首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Spectral observations have detected methane within the martian atmosphere (Formisano, V., Atreya, S., Encrenaz, T., Ignatiev, N., Giuranna, M. [2004]. Science 306, 1758–1761; Mumma, M.J. et al. [2009]. Science 323, 1041–1045), however, the origin of the methane has not been determined. Methane clathrate (also referred to as methane hydrate) has been suggested as a potential subsurface reservoir, storing and releasing biologic and/or abiogenic methane. In this study, rates of methane hydrate formation and dissociation were measured experimentally at 234–264 K and 1.4–4.7 MPa to test the clathrate reservoir hypothesis. Initial formation rates range from 4.3 × 10?6 to 8.1 × 10?5 mol m?2 s?1. Results show decreasing rates of formation over time in individual experiments, indicating initial rapid clathration, followed by diffusion-limited transport of methane into the ice through the previously formed hydrate. These experiments indicate increased pressure results in increased formation rates, likely the result of higher concentration gradients, enhancing the methane diffusion flux into the solid phase. Experiments conducted at elevated temperatures produced faster initial rates of formation, resulting from increased kinetic energy of methane molecules and/or thickening of the Quasi-Liquid Layer. Based on this temperature dependence, the activation energy for methane hydrate formation from ice was determined to be 35.9 kJ/mol. Hydrate dissociation experiments initiated by depressurization or warming at conditions between 222 K and 265 K and 0.1–2.0 MPa were conducted following each formation experiment, yielding methane hydrate dissociation rates from 3.01 × 10?6 to 9.92 × 10?5 mol m?2 s?1. While both hydrate dissociation and formation showed decreasing instantaneous rates over the course of each experiment, the transition between the initial rate of dissociation and the interpreted diffusion-limited period of continued dissociation was more abrupt than that observed in formation experiments, supporting an ice shielding effect. The initial concentration of methane in the solid phase had a significant effect on hydrate dissociation rates. Higher methane concentrations in the solid phase produce faster initial rates, likely due to increased concentration gradients, thus increasing the diffusion component of dissociation. Increased temperatures also produced faster dissociation rates, yielding an activation energy for dissociation of 32.7 kJ/mol. The rates determined within this study suggest that small near-surface methane hydrate reservoirs are a feasible source for recent methane plumes detected on Mars. Rates of methane release from gas hydrates also indicate that gas hydrate dissociation may have played a role in forming ancient chaos terrain and associated outflow channels.  相似文献   

2.
An automated cloud tracking algorithm is applied to Cassini Imaging Science Subsystem high-resolution apoapsis images of Saturn from 2005 and 2007 and moderate resolution images from 2011 and 2012 to define the near-global distribution of zonal winds and eddy momentum fluxes at the middle troposphere cloud level and in the upper troposphere haze. Improvements in the tracking algorithm combined with the greater feature contrast in the northern hemisphere during the approach to spring equinox allow for better rejection of erroneous wind vectors, a more objective assessment at any latitude of the quality of the mean zonal wind, and a population of winds comparable in size to that available for the much higher contrast atmosphere of Jupiter. Zonal winds at cloud level changed little between 2005 and 2007 at all latitudes sampled. Upper troposphere zonal winds derived from methane band images are ~10 m s?1 weaker than cloud level winds in the cores of eastward jets and ~5 m s?1 stronger on either side of the jet core, i.e., eastward jets appear to broaden with increasing altitude. In westward jet regions winds are approximately the same at both altitudes. Lateral eddy momentum fluxes are directed into eastward jet cores, including the strong equatorial jet, and away from westward jet cores and weaken with increasing altitude on the flanks of the eastward jets, consistent with the upward broadening of these jets. The conversion rate of eddy to mean zonal kinetic energy at the visible cloud level is larger in eastward jet regions (5.2 × 10?5 m2 s?3) and smaller in westward jet regions (1.6 × 10?5 m2 s?3) than the global mean value (4.1 × 10?5 m2 s?3). Overall the results are consistent with theories that suggest that the jets and the overturning meridional circulation at cloud level on Saturn are maintained at least in part by eddies due to instabilities of the large-scale flow near and/or below the cloud level.  相似文献   

