首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
Between November 23 and 28, 2007, the Cologne Tuneable Heterodyne Infrared Spectrometer THIS was installed at the McMath-Pierce Solar Telescope (Kitt Peak, Arizona, USA) to determine zonal wind velocities and to estimate the subsolar-to-antisolar flow. We investigate dynamics in the upper atmosphere of Venus by measuring the Doppler shift of fully-resolved non-LTE CO2 emission lines at 959.3917 cm?1 (10.423 μm), which probe a narrow altitude region in Venus’ atmosphere around 110 ± 10 km (~1 μbar). The results show no significant zonal wind velocity at the equator. An increase with latitude up to 43 ± 13 m/s at a latitude of 33°N was observed. This confirms the deduction of a minor influence of Venus superrotation at an altitude of 110 km from previous measurements in May 2007 (Sornig et al., 2008). The specific observing geometry enables estimating the maximum cross terminator velocity of the subsolar-to-antisolar flow at 72 ± 47 m/s.  相似文献   

2.
We present the spatial distribution of air temperature on Venus’ night side, as observed by the high spectral resolution channel of VIRTIS (Visible and Infrared Thermal Imaging Spectrometer), or VIRTIS-H, on board the ESA mission Venus Express. The present work extends the investigation of the average thermal fields in the northern hemisphere of Venus, by including the VIRTIS-H data. We show results in the pressure range of 100–4 mbar, which corresponds to the altitude range of 65–80 km. With these new retrievals, we are able to compare the thermal structure of the Venus’ mesosphere in both hemispheres.The major thermal features reported in previous investigations, i.e. the cold collar at about 65–70°S latitude, 100 mbar pressure level, and the asymmetry between the evening and morning sides, are confirmed here. By comparing the temperatures retrieved by the VIRTIS spectrometer in the North and South we find that similarities exist between the two hemispheres. Solar thermal tides are clearly visible in the average temperature fields. To interpret the thermal tide signals (otherwise impossible without day site observations), we apply model simulations using the Venus global circulation model Venus GCM (Lebonnois, S., Hourdin, F., Forget, F., Eymet, V., Fournier, R. [2010b]. International Venus Conference, Aussois, 20–26 June 2010) of the Laboratoire de Météorologie Dynamique (LMD). We suggest that the signal detected at about 60–70° latitude and pressure of 100 mbar is a diurnal component, while those located at equatorial latitudes are semi-diurnal. Other tide-related features are clearly identified in the upper levels of the atmosphere.  相似文献   

3.
《Planetary and Space Science》2007,55(12):1741-1756
The dynamics of Venus’ mesosphere (70–110 km) is characterized by the superposition of two different wind regimes: (1) Venus’ retrograde superrotation; (2) a sub-solar to anti-solar (SS–AS) flow pattern, driven by solar EUV heating on the sunlit hemisphere. Here, we report on new ground-based velocity measurements in the lower part of the mesosphere. We took advantage of two essentially symmetric Venus elongations in 2001 and 2002 to perform high-resolution Doppler spectroscopy (R=120,000) in 12C16O2 visible lines of the 5ν3 band and in a few solar Fraunhofer lines near 8700 Å. These measurements, mapped over several points on Venus’ illuminated hemisphere, probe the region of cloud tops. More precisely, the solar Fraunhofer lines sample levels a few kilometers below the UV features (i.e. near ∼67 km), while the CO2 lines probe an altitude higher by about 7 km. The wind field over Venus’ disk is retrieved with an rms uncertainty of 15–25 m s−1 on individual measurements. Kinematical fit to a one- or two-component circulation model indicates the dominance of the zonal retrograde flow with a mean equatorial velocity of ∼75 m s−1, exhibiting very strong day-to-day variations (±65 m s−1). Results are very consistent for the two kinds of lines, suggesting a negligible vertical wind shear over 67–74 km. The SS–AS flow is not detected in single-day observations, but combining the results from all data suggests that this component may invade the lower mesosphere with a ∼40 m s−1 velocity.  相似文献   

