首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Methane clathrate hydrate reservoirs capped by overlying permafrost have been proposed as potential sources of atmospheric methane plumes on Mars. However, the surface flux of methane from hydrate dissociation is limited by the diffusion rate of methane through the overlying ice. Assuming hydrates underlay the entire plume footprint, the maximum diffusion path length is expected to be less than 15 m, depths too shallow to stabilize pure methane hydrates under Mars geothermal and lithostatic conditions at low to mid latitudes. Therefore, pure methane hydrates confined within permafrost could not produce methane surface fluxes of the magnitude observed near the equator. However, the addition of 10% H2S, a secondary gas commonly associated with methane production on Earth, expands the hydrate stability field, with clathrates expected within 10 m of the surface at the equator and at depths less than 1 m at higher latitudes. This indicates that H2S would also be expected to be released as well as methane if the plumes have a confined hydrate reservoir source.  相似文献   

2.
The Huygens Probe provided a wealth of data concerning the atmosphere of Titan. It also provided tantalizing evidence of a small amount of surface liquid. We have developed a detailed surface energy balance for the Probe landing site. We find that the daily averaged non-radiative fluxes at the surface are 0.7 W m?2, much larger than the global average value predicted by McKay et al. (1991) of 0.037 W m?2. Considering the moist surface, the methane and ethane detected by the Probe from the surface is consistent with a ternary liquid of ethane, methane, and nitrogen present on the surface with mole fractions of methane, ethane, and nitrogen of 0.44, 0.34, and 0.22, respectively, and a total mass load of ~0.05 kg m?2. If this liquid is included in the surface energy balance, only a small fraction of the non-radiative energy is due to latent heat release (~10?3 W m?2). If the amount of atmospheric ethane is less than 0.6×10?5, the surface liquid is most likely evaporating over timescales of 5 Titan days, and the moist surface is probably a remnant of a recent precipitation event. If the surface liquid mass loading is increased to 0.5 kg m?2, then the liquid lifetime increases to ~56 Titan days. Our modeling results indicate a dew cycle is unlikely, given that even when the diurnal variation of liquid is in equilibrium, the diurnal mass variation is only 3% of the total liquid. If we assume a high atmospheric mixing ratio of ethane (>0.6×10?5), the precipitation of liquid is large (38 cm/Titan year for an ethane mixing ratio of 2×10?5). Such a flux is many orders of magnitude in excess of the photochemical production rate of ethane.  相似文献   

3.
We address key factors involved in determining water flow conditions in outflow channels on Mars, including the temperature of the sub-surface water being released and the environmental conditions of low temperature, low atmospheric pressure, and low acceleration due to gravity. We suggest how some of the assumptions made in previous work may be improved. Our model considers the thermodynamic effects of simultaneous evaporation and freezing of water, and fluid dynamical processes including changes in flow rheology caused by assimilation of cold rock and ice eroded at the channel bed, and ice crystal growth due to water freezing. We model how far initially turbulent water could flow in a channel before it erodes and entrains enough material to become laminar, and subsequently ceases to erode the bed. An ice raft will begin to form on the flood while transition occurs between turbulent and laminar flow. Estimates are given for water transit times, ~17–19 h, initial water depths, 50–62 m, and average flow speeds, 5–12 m s?1, in the Mangala and Athabasca Valles. We show that these two outflow channels, and by implication others like them, could plausibly have been formed in single water release events. Resulting mean erosion rates are approximately 0.7 mm s?1, a factor of three greater than previous estimates based on combinations of estimates of flood duration and required water volumes. This is explained by the consideration of the effects of eroded ice and the physics of thermal erosion in the present study.  相似文献   