3.
We report on the survivability in hypervelocity impacts of yeast in spore form, and as mature cultures, at impact velocities from 1 to 7.4 km s?1, corresponding to an estimated peak shock pressure of ~43 GPa. Spores from a yeast strain (BY4743), deficient in an enzyme required for uracil production, were fired into water (to simulate oceanic impact from space) using a light gas gun. The water was then retrieved and filtered and the resulting retentate and filtrate cultured to determine viability and survival rates of remnant spores. Yeast growth (confirmed as coming from the original sample as it had the same enzyme deficiency) was found in recovered samples at all impact speeds, albeit in smaller quantities at the higher speeds. The survival probabilities were measured as ~50% at 1 km s?1, falling to ~10?3% at 7.4 km s?1. This follows the pattern observed in previous work on survival of microbial life and spores exposed to extreme shock loading, where there is reasonable survival at low peak shock pressures with more severe lethality above a critical shock pressure at the GPa scale (here between 2 and 10 GPa). These results are explained in the context of a general model for survival against extreme shock and are relevant to the hypotheses of panspermia and litho-panspermia, showing that extreme shocks during transfer across space are not necessarily sterilising.  相似文献   

4.
We present spectral and spatial information for major volatile species in Comet 10P/Tempel 2, based on high-dispersion infrared spectra acquired on UT 2010 July 26 (heliocentric distance Rh = 1.44 AU) and September 18 (Rh = 1.62 AU), following the comet’s perihelion passage on UT 2010 July 04. The total production rate for water on July 26 was (1.90 ± 0.12) × 1028 molecules s?1, and abundances of six trace gases (relative to water) were: CH3OH (1.58% ± 0.23%), C2H6 (0.39% ± 0.04%), NH3 (0.83% ± 0.20%), and HCN (0.13% ± 0.02%). A detailed analysis of intensities for water emission lines provided a rotational temperature of 35 ± 3 K. The mean OPR is consistent with nuclear spin populations in statistical equilibrium (OPR = 3.01 ± 0.18), and the (1σ) lower bound corresponds to a spin temperature >38 K. Our measurements were contemporaneous with a jet-like feature observed at optical wavelengths. The spatial profiles of four primary volatiles display strong enhancements in the jet direction, which favors release from a localized vent on the nucleus. The measured IR continuum is much more sharply peaked and is consistent with a dominant contribution from the nucleus itself. The peak intensities for H2O, CH3OH, and C2H6 are offset by ~200 km in the jet direction, suggesting the possible existence of a distributed source, such as the release of icy grains that subsequently sublimed in the coma. On UT September 18, no obvious emission lines were present in our spectra, nevertheless we obtained a 3σ upper limit Q(H2O) < 2.86 × 1027 molecules s?1.  相似文献   

5.
R. Weidling  C. Güttler  J. Blum 《Icarus》2012,218(1):688-700
Over the past years the processes involved in the growth of planetesimals have extensively been studied in the laboratory. Based on these experiments, a dust-aggregate collision model was developed upon which computer simulations were based to evaluate how big protoplanetary dust aggregates can grow and to analyze which kinds of collisions are relevant in the solar nebula and are worth further studies in the laboratory. The sticking threshold velocity of millimeter-sized dust aggregates is one such critical value that have so far only theoretically been derived, as the relevant velocities could not be reached in the laboratory. We developed a microgravity experiment that allows us for the first time to study free collisions of mm-sized dust aggregates down to velocities of ~0.1 cm s?1 to assess this part of the protoplanetary dust evolution model. Here, we present the results of 125 free collisions between dust aggregates of 0.5–2 mm diameter. Seven collisions with velocities between 0.2 and 3 cm s?1 led to sticking, suggesting a transition from perfect sticking to perfect bouncing with a certain sticking probability instead of a sharp velocity threshold. We developed a model to explain the physical processes involved in dust-aggregate sticking, derived dynamical material properties of the dust aggregates from the results of the collisions, and deduced the velocity below which dust aggregates always stick. For millimeter-sized porous dust aggregates this velocity is 8 × 10?5 m s?1.  相似文献   

