首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Reports of abruptly declining flows of Canada's Athabasca River have prompted concern because this large, free‐flowing river could be representative for northern North America, provides water for the massive Athabasca oil‐sands projects and flows to the extensive and biodiverse Peace–Athabasca, Slave and Mackenzie River deltas. To investigate historic hydrology along the river and its major tributaries, we expanded the time series with interpolations for short data gaps; calculations of annual discharges from early, summer‐only records; and by splicing records across sequential hydrometric gauges. These produced composite, century‐long records (1913–2011) and trend detection with linear Pearson correlation provided similar outcomes to nonparametric Kendall τ‐b tests. These revealed that the mountain and foothills reaches displayed slight increases in winter discharges versus larger declines in summer discharges and consequently declining annual flows (~0.16% per year at Hinton; p < 0.01). Conversely, with contrasting boreal contributions, the Athabasca River at Athabasca displayed no overall trend in monthly or annual flows, but there was correspondence with the Pacific Decadal Oscillation that contributed to a temporary flow decline from 1970 to 2000. These findings from century‐long records contrast with interpretations from numerous shorter‐term studies and emphasize the need for sufficient time series for hydrologic trend analyses. For Northern Hemisphere rivers, the study interval should be at least 80 years to span two Pacific Decadal Oscillation cycles and dampen the influence from phase transitions. Most prior trend analyses considered only a few decades, and this weakens interpretations of the hydrologic consequences of climate change. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
To predict future river flows, empirical trend projection (ETP) analyses and extends historic trends, while hydroclimatic modelling (HCM) incorporates regional downscaling from global circulation model (GCM) outputs. We applied both approaches to the extensively allocated Oldman River Basin that drains the North American Rocky Mountains and provides an international focus for water sharing. For ETP, we analysed monthly discharges from 1912 to 2008 with non‐parametric regression, and extrapolated changes to 2055. For modelling, we refined the physical models MTCLIM and SNOPAC to provide water inputs into RIVRQ (river discharge), a model that assesses the streamflow regime as involving dynamic peaks superimposed on stable baseflow. After parameterization with 1960–1989 data, we assessed climate forecasts from six GCMs: CGCM1‐A, HadCM3, NCAR‐CCM3, ECHAM4 and 5 and GCM2. Modelling reasonably reconstructed monthly hydrographs (R2 about 0·7), and averaging over three decades closely reconstructed the monthly pattern (R2 = 0·94). When applied to the GCM forecasts, the model predicted that summer flows would decline considerably, while winter and early spring flows would increase, producing a slight decline in the annual discharge (?3%, 2005–2055). The ETP predicted similarly decreased summer flows but slight change in winter flows and greater annual flow reduction (?9%). The partial convergence of the seasonal flow projections increases confidence in a composite analysis and we thus predict further declines in summer (about ? 15%) and annual flows (about ? 5%). This composite projection indicates a more modest change than had been anticipated based on earlier GCM analyses or trend projections that considered only three or four decades. For other river basins, we recommend the utilization of ETP based on the longest available streamflow records, and HCM with multiple GCMs. The degree of correspondence from these two independent approaches would provide a basis for assessing the confidence in projections for future river flows and surface water supplies. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
By applying wavelet‐based empirical orthogonal function (WEOF) analysis to gridded precipitation (P) and empirical orthogonal function (EOF) analysis to gridded air temperature (T), potential evapotranspiration (PET), net precipitation (P‐PET) and runoff (Q), this paper examines the spatial, temporal and frequency patterns of Alberta's climate variability. It was found that only WEOF‐based precipitation patterns, possibly modulated by El Nino Southern Oscillation (ENSO) and Pacific Decadal Oscillation(PDO), delineated Alberta into four major regions which geographically represent northern Alberta Boreal forests, southern Alberta grasslands and Aspen Parklands and the Rocky Mountains and Foothills. The leading mode of wavelet‐based precipitation variability WPC1 showed that between 1900 and 2000, a wet climate dominated northern Alberta with significant 4–8, 11 and 25‐year periodic cycles, while the second mode WPC2 showed that between 1960 and 2000, southern Alberta grasslands were characterized by decreasing precipitation, dominated by 11‐year cycles, and the last two modes WPC3 and WPC4 were characterized by 4–7 and 25‐year cycles and both delineated regions where moisture from the Pacific Ocean penetrated the Rocky Mountains, accounted for much of the sub‐alpine climate. These results show that WEOF is superior to EOF in delineating Alberta precipitation variability to sub‐regions that more closely agree with its eco‐climate regions. Further, it was found that while WPC2 could not explain runoff variations in southern Alberta, WPC1, WPC3 and WPC4 accounted for runoff variability in their respective sub‐regions. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
