaneously upon deposition, and (2) elastic particles' interactions with substrate deformation. These physical conditions may be achieved within high temperature and highly energetic pyroclastic density currents produced by large-scale explosive eruptions.  相似文献   

15.
A new archaeological excavation on the northern slope of Vesuvius has provided invaluable information on the eruptive activity and post-eruptive resedimentation events between the late Roman Empire and 1631. A huge Roman villa, thought to belong to the Emperor Augustus, survived the effects of the 79 a.d. Plinian eruption, but was mainly engulfed in volcaniclastic materials eroded and redeposited immediately after a subsequent eruption or during repose periods. Primary pyroclastic deposits of the 472 a.d. eruption are only few centimeters thick but are overlain by reworked volcaniclastic deposits up to 5 m thick. The resedimented volcaniclastic succession shows distinct sedimentary facies that are interpreted as debris flow deposits, hyperconcentrated flow deposits, and channel-fill deposits. This paper has determined that the aggradation above the roman level is about 9 m in 1,200 years, leading an impressive average rate of 0.75 cm/year.  相似文献   

16.
A 500‐m‐long road cutting in the Lower Devonian Snowy River Volcanics (SRV), eastern Victoria, Australia, exposes phreatomagmatic units and volcaniclastic sediments. Based on bed geometry, sorting and sedimentary structures, it was possible to distinguish base‐surge deposits from ephemeral fluvial deposits in this relatively well‐exposed ancient succession. Where the base‐surge deposits infill irregular topography, bed sets mantle the pre‐existing surface but thicken into topographic lows. In contrast, where the fluvial deposits infill topographic depressions, beds onlap laterally against channel walls. In addition, curvi‐planar slide surfaces within the base‐surge deposits generated by inter‐eruptive slumping indicate rapid emplacement as a constructional tuff rampart (? maar). The base‐surge deposits are always poorly sorted and commonly contain accretionary lapilli, reflecting their deposition from turbulent, low‐particle‐concentration, steam‐rich pyroclastic currents. In contrast, the fluvial deposits are relatively well‐sorted, reflecting hydraulic sorting and winnowing during tractional transport and deposition. There are significant differences in the types of sedimentary structures present. (1) Bedding in the base‐surge deposits is entirely tabular, and beds can be traced laterally to the limits of the outcrop. In contrast, the fluvial deposits have abundant internal scour surfaces that result in beds/bedding intervals lensing out laterally over intervals of the order of 5–10 m. (2) Cross‐beds with relatively high‐angle foresets are restricted to the fluvial deposits. (3) Laterally persistent tabular beds that contain abundant, densely packed accretionary lapilli are restricted to the base‐surge deposits. In summary, although base‐surge deposits and ephemeral fluvial deposits can appear superficially similar, it is possible to apply facies models carefully to distinguish between them, even in ancient successions.  相似文献   

17.
长白山火山历史上最大火山爆发火山碎屑物层序与分布   总被引:11,自引:0,他引:11  
长白山火山历史时期规模最大的火山喷发发生在1199~1200年。这次大爆发分为两次普林尼(Plinian)式喷发:第一次(早期)喷发称赤峰期,第二次(晚期)喷发称园池期。赤峰期喷发模式为:普林尼式喷发柱(赤峰空落浮岩层)—火山碎屑流(长白火山碎屑流层)—火山泥流(二道白河火山泥流层),主要由火山碎屑流诱发火山泥流;园池期火山喷发模式为:普林尼式喷发柱(园池空落浮岩火山灰层)—火山碎屑流(冰场火山碎屑流层)。两次普林尼式喷发空落火山碎屑物总量约120 km3,长白火山碎屑流层总量约8 km3,冰场火山碎屑流层总量约0.5 km3,火山泥流堆积总量约为2 km3。主要论述了这次大爆发的火山喷发碎屑堆积物的层序和分布。  相似文献   