6.
We suggest that planets, brown dwarfs, and even low mass stars can be formed by fragmentation of protoplanetary disks around very massive stars (M ? 100 M). We discuss how fragmentation conditions make the formation of very massive planetary systems around very massive stars favorable. Such planetary systems are likely to be composed of brown dwarfs and low mass stars of ~0.1–0.3 M, at orbital separations of ~ few × 100–104 AU. In particular, scaling from solar-like stars suggests that hundreds of Mercury-like planets might orbit very massive stars at ~103 AU where conditions might favor liquid water. Such fragmentation objects can be excellent targets for the James Webb Space Telescope and other large telescopes working in the IR bands. We predict that deep observations of very massive stars would reveal these fragmentation objects, orbiting in the same orbital plane in cases where there are more than one object.  相似文献   

7.
Here we present new adaptive optics observations of the Quaoar–Weywot system. With these new observations we determine an improved system orbit. Due to a 0.39 day alias that exists in available observations, four possible orbital solutions are available with periods of ~11.6, ~12.0, ~12.4, and ~12.8 days. From the possible orbital solutions, system masses of 1.3–1.5 ± 0.1 × 1021 kg are found. These observations provide an updated density for Quaoar of 2.7–5.0 g cm?3. In all cases, Weywot’s orbit is eccentric, with possible values ~0.13–0.16. We present a reanalysis of the tidal orbital evolution of the Quaoar–Weywot system. We have found that Weywot has probably evolved to a state of synchronous rotation, and has likely preserved its initial inclination over the age of the Solar System. We find that for plausible values of the effective tidal dissipation factor tides produce a very slow evolution of Weywot’s eccentricity and semi-major axis. Accordingly, it appears that Weywot’s eccentricity likely did not tidally evolve to its current value from an initially circular orbit. Rather, it seems that some other mechanism has raised its eccentricity post-formation, or Weywot formed with a non-negligible eccentricity.  相似文献   

8.
We describe the science motivation and development of a pair production telescope for medium-energy (∼5–200 MeV) gamma-ray polarimetry. Our instrument concept, the Advanced Energetic Pair Telescope (AdEPT), takes advantage of the Three-Dimensional Track Imager, a low-density gaseous time projection chamber, to achieve angular resolution within a factor of two of the pair production kinematics limit (∼0.6° at 70 MeV), continuum sensitivity comparable with the Fermi-LAT front detector (<3 × 10−6 MeV cm−2 s−1 at 70 MeV), and minimum detectable polarization less than 10% for a 10 mCrab source in 106 s.  相似文献   

9.
The formation of shocks and shock heating by radiatively damped longitudinal waves in solar magnetic flux tubes of different filling factors is studied. We consider three flux tubes of filling factors: 1%, 20%, and exponentially spreading which represent normal, enhanced network regions and the interior of supergranulation cells respectively. Monochromatic waves with periods 60 s and energy fluxes of 4.0 · 108 erg cm?2 s?1 are assumed to propagate in the tubes. We find that the H?-continuum losses and the Mg II line emission are much reduced in the tube of small filling factor while the mean temperatures are roughly similar in both tubes. The exponential flux tube shows little or no shock heating and no radiation damping. Shocks form earlier in the tube of high filling factor, and have larger strength.  相似文献   