4.
This work deals with the optical constant characterization of Titan aerosol analogues or “tholins” produced with the PAMPRE experimental setup and deposited as thin films onto a silicon substrate. Tholins were produced in different N2–CH4 gaseous mixtures to study the effect of the initial methane concentration on their optical constants. The real (n) and imaginary (k) parts of the complex refractive index were determined using the spectroscopic ellipsometry technique in the 370–1000 nm wavelength range. We found that optical constants depend strongly on the methane concentrations of the gas phase in which tholins are produced: imaginary optical index (k) decreases with initial CH4 concentration from 2.3 × 10?2 down to 2.7 × 10?3 at 1000 nm wavelength, while the real optical index (n) increases from 1.48 up to 1.58 at 1000 nm wavelength. The larger absorption in the visible range of tholins produced at lower methane percentage is explained by an increase of the secondary and primary amines signature in the mid-IR absorption. Comparison with results of other tholins and data from Titan observations are presented. We found an agreement between our values obtained with 10% methane concentration, and Imanaka et al. (Imanaka, H., Khare, B.N., Elsila, J.E., Bakes, E.L.O., McKay, C.P., Cruikshank, D.P., Sugita, S., Matsui, T., Zare, R.N. [2004]. Icarus, 168, 344–366) values, in spite of the difference in the analytical method. This confirms a reliability of the optical properties of tholins prepared with various setups but with similar plasma conditions. Our comparison with Titan’s observations also raises a possible inconsistency between the mid-IR aerosol signature by VIMS and CIRS Cassini instruments and the visible Huygens-DISR derived data. The mid-IR VIMS and CIRS signatures are in agreement with an aerosol dominated by an aliphatic carbon content, whereas the important visible absorption derived from the DISR measurement seems to be incompatible with such an important aliphatic content, but more compatible with an amine-rich aerosol.  相似文献   