18.
Archean felsic volcanic rocks form a 2000 m thick succession stratigraphically below the Helen Iron Formation in the vicinity of the Helen Mine, Wawa, Ontario. Based on relict textures and structures, lateral and vertical facies changes, and fragment type, size and distribution, the felsic volcanic rocks have been subdivided into (a) lava flows and domes (b) hyalotuffs, (c) bedded pyroclastic flows, (d) massive pyroclastic flows, and (e) block and ash flows.Lava flows and domes are flow-banded, massive, and/or brecciated and occur throughout the stratigraphic succession. Dome/flow complexes are believed to mark the end of explosive eruptive cycles. Deposits interpreted as hyalotuffs are finely bedded and composed dominantly of ash-size material and accretionary lapilli. These deposits are interlayered with bedded pyroclastic flow deposits and probably formed from phreatomagmatic eruptions in a shallow subaqueous environment. Such eruptions led to the formation of tuff cones or rings. If these structures emerged they may have restricted the access of seawater to the eruptive vent(s), thus causing a change in eruptive style from short, explosive pulses to the establishment of an eruption column. Collapse of this column would lead to the accumulation of pyroclastic material within and on the flanks of the cone/ring structure, and to flows which move down the structure and into the sea. Bedded pyroclastic deposits in the Wawa area are thought to have formed in this manner, and are now composed of a thicker, more massive basal unit which is overlain by one or more finely bedded ash units. Based on bed thickness, fragment and crystal size, type and abundance, these deposits are further subdivided into central, proximal and distal facies.Central facies units consist of poorly graded, thick (30–80 m) basal beds composed of 23–60% lithic and 1–8% juvenile fragments. These are overlain by 1–4 thinner ash beds (2–25 cm). Proximal facies basal beds range from 2–35 m in thickness and are composed of 15–35% lithic and 4–16% juvenile fragments. Typically, lithic components are normally graded, whereas juvenile fragments are inversely graded. These basal beds are overlain by ash beds (2–14 in number) which range from 12 cm to 6 m in thickness. Distal basal beds, where present, are thin (1–2 m), and composed of 2–8% lithic and 6–21% juvenile fragments. Overlying ash beds range up to 40 in number.The climax of pyroclastic activity is represented by a thick (1000 m) sequence of massive, poorly sorted, pyroclastic flow deposits which are composed of 5–15% lithic fragments and abundant pumice. These deposits are similar to subaerial ash flows and appear to mark the rapid eruption of large volumes of material. They are overlain by felsic lavas and/or domes. Periodic collapse of the growing domes produced abundant coarse volcanic breccia. The overall volcanic environment is suggestive of caldera formation and late stage dome extrusion.  相似文献   

19.
The Glaramara tuff presents extensive exposures of the medial and distal deposits of a large tuff ring (original area >800 km2) that grew within an alluvial to lacustrine caldera basin. Detailed analysis and correlation of 21 sections through the tuff show that the eruption involved phreatomagmatic to magmatic explosions resulting from the interaction of dacitic magma and shallow-aquifer water. As the eruption developed to peak intensity, numerous, powerful single-surge pyroclastic density currents reached beyond 8 km from the vent, probably >12 km. The currents were strongly depletive and deposited coarse lapilli (>5 cm in diameter) up to 5 km from source, with only fine ash and accretionary lapilli deposited beyond this. As the eruption intensity waned, currents deposited fine ash and accretionary lapilli across both distal and medial regions. The simple wax–wane cycle of the eruption produced an overall upward coarsening to fining sequence of the vertical lithofacies succession together with a corresponding progradational to retrogradational succession of lithofacies relative to the vent. Various downcurrent facies transitions record transformations of the depositional flow-boundary zones as the depletive currents evolved with distance, in some cases transforming from granular fluid-based to fully dilute currents primarily as a result of loss of granular fluid by deposition. The tuff-ring deposits share several characteristics with (larger) ignimbrite sheets formed during Plinian eruptions and this underscores some overall similarities between pyroclastic density currents that form tuff rings and those that deposit large-volume ignimbrites. Tuff-ring explosive activity with such a wide area of impact is not commonly recognized, but it records the possibility of such currents and this should be factored into hazard assessments.  相似文献   

20.

The Letšeng Diamond Mine comprises two ~91 Ma kimberlite pipes. An update of the geology is presented based on the 2012–2017 detailed investigation of open pit exposures and all available drillcores which included mapping, logging and petrography. Each of the steep-sided volcanic pipes comprises a number of phases of kimberlite with contrasting diamond contents which were formed by the emplacement of at least four batches of mantle-derived magma. The resulting range of textures includes resedimented volcaniclastic kimberlite (RVK), Kimberley-type pyroclastic kimberlite (KPK), coherent kimberlite (CK) and minor amounts of hypabyssal kimberlite (HK). The pipes are compared with KPK occurrences from southern Africa and worldwide. Many features of the Letšeng pipes are similar to KPK infilled pipes particularly those of the widespread Cretaceous kimberlite province of southern Africa. The differences displayed at Letšeng compared to other large KPK pipe infills described from around the world are attributed to the marginal or melnoitic nature of the magma and the upper diatreme to crater setting of the Letšeng pipes, where processes become extrusive. It is concluded that the pipes comprise a variant of Kimberley-type pyroclastic kimberlite emplacement. The classification of many of the Letšeng rocks as KPK is important for developing the internal geology of the pipes as well as for predicting the distribution of diamonds within the bodies.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号