10.
To study the accretional growth of rimmed chondrules and their agglomerates in the solar nebula, we measured the restitution coefficients, ε, and the sticking velocities to a porous silica layer, vc, by impacting the silica layer with a glass ball at velocities from 0.1 to 80 m s?1. We used a porous silica layer covering a basalt block with thicknesses ranging from 1/5 of the glass ball radius to equal to the glass ball radius as a rimmed chondrule analogue, and the porosity of the silica layer was set to be 70%, 80%, 85%, and 90%. Collisional experiments were conducted by means of the free fall method or by the use of a spring gun or a gas gun, allowing us to vary the impact velocity. We used a laser displacement meter to estimate the impact and rebound velocities as well as the acceleration during the collision at impact velocities below 1 m s?1. As a result, the sticking velocity, vc, of 90%- and 85%- porosity layers with a thickness equal to 1/2 of the glass ball diameter was 0.44 and 2.4 m s?1, respectively. On the other hand, we found a distinct barrier to sticking for smaller-porosity layers: the silicate layer with a porosity smaller than 80% never exhibited sticking at any impact velocity below 1 m s?1. Instead, we observed a rebound effect with restitution coefficients larger than 0.2. In the case of a silica layer with a porosity smaller than 80%, we observed the sub-sticking condition defined by ε < 0.1 at velocities extending from 5 m s?1 to 70 m s?1.  相似文献   

11.
Ultraviolet spectra from the International Ultraviolet Explorer (IUE) and from the Hubble Space Telescope (HST) of the symbiotic novae AG Peg during the period 1978–1996 are analyzed. Some spectra showing the modulations of spectral lines at different times are presented. We determined the reddening from the 2200 Å feature, finding that E(B−V) = 0.10 ± 0.02. We studied N IV] at 1486 Å, C IV 1550 Å, and O III] at 1660 Å, produced in the fast wind from the hot white dwarf. The mean wind velocity of the three emission lines is 1300 km s−1 (FWHM). The mean wind mass loss rate is ∼6 × 10−7 M yr−1. The mean temperature is ∼6.5 × 105 K. The mean ultraviolet luminosity is ∼5 × 1033 erg s−1. The modulations of line fluxes in the emitting region at different times are attributed to the variations of density and temperature of the ejected matter as a result of variations in the rate of mass loss.  相似文献   

12.
《Planetary and Space Science》2007,55(11):1494-1501
In this work, we calculate the neutral Na production rates on the Moon and Mercury, as due to the impacts of meteoroids having an impact probability on the surface that can influence the daily observations of the exosphere: the meteoroids radius range considered for the Moon and Mercury are 10−8–0.15 and 10−8–0.10 m, respectively. We also estimate the mass of meteoroids that has impacted the surfaces of the Moon and Mercury in the last 3.8 Gy (after the end of the Late Heavy Bombardment).The results of our model are that (i) the Na production rates are ∼(3–4.9)×104 and ∼(1.8–2.3)×106 atoms cm−2 s−1, for Moon and Mercury, respectively, and (ii) in the last 3.8 Gy, the mass of meteoroids that has impacted the whole surface of the Moon and Mercury has been 8.86×1018 and 2.66×1019 g, respectively.  相似文献   

13.
Kathryn Volk  Renu Malhotra 《Icarus》2012,221(1):106-115
The Haumea family is currently the only identified collisional family in the Kuiper belt. We numerically simulate the long-term dynamical evolution of the family to estimate a lower limit of the family’s age and to assess how the population of the family and its dynamical clustering are preserved over Gyr timescales. We find that the family is not younger than 100 Myr, and its age is at least 1 Gyr with 95% confidence. We find that for initial velocity dispersions of 50–400 m s?1, approximately 20–45% of the family members are lost to close encounters with Neptune after 3.5 Gyr of orbital evolution. We apply these loss rates to two proposed models for the formation of the Haumea family, a graze-and-merge type collision between two similarly sized, differentiated KBOs or the collisional disruption of a satellite orbiting Haumea. For the graze-and-merge collision model, we calculate that >85% of the expected mass in surviving family members within 150 m s?1 of the collision has been identified, but that one to two times the mass of the known family members remains to be identified at larger velocities. For the satellite-break-up model, we estimate that the currently identified family members account for ~50% of the expected mass of the family. Taking observational incompleteness into account, the observed number of Haumea family members is consistent with either formation scenario at the 1σ level, however both models predict more objects at larger relative velocities (>150 m s?1) than have been identified.  相似文献   