5.
Hubble Space Telescope/Wide Field and Planetary Camera 2 (HST/WFPC2) images of Io obtained between 1995 and 2007 between 0.24 and 0.42 μm led to the detection of the Pele plume in reflected sunlight in 1995 and 1999; imaging of the Pele plume via absorption of jovian light in 1996 and 1999; detection of the Prometheus-type Pillan plume in reflected sunlight in 1997; and detection of the 2007 Pele-type Tvashtar plume eruption in reflected sunlight and via absorption of jovian light. Based on a detailed analysis of these observations we characterize and compare the gas and dust properties of each of the detected plumes. In each case, the brightness of the plumes in reflected sunlight is less at 0.26 μm than at 0.33 μm. Mie scattering analysis of the wavelength dependence of each plume’s reflectance signature suggests that range of particle sizes within the plumes is quite narrow. Assuming a normal distribution of particle sizes, the range of mean particle sizes is ~0.035–0.12 μm for the 1997 Pillan eruption, ~0.05–0.08 μm for the 1999 Pele and 2007 Tvasthar plumes, and ~0.05–0.11 μm for the 1995 Pele plume, and in each case the standard deviation in the particle size distribution is <15%. The Mie analysis also suggests that the 2007 Tvashtar eruption released ~109 g of sulfur dust, the 1999 Pele eruption released ~109 g of SO2 dust, the 1997 Pillan eruption released ~1010 g of SO2 dust, and the 1995 Pele plume may have released ~1010 g of SO2 dust. Analysis of the plume absorption signatures recorded in the F255W filter bandpass (0.24–0.28 μm) indicates that the opacity of the 2007 Tvashtar plume was 2× that of the 1996 and 1999 Pele plume eruptions. While the sulfur dust density estimated for the Tvashtar from the reflected sunlight data could have produced 61% of the observed plume opacity, <10% of the 1999 Pele F255W plume opacity could have resulted from the SO2 dust detected in the eruption. Accounting for the remaining F255W opacity level of the Pele and Tvasthar plumes based on SO2 and S2 gas absorption, the SO2 and S2 gas density inferred for each plume is almost equivalent corresponding to ~2–6 × 1016 cm?2 and 3–5 × 1015 cm?2, respectively, producing SO2 and S2 gas resurfacing rates ~0.04–0.2 cm yr?1 and 0.007–0.01 cm yr?1; and SO2 and S2 gas masses ~1–4 × 1010 g and ~2–3 × 109 g; for a total dust to gas ratio in the plumes ~10?1–10?2. The 2007 Tvashtar plume was detected by HST at ~380 ± 40 km in both reflected sunlight and absorbed jovian light; in 1999, the detected Pele plume altitude was 500 km in absorbed jovian light, but in reflected sunlight the detected height was ~2× lower. Thus, for the 1999 Pele plume, similar to the 1979 Voyager Pele plume observations, the most efficient dust reflections occurred in the region closest to the plume vent. The 0.33–0.42 μm brightness of the 1997 Pillan plume was 10–20× greater than the Pele or Tvashtar plumes, exceeding by a factor of 3 the average brightness levels observed within 200 km of 1979 Loki eruption vent. But, the 0.26 μm brightness of the 1997 Pillan plume in reflected sunlight was significantly lower than would be predicted by the dust scattering model. Presuming that the 0.26 μm brightness of the 1997 Pillan plume was attenuated by the eruption plume’s gas component, then an SO2 gas density ~3–6 × 1018 cm?2 is inferred from the data (for S2/SO2 ratios ?4%), comparable to the 0.3–2 × 1018 cm?2 SO2 density detected at Loki in 1979 (Pearl, J.C. et al. [1979]. Nature 280, 755; Lellouch et al., 1992), and producing an SO2 gas mass ~3–8 × 1011 g and an SO2 resurfacing rate ~8–23 cm yr?1. These results confirm the connection between high (?1017 cm?2) SO2 gas content and plumes that scatter strongly at nearly blue wavelengths, and it validates the occurrence of high density SO2 gas eruptions on Io. Noting that the SO2 gas content inferred from a spectrum of the 2003 Pillan plume was significantly lower ~2 × 1016 cm?2 (Jessup, K.L., Spencer, J., Yelle, R. [2007]. Icarus 192, 24–40); and that the Pillan caldera was flooded with fresh SO2 frost/slush just prior to the 1997 Pillan plume eruption (Geissler, P., McEwen, A., Phillips, C., Keszthelyi, L., Spencer, J. [2004a]. Icarus 169, 29–64; Phillips, C.B. [2000]. Voyager and Galileo SSI Views of Volcanic Resurfacing on Io and the Search for Geologic Activity at Europa. Ph.D. Thesis, Univ. of Ariz., Tucson); we propose that the density of SO2 gas released by this volcano is directly linked to the local SO2 frost abundance at the time of eruption.  相似文献   

6.
An automated cloud tracking algorithm is applied to Cassini Imaging Science Subsystem high-resolution apoapsis images of Saturn from 2005 and 2007 and moderate resolution images from 2011 and 2012 to define the near-global distribution of zonal winds and eddy momentum fluxes at the middle troposphere cloud level and in the upper troposphere haze. Improvements in the tracking algorithm combined with the greater feature contrast in the northern hemisphere during the approach to spring equinox allow for better rejection of erroneous wind vectors, a more objective assessment at any latitude of the quality of the mean zonal wind, and a population of winds comparable in size to that available for the much higher contrast atmosphere of Jupiter. Zonal winds at cloud level changed little between 2005 and 2007 at all latitudes sampled. Upper troposphere zonal winds derived from methane band images are ~10 m s?1 weaker than cloud level winds in the cores of eastward jets and ~5 m s?1 stronger on either side of the jet core, i.e., eastward jets appear to broaden with increasing altitude. In westward jet regions winds are approximately the same at both altitudes. Lateral eddy momentum fluxes are directed into eastward jet cores, including the strong equatorial jet, and away from westward jet cores and weaken with increasing altitude on the flanks of the eastward jets, consistent with the upward broadening of these jets. The conversion rate of eddy to mean zonal kinetic energy at the visible cloud level is larger in eastward jet regions (5.2 × 10?5 m2 s?3) and smaller in westward jet regions (1.6 × 10?5 m2 s?3) than the global mean value (4.1 × 10?5 m2 s?3). Overall the results are consistent with theories that suggest that the jets and the overturning meridional circulation at cloud level on Saturn are maintained at least in part by eddies due to instabilities of the large-scale flow near and/or below the cloud level.  相似文献   