The Mackenzie River, Canada's longest and largest river system, provides the greatest Western Hemisphere discharge to the Arctic Ocean. Recent reports of declining flows have prompted concern because (1) this influences Arctic Ocean salinity, stratification and polar ice; (2) a major tributary, the Peace River, has large hydroelectric projects, and further dams are proposed; and (3) the system includes the extensive and biodiverse Peace–Athabasca, Slave and Mackenzie deltas. To assess hydrological trends over the past century that could reflect climate change, we analysed historic patterns of river discharges. We expanded the data series by infilling for short gaps, calculating annual discharges from early summer‐only records (typical r2 > 0.9), coordinating data from sequential hydrometric gauges (requiring r2 > 0.8) and advancing the data to 2013. For trend detection, Pearson correlation provided similar outcomes to non‐parametric Kendall's τ and Spearman's ρ tests. There was no overall pattern for annual flows of the most southerly Athabasca River (1913–2013), while the adjacent, regulated Peace River displayed increasing flows (1916–2013, p < 0.05). These rivers combine to form the Slave River, which did not display an overall trend (1917–2013). The more northerly, free‐flowing Liard River is the largest tributary and displayed increasing annual flows (1944–2013, p < 0.01, ~3.5% per decade) because of increasing winter, spring, and summer flows, and annual maximum and minimum flows also increased. Following from the tributary contributions, the Mackenzie River flows gradually increased (Fort Simpson 1939–2013, p < 0.05, ~1.5% per decade), but the interannual patterns for the Liard and other rivers were correlated with the Pacific Decadal Oscillation, complicating the pattern. This conclusion of increasing river flows to the Arctic Ocean contrasts with some prior reports, based on shorter time series. The observed flow increase is consistent with increasing discharges of the large Eurasian Arctic drainages, suggesting a common northern response to climate change. Analyses of historic trends are strengthened with lengthening records, and with the Pacific Decadal Oscillation influence, we recommend century‐long records for northern rivers. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
The warming of the Earth's atmosphere system is likely to change temperature and precipitation, which may affect the climate, hydrology and water resources at the river basins over the world. The importance of temperature change becomes even greater in snow or glacier dominated basins where it controls the snowmelt processes during the late‐winter, spring and summer months. In this study hydrologic responses of streamflow in the Pyanj and Vaksh River basins to climate change are analysed with a watershed hydrology model, based on the downscaled atmospheric data as input, in order to assess the regional climate change impact for the snowfed and glacierfed river basins in the Republic of Tajikistan. As a result of this analysis, it was found that the annual mean river discharge is increasing in the future at snow and glacier dominated areas due to the air temperature increase and the consequent increase in snow/ice melt rates until about 2060. Then the annual mean flow discharge starts to decrease from about 2080 onward because the small glaciers start to disappear in the glacier areas. It was also found that there is a gradual change in the hydrologic flow regime throughout a year, with the high flows occuring earlier in the hydrologic year, due to the warmer climate in the future. Furthermore, significant increases in annual maximum daily flows, including the 100‐year return period flows, at the Pyanj and Vaksh River basins toward the end of the 21st century can be inferred from flood frequency analysis results. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