14.
To ascertain the importance of sputtering by solar wind ions on the formation of a sodium exosphere around Mercury and the Moon, we have irradiated with 4 keV He ions, the Na bearing tectosilicates: albite, labradorite, and anorthoclase, as well as adsorbed Na layers deposited on albite and on olivine (a neosilicate that does not contain Na). Sodium at the surface and near surface (<40 Å) was quantified with X-ray photoelectron spectroscopy before and after each irradiation to determine the depletion cross section. We measured a cross section for sputtering of Na adsorbed on mineral surfaces, σs  1 × 10?15 cm2 atom?1. In addition, mass spectrometric analyses of the sputtered flux show that a large fraction of the Na is sputtered as ions rather than as neutral atoms. These results have strong implications for modeling the sodium population within the mercurian and the lunar exospheres.  相似文献   

15.
We present results of our study of the rheologies and ages of lava flows in the Elysium Mons region of Mars. Previous studies have shown that the geometric dimensions of lava flows reflect rheological properties such as yield strength, effusion rate and viscosity. In this study the rheological properties of lava flows in the Elysium Mons region were determined and compared to the rheologies of the Ascraeus Mons lava flows. We also derived new crater size-frequency distribution measurements (CSFDs) for the Elysium lava flows to identify possible changes in the rheological properties with time. In addition, possible changes in the rheological properties with the distance from the caldera of Elysium Mons were analyzed.In total, 35 lava flows on and around Elysium Mons were mapped, and divided into three groups, lava flows on the flanks of Elysium Mons, in the plains between the three volcanoes Elysium Mons, Hecates and Albor Tholus and lava flows south of Albor Tholus. The rheological properties of 32 of these flows could be determined. Based on our morphometric measurements of each individual lava flow, estimates for the yield strengths, effusion rates, viscosities, and eruption duration of the studied lava flows were made. The yield strengths of the investigated lava flows range from ~3.8 × 102 Pa to ~1.5 × 104 Pa, with an average of ~3.0 × 103 Pa. These yield strengths are in good agreement with estimates for terrestrial basaltic lava flows. The effusion rates are on average ~747 m3 s?1, ranging from ~99 to 4450 m3 s?1. The viscosities are on average ~4.1 × 106 Pa s, with a range of 1.2 × 105 Pa s to 3.1 × 107 Pa s. The eruption durations of the flows were calculated to be between 6 and 183 days, with an average of ~51 days. The determined rheological properties are generally very similar to those of other volcanic regions on Mars, such as on Ascraeus Mons in the Tharsis region. Calculated yield strengths and viscosities point to a basaltic/andesitic composition of the lava flows, similar to basaltic or andesitic a’a lava flows on Earth.Absolute model ages of all 35 lava flows on Elysium Mons were derived from crater size-frequency distribution measurements (CSFD). The derived model ages show a wide variation from about 632 Ma to 3460 Ma. Crater size-frequency distribution measurements of the Elysium Mons caldera show an age of ~1640 Ma, which is consistent with the resurfacing age of Werner (2009). Significant changes of the rheologies with time could not be observed. Similarly, we did not observe systematic changes in ages with increasing distances of lava flows from the Elysium Mons caldera.  相似文献   