7.
Kathryn Volk  Renu Malhotra 《Icarus》2012,221(1):106-115
The Haumea family is currently the only identified collisional family in the Kuiper belt. We numerically simulate the long-term dynamical evolution of the family to estimate a lower limit of the family’s age and to assess how the population of the family and its dynamical clustering are preserved over Gyr timescales. We find that the family is not younger than 100 Myr, and its age is at least 1 Gyr with 95% confidence. We find that for initial velocity dispersions of 50–400 m s?1, approximately 20–45% of the family members are lost to close encounters with Neptune after 3.5 Gyr of orbital evolution. We apply these loss rates to two proposed models for the formation of the Haumea family, a graze-and-merge type collision between two similarly sized, differentiated KBOs or the collisional disruption of a satellite orbiting Haumea. For the graze-and-merge collision model, we calculate that >85% of the expected mass in surviving family members within 150 m s?1 of the collision has been identified, but that one to two times the mass of the known family members remains to be identified at larger velocities. For the satellite-break-up model, we estimate that the currently identified family members account for ~50% of the expected mass of the family. Taking observational incompleteness into account, the observed number of Haumea family members is consistent with either formation scenario at the 1σ level, however both models predict more objects at larger relative velocities (>150 m s?1) than have been identified.  相似文献   

8.
The exosphere of an atmosphereless icy moon is the result of different surface release processes and subsequent modification of the released particles. At Europa icy moon, water molecules are directly released, but photolysis and radiolysis due to solar UV and Jupiter’s magnetospheric plasma, respectively, can result in OH, H, O and (possibly) H2 production. These molecules can recombine to reform water and/or new chemical species. As a consequence, Europa’s neutral environment becomes a mixture of different molecules, among which, H2O dominates in the highest altitudes and O2, formed mainly by radiolysis of ice and subsequent release of the produced molecules, prevails at lower altitudes. In this work, starting from a previously developed Monte Carlo model for the generation of Europa’s exosphere, where the only considered species was water, we make a first attempt to simulate also the H2 and O2 components of the neutral environment around Europa, already observed by the Hubble Space Telescope and the Ultraviolet Imaging Spectrograph on board Cassini, during its flyby of Jupiter. Considering a specific configuration where the leading hemisphere coincides with the sunlit hemisphere, we estimate along the Europa–Sun line an O2 column density of about 1.5 × 1019 m?2 at the dayside and 3 × 1018 m?2 at the nightside. In this work we also improve our previous estimation of the sputtered H2O exosphere of this moon, taking into consideration the trailing–leading asymmetry in the magnetospheric ion bombardment and the energy and temperature dependences of the process yields. We find that a density of 1.5 × 1012 H2O/m3 is expected at altitudes ~0.1RE above the surface of the trailing hemisphere. Additionally, we calculate the escape of H2O, O2 and H2. The total number of neutral atoms in Europa’s neutral torus, is estimated to be in the range 7.8 × 1032–3.3 × 1033.  相似文献   

9.
We have observed the massive star formation region W75N in 12CO J = 3 ? 2 with KOSMA. The profile of 12CO J = 3 ? 2 indicated that besides the 9 km s?1 component, there is another component of ?3 km s?1, which is associated with another star formation region, DR21N, located to the north of DR21. We derived the physical and dynamical parameters of the core and high velocity gas associated with the two components separately. Star forming activities were investigated, including outflows and infall analysis. The two regions overlap in space and are not connected in velocity. We found that the cloud–cloud collision scenario may not apply for the DR21/W75N case.  相似文献   