Willow communities dominate mid‐elevation riparian areas throughout the Rocky Mountains of North America. However, many willow stands are rapidly declining in aerial cover and individual plants in stature. A poor understanding of the processes that control willow establishment hinders identifying the causes of this decline. We analysed the processes that have facilitated or limited willow establishment over the last half of the 20th century on two large floodplains in Rocky Mountain National Park in Colorado by addressing two questions: (1) How does hydrologic regime control willow establishment on different fluvial landforms? (2) How might climate‐driven variations in hydrologic regime affect future willow establishment? We precisely aged willows on the three most common fluvial landforms, stream point bars, drained beaver ponds, and abandoned channels, and statistically related establishment dates to patterns of annual stream peak flow. The role of peak flow on willow establishment varied significantly by landform. Willow recruitment had occurred nearly every year on point bars. In former beaver complexes, most willows had established following dam breaches, whereas willows had established on abandoned channels for several years following channel avulsion. Establishment on point bars and abandoned channels was driven by peak flows of 2‐ to 5‐year return intervals, whereas in abandoned beaver ponds most establishment was associated with flow events of >5‐year return interval. Models of climate change suggest that temperatures will increase and precipitation seasonality will shift over the coming decades in the Rocky Mountains, leading to earlier spring runoff, lower summer and fall flows, decreased snowpack and decreased soil moisture. Such changes are likely to diminish opportunities for willow establishment. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
The Nooksack River has its headwaters in the North Cascade Mountains and drains an approximately 2000 km2 watershed in northwestern Washington State. The timing and magnitude of streamflow in a snowpack‐dominated drainage basin such as the Nooksack River basin are strongly influenced by temperature and precipitation. Projections of future climate made by general circulation models (GCMs) indicate increases in temperature and variable changes in precipitation for the Nooksack River basin. Understanding the response of the river to climate change is crucial for regional water resources planning because municipalities, tribes, and industry depend on the river for water use and for fish habitat. We combine three different climate scenarios downscaled from GCMs and the Distributed‐Hydrology‐Soil‐Vegetation Model to simulate future changes to timing and magnitude of streamflow in the higher elevations of the Nooksack River. Simulations of future streamflow and snowpack in the basin project a range of magnitudes, which reflects the variable meteorological changes indicated by the three GCM scenarios and the local natural variability employed in the modeling. Simulation results project increased winter flows, decreased summer flows, decreased snowpack, and a shift in timing of the spring melt peak and maximum snow water equivalent. These results are consistent with previous regional studies, but the magnitude of increased winter flows and total annual runoff is higher. Increases in temperature dominate snowpack declines and changes to spring and summer streamflow, whereas a combination of increases in temperature and precipitation control increased winter streamflow. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
This study used a regional climate model, driven at a resolution of 30 km, to derive climate estimates that were used as input to a hydrological model to determine stream flow in a changing climate. This regional climate model output was derived using the Weather Research and Forecasting model, which was used to downscale the general circulation model ECHAM5 T63 under the A2 greenhouse gas emission scenario for the future. Two river basins, Dakbla and Poko, over the Sesan catchment of the Lower Mekong region were considered for runoff modeling. A 10‐year climatology of the recent past, 1991–2000, was used as the baseline for the present‐day climate, and another 10‐year climate over the period 2091–2100 was chosen for the future time slice. The results from the simulation of future stream flow indicate that, over both Dakbla and Poko river basins, the stream flow is likely to increase, especially during the peak rainfall season. The Dakbla River Basin shows a substantial increase in stream flow when compared with the Poko River Basin. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
Much of what is known about groundwater circulation and geochemical evolution in carbonate platforms is based on platforms that are fully confined or unconfined. Much less is known about groundwater flow paths and geochemical evolution in partially confined platforms, particularly those supporting surface water. In north‐central Florida, sea level rise and a transition to a wetter climate during the Holocene formed rivers in unconfined portions of the Florida carbonate platform. Focusing on data from the Santa Fe River basin, we show river formation has led to important differences in the hydrological and geochemical evolution of the Santa Fe River basin relative to fully confined or unconfined platforms. Runoff from the siliciclastic confining layer drove river incision and created topographic relief, reorienting the termination of local and regional groundwater flow paths from the coast to the rivers in