4.
The dynamics of Venus’ mesosphere (60–100 km altitude) was investigated using data acquired by the radio-occultation experiment VeRa on board Venus Express. VeRa provides vertical profiles of density, temperature and pressure between 40 and 90 km of altitude with a vertical resolution of few hundred meters of both the Northern and Southern hemisphere. Pressure and temperature vertical profiles were used to derive zonal winds by applying an approximation of the Navier–Stokes equation, the cyclostrophic balance, which applies well on slowly rotating planets with fast zonal winds, like Venus and Titan. The main features of the retrieved winds are a midlatitude jet with a maximum speed up to 140 ± 15 m s?1 which extends between 20°S and 50°S latitude at 70 km altitude and a decrease of wind speed with increasing height above the jet. Cyclostrophic winds show satisfactory agreement with the cloud-tracked winds derived from the Venus Monitoring Camera (VMC/VEx) UV images, although a disagreement is observed at the equator and near the pole due to the breakdown of the cyclostrophic approximation. Knowledge of both temperature and wind fields allowed us to study the stability of the atmosphere with respect to convection and turbulence. The Richardson number Ri was evaluated from zonal field of measured temperatures and thermal winds. The atmosphere is characterised by a low value of Richardson number from ~45 km up to ~60 km altitude at all latitudes that corresponds to the lower and middle cloud layer indicating an almost adiabatic atmosphere. A high value of Richardson number was found in the region of the midlatitude jet indicating a highly stable atmosphere. The necessary condition for barotropic instability was verified: it is satisfied on the poleward side of the midlatitude jet, indicating the possible presence of wave instability.  相似文献   

5.
A series of observations of the venusian hydrogen corona made by SPICAV on Venus Express are analyzed to estimate the amount of hydrogen in the exosphere of Venus. These observations were made between November 2006 and July 2007 at altitudes from 1000 km to 8000 km on the dayside. The Lyman-α brightness profiles derived are reproduced by the sum of a cold hydrogen population dominant below ~2000 km and a hot hydrogen population dominant above ~4000 km. The temperature (~300 K) and hydrogen density at 250 km (~105 cm?3) derived for the cold populations, near noon, are in good agreement with previous observations. Strong dawn–dusk exospheric asymmetry is observed from this set of observations, with a larger exobase density on the dawn side than on the dusk side, consistent with asymmetry previously observed in the venusian thermosphere, but with a lower dawn/dusk contrast. The hot hydrogen density derived is very sensitive to the sky background estimate, but is well constrained near 5000 km. The density of the hot population is reproduced by the exospheric model from Hodges (Hodges, R.R. [1999]. J. Geophys. Res. 104, 8463–8471) in which the hot population is produced by neutral–ions interactions in the thermosphere of Venus.  相似文献   

6.
Sub-millimeter 12CO (346 GHz) and 13CO (330 GHz) line absorptions, formed within the mesospheric to lower thermospheric altitude (70–120 km) region of the Venus atmosphere, have been mapped across the nightside disk of Venus during 2001–2009 inferior conjunctions, employing the James Clerk Maxwell Telescope (JCMT). Radiative transfer analysis of these thermal line absorptions supports temperature and CO mixing profile retrievals, as described in a companion paper (Clancy et al., 2012). Here, we consider the analysis of the sharp line absorption cores of these CO spectra in terms of accurate Doppler wind profile measurements at 95–115 km altitudes versus local time (~8 pm–4 am) and latitude (~60N–60S). These Doppler wind measurements support determinations of the nightside zonal and subsolar-to-antisolar (SSAS) circulation components over a variety of timescales. The average behavior fitted from 21 retrieved maps of 12CO Doppler winds (obtained over hourly, daily, weekly, and interannual intervals) indicates stronger average zonal (85 m/s retrograde) versus SSAS (65 m/s) circulation at the 1 μbar pressure (108–110 km altitude) level. However, the absolute and relative magnitudes of these circulation components exhibit extreme variability over daily to weekly timescales. Furthermore, the individual Doppler wind measurements within each nightside mapping observation generally show significant deviations (20–50 m/s, averaged over 5000 km horizontal scales) from the simple zonal/SSAS solution, with distinct local time and latitudinal characters that are also time variable. These large scale residual circulations contribute 30–70% of the observed nightside Doppler winds at any given time, and may be most responsible for global variations in nightside lower thermospheric trace composition and temperatures, as coincidentally retrieved CO abundance and temperature distributions do not correlate with solution retrograde zonal and SSAS winds (see companion paper, Clancy et al., 2012). Limited comparisons of these nightside submillimeter results with dayside infrared Doppler wind measurements suggest distinct dayside versus nightside circulations, in terms of zonal winds in particular. Combined 12CO and 13CO Doppler wind mapping observations obtained since 2004 indicate that the average zonal and SSAS wind components increase by 50–100% between altitudes of 100 and 115 km. If gravity waves originating from the cloud levels are responsible for the extension of zonal winds into the thermosphere (Alexander, M.J. [1992]. Geophys. Res. Lett. 19, 2207–2210), such waves deposit substantial momentum (i.e., break) in the lower nightside thermosphere.  相似文献   