10.
In this work we investigated changes of the water emission from a model comet of the size and orbital elements of Comet P/2008 R1 (Garradd). We performed simulations for model cometary nuclei of different compositions and two different orientations in space. Our simulations indicate, that the emission of water decreases from one orbital period to another one, but in some cases slowly. When the rotation axis of the nucleus lies in the orbital plane the seasonal maximum of water production during the first two orbital periods can be as high as about 1026 mol s?1, but decreases by two orders of magnitude during only 50 orbital periods. The highest rate of water production after many orbital periods is expected when the rotation axis is perpendicular to the orbital plane – the seasonal maximum of water production can be about 5 × 1025 mol s?1 during the first two orbital periods after activation of the comet and no more than 0.8 × 1025 mol s?1 500 orbital periods later. The upper estimate for the production of water derived from observations of P/2008 R1 (Garradd) by Jewitt et al. (Jewitt, D., Yang, B., Haghighipour, N. [2009]. Astron. J. 137, 4313–4321) is 5 × 1025.  相似文献   

11.
12.
Vladimir Krasnopolsky 《Icarus》2012,219(1):244-249
To search for DCl in the Venus atmosphere, a spectrum near the D35Cl (1–0) R4 line at 2141.54 cm?1 was observed using the CSHELL spectrograph at NASA IRTF. Least square fitting to the spectrum by a synthetic spectrum results in a DCl mixing ratio of 17.8 ± 6.8 ppb. Comparing to the HCl abundance of 400 ± 30 ppb (Krasnopolsky [2010a] Icarus, 208, 314–322), the DCl/HCl ratio is equal to 280 ± 110 times the terrestrial D/H = 1.56 × 10?4. This ratio is similar to that of HDO/H2O = 240 ± 25 times the terrestrial HDO/H2O from the VEX/SOIR occultations at 70–110 km. Photochemistry in the Venus mesosphere converts H from HCl to that in H2O with a rate of 1.9 × 109 cm?2 s?1 (Krasnopolsky [2012] Icarus, 218, 230–246). The conversion involves photolysis of HCl; therefore, the photochemistry tends to enrich D/H in HCl and deplete in H2O. Formation of the sulfuric acid clouds may affect HDO/H2O as well. The enriched HCl moves down by mixing to the lower atmosphere where thermodynamic equilibriums for H2 and HCl near the surface correspond to D/H = 0.71 and 0.74 times that in H2O, respectively. Time to establish these equilibriums is estimated at ~3 years and comparable to the mixing time in the lower atmosphere. Therefore, the enriched HCl from the mesosphere gives D back to H2O near the surface. Comparison of chemical and mixing times favors a constant HDO/H2O up to ~100 km and DCl/HCl equal to D/H in H2O times 0.74.Ammonia is an abundant form of nitrogen in the reducing environments. Thermodynamic equilibriums with N2 and NO near the surface of Venus give its mixing ratio of 10?14 and 6 × 10?7, respectively. A spectrum of Venus near the NH3 line at 4481.11 cm?1 was observed at NASA IRTF and resulted in a two-sigma upper limit of 6 ppb for NH3 above the Venus clouds. This is an improvement of the previous upper limit by a factor of 5. If ammonia exists at the ppb level or less in the lower atmosphere, it quickly dissociates in the mesosphere and weakly affects its photochemistry.  相似文献   