unconfined portions of the platform. The most chemically evolved groundwater occurs at the end of the longest and deepest flow paths, which discharge near the center of the platform because of incision of the Santa Fe River at the edge of the confining unit. This pattern of discharge of mineralized water differs from fully confined or unconfined platforms where discharge of the most mineralized water occurs at the coast. Mineralized water flowing into the Santa Fe River is diluted by less evolved water derived from shorter, shallower flow paths that discharge to the river downstream. Formation of rivers shortens flow path lengths, thereby decreasing groundwater residence times and allowing freshwater to discharge more quickly to the oceans in the newly formed rivers than in platforms that lack rivers. Similar dynamic changes to groundwater systems should be expected to occur in the future as climate change and sea level rise develop surface water on other carbonate platforms and low lying coastal aquifer systems. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
New Zealand's gravel‐bed rivers have deposited coarse, highly conductive gravel aquifers that are predominantly fed by river water. Managing their groundwater resources is challenging because the recharge mechanisms in these rivers are poorly understood and recharge rates are difficult to predict, particularly under a more variable future climate. To understand the river‐groundwater exchange processes in gravel‐bed rivers, we investigate the Wairau Plain Aquifer using a three‐dimensional groundwater flow model which was calibrated using targeted field observations, “soft” information from experts of the local water authority, parameter regularization techniques, and the model‐independent parameter estimation software PEST. The uncertainty of simulated river‐aquifer exchange flows, groundwater heads, spring flows, and mean transit times were evaluated using Null‐space Monte‐Carlo methods. Our analysis suggests that the river is hydraulically perched (losing) above the regional water table in its upper reaches and is gaining downstream where marine sediments overlay unconfined gravels. River recharge rates are on average 7.3 m3/s, but are highly dynamic in time and variable in space. Although the river discharge regularly hits 1000 m3/s, the net exchange flow rarely exceeds 12 m3/s and seems to be limited by the physical constraints of unit‐gradient flux under disconnected rivers. An important finding for the management of the aquifer is that changes in aquifer storage are mainly affected by the frequency and duration of low‐flow periods in the river. We hypothesize that the new insights into the river‐groundwater exchange mechanisms of the presented case study are transferable to other rivers with similar characteristics.  相似文献   

11.
The Columbia River is a major source of and conduit for Pacific Northwest economic activity, and is one of the more heavily modified rivers in North America. Understanding human and climate‐induced changes in its hydrologic properties is, therefore, vital. Long streamflow records are essential to determining how runoff has changed over time, and Columbia River daily streamflow record at The Dalles began in 1878. To understand and separate anthropogenic and climate effects, however, it is also necessary to have a basin‐scale estimate of virgin or naturalized flow. The United States Geological Survey has calculated a monthly averaged adjusted river flow at The Dalles for 1879–1999 that accounts for the effects of flow regulation. The Bonneville Power Administration has estimated the monthly averaged virgin flow at The Dalles, i.e. the flow in the absence of both flow regulation and irrigation depletion for 1929–89. We have estimated the monthly virgin flow of the Columbia River at The Dalles from records of irrigated area for the missing early years, i.e. for the period 1879–1928. In addition, to allow hindcasting of a virgin flow sediment transport for the system, a daily virgin flow index with realistic higher moments and spectral properties has been calculated. Examination of the virgin flow record shows that climate change since the late 19th century has decreased annual average flow volume by > 7%; irrigation depletion has reduced the flow by another ∼7%. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