16.
The Huygens Probe provided a wealth of data concerning the atmosphere of Titan. It also provided tantalizing evidence of a small amount of surface liquid. We have developed a detailed surface energy balance for the Probe landing site. We find that the daily averaged non-radiative fluxes at the surface are 0.7 W m?2, much larger than the global average value predicted by McKay et al. (1991) of 0.037 W m?2. Considering the moist surface, the methane and ethane detected by the Probe from the surface is consistent with a ternary liquid of ethane, methane, and nitrogen present on the surface with mole fractions of methane, ethane, and nitrogen of 0.44, 0.34, and 0.22, respectively, and a total mass load of ~0.05 kg m?2. If this liquid is included in the surface energy balance, only a small fraction of the non-radiative energy is due to latent heat release (~10?3 W m?2). If the amount of atmospheric ethane is less than 0.6×10?5, the surface liquid is most likely evaporating over timescales of 5 Titan days, and the moist surface is probably a remnant of a recent precipitation event. If the surface liquid mass loading is increased to 0.5 kg m?2, then the liquid lifetime increases to ~56 Titan days. Our modeling results indicate a dew cycle is unlikely, given that even when the diurnal variation of liquid is in equilibrium, the diurnal mass variation is only 3% of the total liquid. If we assume a high atmospheric mixing ratio of ethane (>0.6×10?5), the precipitation of liquid is large (38 cm/Titan year for an ethane mixing ratio of 2×10?5). Such a flux is many orders of magnitude in excess of the photochemical production rate of ethane.  相似文献   

17.
Using the NIMS Io Thermal Emission Database (NITED), a collection of over 1000 measurements of radiant flux from Io’s volcanoes (Davies, A.G. et al. [2012]. Geophys. Res. Lett. 39, L01201. doi:10.1029/2011GL049999), we have examined the variability of thermal emission from three of Io’s volcanoes: Pele, Janus Patera and Kanehekili Fluctus. At Pele, the 5-μm thermal emission as derived from 28 night time observations is remarkably steady at 37 ± 10 GW μm?1, re-affirming previous analyses that suggested that Pele an active, rapidly overturning silicate lava lake. Janus Patera also exhibits relatively steady 5-μm thermal emission (≈20 ± 3 GW μm?1) in the four observations where Janus is resolved from nearby Kanehekili Fluctus. Janus Patera might contain a Pele-like lava lake with an effusion rate (QF) of ≈40–70 m3 s?1. It should be a prime target for a future mission to Io in order to obtain data to determine lava eruption temperature. Kanehekili Fluctus has a thermal emission spectrum that is indicative of the emplacement of lava flows with insulated crusts. Effusion rate at Kanehekili Fluctus dropped by an order of magnitude from ≈95 m3 s?1 in mid-1997 to ≈4 m3 s?1 in late 2001.  相似文献   

18.
The Venus Express (VEX) mission has been in orbit to Venus for more than 4 years now. The Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) instrument onboard VEX observes Venus in two channels (visible and infrared) obtaining spectra and multi-wavelength images of the planet that can be used to sample the atmosphere at different altitudes. Day-side images in the ultraviolet range (380 nm) are used to study the dynamics of the upper cloud at 66–72 km while night-side images in the near infrared (1.74 μm) map the opacity of the lower cloud deck at 44–48 km. Here we present a long-term analysis of the global atmospheric dynamics at these levels using a large selection of orbits from the VIRTIS-M dataset covering 860 Earth days that extends our previous work (Sánchez-Lavega, A. et al. [2008]. Geophys. Res. Lett. 35, L13204) and allows studying the variability of the global circulation at the two altitude levels. The atmospheric superrotation is evident with equatorial to mid-latitudes westward velocities of 100 and 60 m s?1 in the upper and lower cloud layers. These zonal velocities are almost constant in latitude from the equator to 50°S. From 50°S to 90°S the zonal winds at both cloud layers decrease steadily to zero at the pole. Individual cloud tracked winds have errors of 3–10 m s?1 with a mean of 5 m s?1 and the standard deviations for a given latitude of our zonal and meridional winds are 9 m s?1. The zonal winds in the upper cloud change with the local time in a way that can be interpreted in terms of a solar tide. The zonal winds in the lower cloud are stable at mid-latitudes to the tropics and present variability at subpolar latitudes apparently linked to the activity of the South polar vortex. While the upper cloud presents a net meridional motion consistent with the upper branch of a Hadley cell with peak velocity v = 10 m s?1 at 50°S, the lower cloud meridional motions are less organized with some cloud features moving with intense northwards and southwards motions up to v = ±15 m s?1 but, on average, with almost null global meridional motions at all latitudes. We also examine the long-term behavior of the winds at these two vertical layers by comparing our extended wind tracked data with results from previous missions.  相似文献   