13.
We report sensitive Chandra X-ray non-detections of two unusual, luminous Iron Low-Ionization Broad Absorption Line Quasars (FeLoBALs). The observations do detect a non-BAL, wide-binary companion quasar to one of the FeLoBAL quasars. We combine X-ray-derived column density lower limits (assuming solar metallicity) with column densities measured from ultraviolet spectra and CLOUDY photoionization simulations to explore whether constant-density slabs at broad-line region densities can match the physical parameters of these two BAL outflows, and find that they cannot. In the “overlapping-trough” object SDSS J0300+0048, we measure the column density of the X-ray absorbing gas to be NH ? 1.8 × 1024 cm?2. From the presence of Fe ii UV78 absorption but lack of Fe ii UV195/UV196 absorption, we infer the density in that part of the absorbing region to be ne ? 106 cm?3. We do find that a slab of gas at that density might be able to explain this object’s absorption. In the Fe iii-dominant object SDSS J2215–0045, the X-ray absorbing column density of NH ? 3.4 × 1024 cm?2 is consistent with the Fe iii-derived NH ? 2 × 1022 cm?2 provided the ionization parameter is log U > 1.0 for both the ne = 1011 cm?3 and ne = 1012 cm?3 scenarios considered (such densities are required to produce Fe iii absorption without Fe iiabsorption). However, the velocity width of the absorption rules out its being concentrated in a single slab at these densities. Instead, this object’s spectrum can be explained by a low density, high ionization and high temperature disk wind that encounters and ablates higher density, lower ionization Fe iii-emitting clumps.  相似文献   

14.
Vertical distributions and spectral characteristics of Titan’s photochemical aerosol and stratospheric ices are determined between 20 and 560 cm?1 (500–18 μm) from the Cassini Composite Infrared Spectrometer (CIRS). Results are obtained for latitudes of 15°N, 15°S, and 58°S, where accurate temperature profiles can be independently determined.In addition, estimates of aerosol and ice abundances at 62°N relative to those at 15°S are derived. Aerosol abundances are comparable at the two latitudes, but stratospheric ices are ~3 times more abundant at 62°N than at 15°S. Generally, nitrile ice clouds (probably HCN and HC3N), as inferred from a composite emission feature at ~160 cm?1, appear to be located over a narrow altitude range in the stratosphere centered at ~90 km. Although most abundant at high northern latitudes, these nitrile ice clouds extend down through low latitudes and into mid southern latitudes, at least as far as 58°S.There is some evidence of a second ice cloud layer at ~60 km altitude at 58°S associated with an emission feature at ~80 cm?1. We speculate that the identify of this cloud may be due to C2H6 ice, which in the vapor phase is the most abundant hydrocarbon (next to CH4) in the stratosphere of Titan.Unlike the highly restricted range of altitudes (50–100 km) associated with organic condensate clouds, Titan’s photochemical aerosol appears to be well-mixed from the surface to the top of the stratosphere near an altitude of 300 km, and the spectral shape does not appear to change between 15°N and 58°S latitude. The ratio of aerosol-to-gas scale heights range from 1.3–2.4 at about 160 km to 1.1–1.4 at 300 km, although there is considerable variability with latitude. The aerosol exhibits a very broad emission feature peaking at ~140 cm?1. Due to its extreme breadth and low wavenumber, we speculate that this feature may be caused by low-energy vibrations of two-dimensional lattice structures of large molecules. Examples of such molecules include polycyclic aromatic hydrocarbons (PAHs) and nitrogenated aromatics.Finally, volume extinction coefficients NχE derived from 15°S CIRS data at a wavelength of λ = 62.5 μm are compared with those derived from the 10°S Huygens Descent Imager/Spectral Radiometer (DISR) data at 1.583 μm. This comparison yields volume extinction coefficient ratios NχE(1.583 μm)/NχE(62.5 μm) of roughly 70 and 20, respectively, for Titan’s aerosol and stratospheric ices. The inferred particle cross-section ratios χE(1.583 μm)/χE(62.5 μm) appear to be consistent with sub-micron size aerosol particles, and effective radii of only a few microns for stratospheric ice cloud particles.  相似文献   