Extensive implementation of centre pivot irrigation systems occurred between 1970 and 1980 in the lower Flint River Basin (FRB) of southwestern Georgia, USA. Groundwater within this karstic system is in direct hydraulic connection with regional streams, many of which are incised through the overburden into underlying limestone. We used long‐term U.S. Geological Survey gaging station data to evaluate multiple flow metrics of two tributaries (Ichawaynochaway Creek and Spring Creek) in the lower FRB to determine the extent of changes in stream behaviour since irrigation practices intensified. We compared pre‐ and post‐irrigation flow duration curves, 1‐, 7‐, and 14‐day minimum flows, and 8‐day (seasonal) and annual baseflow recession slopes, in addition to evaluating regional climate data to determine whether significant differences existed between the pre‐ and post‐irrigation periods. Our results showed significant changes in low‐flow durations in the post‐irrigation record for both gages, including a decrease by an order of magnitude for 98% exceedance flows at Spring Creek. Both gages indicated significant reductions in 1‐, 7‐, and 14‐day low flows. Eight‐day baseflow recession curves (within early summer months) and annual baseflow recession curves became significantly steeper during the post‐irrigation period for Ichawaynochaway Creek. We also found that a significant relationship existed between winter and summer minimum flows in both streams in the pre‐irrigation period which was disrupted in post‐irrigation years. Regional climate data for the study period revealed no significant changes in rainfall totals or frequency of drought; however, there was evidence for a shift in seasonal rainfall patterns. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
The Canadian Rocky Mountain headwaters support the water resource systems of the Canadian Prairies. Significant variations in natural headwater contributions have been observed due to warming climate. Projecting future natural headwater flows under climate change effects, however, has large uncertainty. First, there are difficulties in climate modeling and downscaling in alpine regions. Second, streamflow modeling in mountainous areas is extremely challenging. There is therefore a need to understand the effects of uncertainty in the natural inflow regime, and in particular how this translates into uncertainty in representing the state and the outflow of water resource systems. Considering the Oldman River basin in Alberta, Canada, we synthesized different inflow regimes based on site/inter-site properties of the historical inflow regime. The water resources system was then conditioned on the synthesized inflow regimes to identify the mechanisms of error propagation from the headwater streamflows to the water allocations. The results show that the response of the water resource system to the uncertainty in the generated inflow regime depends on the system state, flow condition and the component of interest. Generally, the response of the reservoirs to the uncertainty in the estimated inflow regime is more significant in dry years, in particular during low flow conditions. The response at the system outlet is rather different, as the propagation of the headwater uncertainty is more significant during high flow conditions. Also, similar inflow estimates in terms of error and uncertainty may result in different error and uncertainty estimates in the simulated outflows; therefore, lower bias and uncertainty in estimating the regional inflow regime does not necessarily mean lower bias and uncertainty in simulating the streamflow at the outlet of the system. Our results provide improved understanding of uncertainty propagation through complex water resource systems, but also portray the need for better climate and hydrological modeling in the Rocky Mountains for improved water management in the Canadian Prairies, particularly in the face of uncertain climate futures. This will be crucial if the natural headwater inflows decline and/or the system faces drought conditions.  相似文献   

14.
River flow constitutes an important element of the terrestrial branch of the hydrological cycle, yet knowledge regarding the extent to which its variability, at a range of timescales, is linked to a number of modes of atmospheric circulation is meagre. This is especially so in the Southern Hemisphere where strong candidates, such as El Niño Southern Oscillation and the Southern Annular Mode (SAM), for influencing climate and thus river flow variability can be found. This paper presents the results of an analysis of the impact of the SAM on winter and summer river flow variability across New Zealand, purposefully controlling for the influence of El Niño Southern Oscillation and the tendency for the SAM to adopt a positive phase over the last 10–20 years. Study results, based on identifying hydrological regions and applying circulation‐to‐environment and environment‐to‐circulation approaches commonly used in synoptic climatology, reveal a seasonal asymmetry of the response of river flow variability to the SAM; winter flows demonstrate a higher degree of statistical association with the SAM compared to summer flows. Further, because of the complex orography of New Zealand and its general disposition normal to zonal flows of moisture bearing winds, there are intraseasonal spatial variations in river flow SAM associations with clear rain shadow effects playing out in resultant river flow volumes. The complexity of SAM river flow associations found in this study warns against using indices of large scale modes of atmospheric circulation as blunt tools for hydroclimatological prediction at scales beyond hydroclimatological regions or areas with internal hydrological consistency.  相似文献   

15.