19.
Vladimir Krasnopolsky 《Icarus》2012,219(1):244-249
To search for DCl in the Venus atmosphere, a spectrum near the D35Cl (1–0) R4 line at 2141.54 cm?1 was observed using the CSHELL spectrograph at NASA IRTF. Least square fitting to the spectrum by a synthetic spectrum results in a DCl mixing ratio of 17.8 ± 6.8 ppb. Comparing to the HCl abundance of 400 ± 30 ppb (Krasnopolsky [2010a] Icarus, 208, 314–322), the DCl/HCl ratio is equal to 280 ± 110 times the terrestrial D/H = 1.56 × 10?4. This ratio is similar to that of HDO/H2O = 240 ± 25 times the terrestrial HDO/H2O from the VEX/SOIR occultations at 70–110 km. Photochemistry in the Venus mesosphere converts H from HCl to that in H2O with a rate of 1.9 × 109 cm?2 s?1 (Krasnopolsky [2012] Icarus, 218, 230–246). The conversion involves photolysis of HCl; therefore, the photochemistry tends to enrich D/H in HCl and deplete in H2O. Formation of the sulfuric acid clouds may affect HDO/H2O as well. The enriched HCl moves down by mixing to the lower atmosphere where thermodynamic equilibriums for H2 and HCl near the surface correspond to D/H = 0.71 and 0.74 times that in H2O, respectively. Time to establish these equilibriums is estimated at ~3 years and comparable to the mixing time in the lower atmosphere. Therefore, the enriched HCl from the mesosphere gives D back to H2O near the surface. Comparison of chemical and mixing times favors a constant HDO/H2O up to ~100 km and DCl/HCl equal to D/H in H2O times 0.74.Ammonia is an abundant form of nitrogen in the reducing environments. Thermodynamic equilibriums with N2 and NO near the surface of Venus give its mixing ratio of 10?14 and 6 × 10?7, respectively. A spectrum of Venus near the NH3 line at 4481.11 cm?1 was observed at NASA IRTF and resulted in a two-sigma upper limit of 6 ppb for NH3 above the Venus clouds. This is an improvement of the previous upper limit by a factor of 5. If ammonia exists at the ppb level or less in the lower atmosphere, it quickly dissociates in the mesosphere and weakly affects its photochemistry.  相似文献   

20.
The exosphere of an atmosphereless icy moon is the result of different surface release processes and subsequent modification of the released particles. At Europa icy moon, water molecules are directly released, but photolysis and radiolysis due to solar UV and Jupiter’s magnetospheric plasma, respectively, can result in OH, H, O and (possibly) H2 production. These molecules can recombine to reform water and/or new chemical species. As a consequence, Europa’s neutral environment becomes a mixture of different molecules, among which, H2O dominates in the highest altitudes and O2, formed mainly by radiolysis of ice and subsequent release of the produced molecules, prevails at lower altitudes. In this work, starting from a previously developed Monte Carlo model for the generation of Europa’s exosphere, where the only considered species was water, we make a first attempt to simulate also the H2 and O2 components of the neutral environment around Europa, already observed by the Hubble Space Telescope and the Ultraviolet Imaging Spectrograph on board Cassini, during its flyby of Jupiter. Considering a specific configuration where the leading hemisphere coincides with the sunlit hemisphere, we estimate along the Europa–Sun line an O2 column density of about 1.5 × 1019 m?2 at the dayside and 3 × 1018 m?2 at the nightside. In this work we also improve our previous estimation of the sputtered H2O exosphere of this moon, taking into consideration the trailing–leading asymmetry in the magnetospheric ion bombardment and the energy and temperature dependences of the process yields. We find that a density of 1.5 × 1012 H2O/m3 is expected at altitudes ~0.1RE above the surface of the trailing hemisphere. Additionally, we calculate the escape of H2O, O2 and H2. The total number of neutral atoms in Europa’s neutral torus, is estimated to be in the range 7.8 × 1032–3.3 × 1033.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号