15.
From a comparison between the different observations of Martian methane existing today, including the new TES methane maps (Fonti and Marzo, 2010), we show that all sets of data are globally consistent with each other, and that a well definite seasonal cycle of methane has been at work for at least 10 yr. With a simple model of the balance between the loss fluxes of H and O, using up-to-date values of the escape fluxes, we show that the long-standing enigma of the imbalance between H and O escape fluxes may be solved by assuming that the missing sink of oxygen is the oxidation of methane. If no H2 is released together with CH4, a good agreement is found between the present CH4 flux and the value imposed by the balance between H and O escape fluxes, an average over the last ≈103 yr. If H2 is released together with CH4, as expected if CH4 originates in serpentinization, the average level of CH4 during the last 103 yr should have been at least ten times lower than the present one. The lack of present H2 release could suggest a long-term storage of methane in the subsurface under the form of clathrates, whereas H2 has been lost to the atmosphere shortly after being produced. We suggest that the thin layer of CO2 ice covering the permanent southern polar cap could result from the release of methane since the end of the last obliquity transition (time scale: 1 Myr), at an average rate of 0.1 Mt yr?1, consistent with the values derived from: (i) the present observations of methane (time scale: 10 yr), (ii) the estimate from the observed imbalance between the H and O escape fluxes (time scale: 1 kyr). If so, the present release of methane from subsurface clathrates would have acted at a similar rate since at least 3 Myr.  相似文献   

16.
The Visible and Infra-Red Thermal Imaging Spectrometer (VIRTIS) instrument on board the Venus Express spacecraft has measured the O2(a1Δ) nightglow distribution at 1.27 μm in the Venus mesosphere for more than two years. Nadir observations have been used to create a statistical map of the emission on Venus nightside. It appears that the statistical 1.6 MR maximum of the emission is located around the antisolar point. Limb observations provide information on the altitude and on the shape of the emission layer. We combine nadir observations essentially covering the southern hemisphere, corrected for the thermal emission of the lower atmosphere, with limb profiles of the northern hemisphere to generate a global map of the Venus nightside emission at 1.27 μm. Given all the O2(a1Δ) intensity profiles, O2(a1Δ) and O density profiles have been calculated and three-dimensional maps of metastable molecular and atomic oxygen densities have been generated. This global O density nightside distribution improves that available from the VTS3 model, which was based on measurements made above 145 km. The O2(a1Δ) hemispheric average density is 2.1 × 109 cm?3, with a maximum value of 6.5 × 109 cm?3 at 99.2 km. The O density profiles have been derived from the nightglow data using CO2 profiles from the empirical VTS3 model or from SPICAV stellar occultations. The O hemispheric average density is 1.9 × 1011 cm?3 in both cases, with a mean altitude of the peak located at 106.1 km and 103.4 km, respectively. These results tend to confirm the modeled values of 2.8 × 1011 cm?3 at 104 km and 2.0 × 1011 cm?3 at 110 km obtained by Brecht et al. [Brecht, A., Bougher, S.W., Gérard, J.-C., Parkinson, C.D., Rafkin, S., Foster, B., 2011a. J. Geophys. Res., in press] and Krasnopolsky [Krasnopolsky, V.A., 2010. Icarus 207, 17–27], respectively. Comparing the oxygen density map derived from the O2(a1Δ) nightglow observations, it appears that the morphology is very different and that the densities obtained in this study are about three times higher than those predicted by the VTS3 model.  相似文献   

17.
《Planetary and Space Science》2007,55(11):1494-1501
In this work, we calculate the neutral Na production rates on the Moon and Mercury, as due to the impacts of meteoroids having an impact probability on the surface that can influence the daily observations of the exosphere: the meteoroids radius range considered for the Moon and Mercury are 10−8–0.15 and 10−8–0.10 m, respectively. We also estimate the mass of meteoroids that has impacted the surfaces of the Moon and Mercury in the last 3.8 Gy (after the end of the Late Heavy Bombardment).The results of our model are that (i) the Na production rates are ∼(3–4.9)×104 and ∼(1.8–2.3)×106 atoms cm−2 s−1, for Moon and Mercury, respectively, and (ii) in the last 3.8 Gy, the mass of meteoroids that has impacted the whole surface of the Moon and Mercury has been 8.86×1018 and 2.66×1019 g, respectively.  相似文献   