Two reaches of Aguapeí River, a left‐bank tributary of the Paraná River in western São Paulo state, Brazil, were studied with the objective of assessing the role of bend curvature on channel migration in this wet‐tropical system and examining if land‐use changes or ENSO (El Niño Southern Oscillation) driven climate anomalies over nearly half a century have changed migration behaviour and planform geometry. Meander‐bend migration rates and morphometric parameters including meander‐bend curvature, sinuosity, meander wavelength and channel width, were measured and the frequency of bend cutoffs was analysed in order to determine the rate of change of channel adjustment over a 48 year period to 2010. Results show that maximum average channel migration rates occur in bends with curvatures of about 2–3 rc/w, similar to other previously studied temperate and subarctic freely meandering rivers although not as pronounced and with a tendency to favour tighter curvature. From 1962 to 2010 the Aguapeí River has undergone a significant reduction in sinuosity, a shift from tightly curving to more open bends, an overall decline in channel migration rates, an associated decrease in the frequency of neck‐cutoffs and an overall increase in channel width. As the majority of the drainage basin (96%) was already deforested in 1962, channel form and process changes were, unlike an interpretation for an adjacent river system, not attributed to altered land‐use but rather to a sharp ENSO‐driven increase in the magnitude of peak flow‐discharges of some 32% since 1972. In summary, this research revealed that recent climate and associated flow regime changes are having a pronounced effect on river channel behaviour in the Aguapeí River investigated here. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

16.
Floods are the most frequent natural disaster, causing more loss of life and property than any other in the USA. Floods also strongly influence the structure and function of watersheds, stream channels, and aquatic ecosystems. The Pacific Northwest is particularly vulnerable to climatically driven changes in flood frequency and magnitude, because snowpacks that strongly influence flood generation are near the freezing point and thus sensitive to small changes in temperature. To improve predictions of future flooding potential and inform strategies to adapt to these changes, we mapped the sensitivity of landscapes to changes in peak flows due to climate warming across Oregon and Washington. We first developed principal component‐based models for predicting peak flows across a range of recurrence intervals (2‐, 10‐, 25‐, 50‐, and 100‐years) based on historical instantaneous peak flow data from 1000 gauged watersheds in Oregon and Washington. Key predictors of peak flows included drainage area and principal component scores for climate, land cover, soil, and topographic metrics. We then used these regression models to predict future peak flows by perturbing the climate variables based on future climate projections (2020s, 2040s, and 2080s) for the A1B emission scenario. For each recurrence interval, peak flow sensitivities were computed as the ratio of future to current peak flow magnitudes. Our analysis suggests that temperature‐induced changes in snowpack dynamics will result in large (>30–40%) increases in peak flow magnitude in some areas, principally the Cascades, Olympics, and Blue Mountains and parts of the western edge of the Rocky Mountains. Flood generation processes in lower elevation areas are less likely to be affected, but some of these areas may be impacted by floodwaters from upstream. These results can assist land, water, and infrastructure managers in identifying watersheds and resources that are particularly vulnerable to increased peak flows and developing plans to increase their resilience. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
Tropical river basins are experiencing major hydrological alterations as a result of climate variability and deforestation. These drivers of flow changes are often difficult to isolate in large basins based on either observations or experiments; however, combining these methods with numerical models can help identify the contribution of climate and deforestation to hydrological alterations. This paper presents a study carried out in the Tapaj?s River (Brazil), a 477,000 km2 basin in South‐eastern Amazonia, in which we analysed the role of annual land cover change on daily river flows. Analysis of observed spatial and temporal trends in rainfall, forest cover, and river flow metrics for 1976 to 2008 indicates a significant shortening of the wet season and reduction in river flows through most of the basin despite no significant trend in annual precipitation. Coincident with seasonal trends over the past 4 decades, over 35% of the original forest (140,000 out of 400,000 km2) was cleared. In order to determine the effects of land clearing and rainfall variability to trends in river flows, we conducted hindcast simulations with ED2 + R, a terrestrial biosphere model incorporating fine scale ecosystem heterogeneity arising from annual land‐use change and linked to a flow routing scheme. The simulations indicated basin‐wide increases in dry season flows caused by land cover transitions beginning in the early 1990s when forest cover dropped to 80% of its original extent. Simulations of historical potential vegetation in the absence of land cover transitions indicate that reduction in rainfall during the dry season (mean of ?9 mm per month) would have had an opposite and larger magnitude effect than deforestation (maximum of +4 mm/month), leading to the overall net negative trend in river flows. In light of the expected increase in future climate variability and water infrastructure development in the Amazon and other tropical basins, this study presents an approach for analysing how multiple drivers of change are altering regional hydrology and water resources management.  相似文献   

18.
The Dissolved Organic Carbon (DOC) content of rivers is the most significant part of the carbon cycle migration in the basin under consideration, and it is the basis for a comprehensive understanding of the regional carbon cycle. In this study, we periodically collected samples from four monitoring stations in the Xiying River Basin of the Qilian Mountains in the northern Qinghai-Tibet Plateau. We calculated the fluxes of organic carbon in the rivers within the study area and have discussed the influencing factors of DOC concentration in these rivers. The results showed that: (a) The DOC concentration and transport flux of the Xiying river showed significant seasonal changes. The DOC concentration during summer and autumn was higher than that in winter and spring, and the output flux in summer and autumn accounted for approximately 88.3% of the total annual output. (b) Precipitation runoff has a higher DOC concentration than meltwater runoff. Climate factors, river-water chemical characteristics, and seasonal frozen-soil changes in the river basin have significant effects on the river DOC concentration and transport flux. (c) Larger runoff causes higher DOC concentrations in rivers. Runoff is the primary means of carbon migration in the inland river basin. Carbon migration is significant from the upstream to the middle and downstream sections of the inland river basin.  相似文献   

19.
Water scarcity and climatic variability in the Mediterranean region have traditionally required the construction of dams to guarantee water supply for irrigation, industrial and urban uses and hydropower production. Reservoirs affect the hydrology of the river downstream, but the magnitude and persistence of these effects are still poorly unknown. Understanding the magnitude of these effects is the objective of this paper, in which we analyse the flow regimes of twelve rivers located in the NW Mediterranean region. Different temporal scales (daily, monthly and annual) are used for the analysis and also to estimate flow variables associated with flow magnitude, frequency, duration and variability. It is shown that dams alter the hydrological regime of most of the studied rivers, with special influence on monthly flows and flood magnitude and frequency. The most altered rivers (Muga and Siurana, NE Iberian Peninsula) experience a complete overturn in their flow regime with, for instance, flood reduction reaching up to 76% for the 2‐year flood event. Other rivers showed lower changes in hydrology (e.g. Orb and Têt). Annual runoff showed a pattern of decrease in all the studied rivers (regulated and non‐regulated) indicating that besides dams (i.e. reservoir evaporation), other factors likely affect water yield. A general recovery downstream from dams is also observed at all temporal scales, mainly because of the inflow from tributaries. Although dams have a clear impact on the hydrology of Mediterranean rivers, water withdrawals and diversions for irrigation and other consumptive uses also affected the hydrological patterns. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
Arctic river basins are amongst the most vulnerable to climate change. However, there is currently limited knowledge of the hydrological processes that govern flow dynamics in Arctic river basins. We address this research gap using natural hydrochemical and isotopic tracers to identify water sources that contributed to runoff in river basins spanning a gradient of glacierization (0–61%) in Svalbard during summer 2010 and 2011. Spatially distinct hydrological processes operating over diurnal, weekly and seasonal timescales were characterized by river hydrochemistry and isotopic composition. Two conceptual water sources (‘meltwater’ and ‘groundwater’) were identified and used as a basis for end‐member mixing analyses to assess seasonal and year‐to‐year variability in water source dynamics. In glacier‐fed rivers, meltwater dominated flows at all sites (typically >80%) with the highest contributions observed at the beginning of each study period in early July when snow cover was most extensive. Rivers in non‐glacierized basins were sourced initially from snowmelt but became increasingly dependent on groundwater inputs (up to 100% of total flow volume) by late summer. These hydrological changes were attributed to the depletion of snowpacks and enhanced soil water storage capacity as the active layer expanded throughout each melt season. These findings provide insight into the processes that underpin water source dynamics in Arctic river systems and potential future changes in Arctic hydrology that might be expected under a changing climate. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号