18.
Enceladus exhibits a strong hemispheric dichotomy of tectonism and heat flux, with geologically young, heavily tectonized terrains and a high heat flux in the South Polar Terrain (SPT) and relatively ancient terrains with presumably lower heat fluxes over the rest of the satellite. To understand the convective pattern and its relationship with surface tectonics, we present three-dimensional numerical models of convection in Enceladus’ ice shell including basal heating and tidal heating. Our thermal boundary conditions exhibit no north–south asymmetries, but because the tectonism at the SPT may weaken the ice there, we impose a mechanically weak lithosphere within the SPT. The weakening is parameterized by adopting a reduced viscosity contrast within the SPT. Without such a weak zone, convection (if any) resides in stagnant-lid mode and exhibits no hemispheric dichotomy. In the presence of such an SPT weak zone, however, we find vigorous convection in the ice underneath the SPT, with convective plumes rising close to the surface. In contrast, only stagnant lid convection, or no convection at all, occurs elsewhere over the satellite. Away from the SPT, the heat flux in our models is small (5–10 mW m?2) and the surface strains are small enough to imply surface ages >109 years. Within the SPT, however, our models yield peak heat fluxes of ~70–200 mW m?2, implying heat flows integrated across the SPT of up to 5 GW, similar to that inferred from Cassini thermal observations. The surface strains in our models are high enough near the south pole to cause intense tectonism and imply surface ages of ~106–107 years, consistent with age estimates of the SPT.  相似文献   

19.
Titan’s moment of inertia (MoI), estimated from the quadrupole gravity field measured by the Cassini spacecraft, is 0.342, which has been interpreted as evidence of a partially differentiated internal mass distribution. It is shown here that the observed MoI is equally consistent with a fully differentiated internal structure comprising a shell of water ice overlying a low-density silicate core; depending on the chemistry of Titan’s subsurface ocean, the core radius is between 1980 and 2120 km, and its uncompressed density is 2570–2460 kg m?3, suggestive of a hydrated CI carbonaceous chondrite mineralogy. Both the partially differentiated and fully differentiated hydrated core models constrain the deep interior to be several hundred degrees cooler than previously thought. I propose that Titan has a warm wet core below, or buffered at, the high-pressure dehydration temperature of its hydrous constituents, and that many of the gases evolved by thermochemical and radiogenic processes in the core (such as CH4 and 40Ar, respectively) diffuse into the icy mantle to form clathrate hydrates, which in turn may provide a comparatively impermeable barrier to further diffusion. Hence we should not necessarily expect to see a strong isotopic signature of serpentinization in Titan’s atmosphere.  相似文献   

20.
The IRTF/CSHELL observations in February 2006 at LS = 10° and 63–93°W show ~10 ppb of methane at 45°S to 7°N and ~3 ppb outside this region that covers the deepest canyon Valles Marineris. Observations in December 2009 at LS = 20° and 0–30°W included spectra of the Moon at a similar airmass as a telluric calibrator. A technique for extraction of the martian methane line from a combination of the Mars and Moon spectra has been developed. The observations reveal no methane with an upper limit of 8 ppb. The results of both sessions agree with the observations by Mumma et al. (Mumma, M.J. et al. [2009]. Science 323, 1041–1045) at the same season in February 2006 and are smaller than those in the PFS and TES maps. Production and removal of the biological methane on Mars do not significantly change the redox state of the atmosphere and the balance of hydrogen. A search for ethane at 2977 cm?1 results in an upper limit of 0.2 ppb. However, this limit does not help to establish the origin of methane on Mars. Reanalysis of our search for SO2 using TEXES confirms the recently established upper limit of 0.3 ppb. Along with the lack of hot spots and gas vents with endogenic heat sources in the THEMIS observations, the very low upper limit to SO2 on Mars does not favor geological methane that is less abundant than SO2 in the outgassing from the terrestrial planets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号