7.
Vladimir Krasnopolsky 《Icarus》2012,219(1):244-249
To search for DCl in the Venus atmosphere, a spectrum near the D35Cl (1–0) R4 line at 2141.54 cm?1 was observed using the CSHELL spectrograph at NASA IRTF. Least square fitting to the spectrum by a synthetic spectrum results in a DCl mixing ratio of 17.8 ± 6.8 ppb. Comparing to the HCl abundance of 400 ± 30 ppb (Krasnopolsky [2010a] Icarus, 208, 314–322), the DCl/HCl ratio is equal to 280 ± 110 times the terrestrial D/H = 1.56 × 10?4. This ratio is similar to that of HDO/H2O = 240 ± 25 times the terrestrial HDO/H2O from the VEX/SOIR occultations at 70–110 km. Photochemistry in the Venus mesosphere converts H from HCl to that in H2O with a rate of 1.9 × 109 cm?2 s?1 (Krasnopolsky [2012] Icarus, 218, 230–246). The conversion involves photolysis of HCl; therefore, the photochemistry tends to enrich D/H in HCl and deplete in H2O. Formation of the sulfuric acid clouds may affect HDO/H2O as well. The enriched HCl moves down by mixing to the lower atmosphere where thermodynamic equilibriums for H2 and HCl near the surface correspond to D/H = 0.71 and 0.74 times that in H2O, respectively. Time to establish these equilibriums is estimated at ~3 years and comparable to the mixing time in the lower atmosphere. Therefore, the enriched HCl from the mesosphere gives D back to H2O near the surface. Comparison of chemical and mixing times favors a constant HDO/H2O up to ~100 km and DCl/HCl equal to D/H in H2O times 0.74.Ammonia is an abundant form of nitrogen in the reducing environments. Thermodynamic equilibriums with N2 and NO near the surface of Venus give its mixing ratio of 10?14 and 6 × 10?7, respectively. A spectrum of Venus near the NH3 line at 4481.11 cm?1 was observed at NASA IRTF and resulted in a two-sigma upper limit of 6 ppb for NH3 above the Venus clouds. This is an improvement of the previous upper limit by a factor of 5. If ammonia exists at the ppb level or less in the lower atmosphere, it quickly dissociates in the mesosphere and weakly affects its photochemistry.  相似文献   

8.
We present direct observations of Mars zonal wind velocities around northern spring equinox (LS = 336°, LS = 355°, LS = 42°) during martian year 27 and 29. Data was acquired by means of infrared heterodyne spectroscopy of CO2 features at 959.3917 cm?1 (10.4232 μm) and 957.8005 cm?1 (10.4405 μm) using the Cologne Tuneable Heterodyne Infrared Spectrometer (THIS) at the McMath–Pierce telescope of the National Solar Observatory on Kitt Peak in Arizona and the NASA Infrared Telescope Facility on Mauna Kea, Hawaii between 2005 and 2008. Winds were measured on the dayside of Mars with an unprecedented spatial resolution allowing sampling of up to nine independent latitudes over the martian disk. Retrieved wind velocities depend strongly on latitude and season with values ranging from 180 m/s prograde to ?94 m/s retrograde. A comparison of the observational results to predicted values from the Mars Climate Database yield a reasonable agreement between modeling and observation.  相似文献   

9.
We investigate the Venus cloud top structure by joint analysis of the data from Visual and Thermal Infrared Imaging Spectrometer (VIRTIS) and the atmospheric temperature sounding by the Radio Science experiment (VeRa) onboard Venus Express. The cloud top altitude and aerosol scale height are derived by fitting VIRTIS spectra at 4–5 μm with temperature profiles taken from the VeRa radio occultation. Our study shows gradual descent of the cloud top from 67.2 ± 1.9 km in low latitudes to 62.8 ± 4.1 km at the pole and decrease of the aerosol scale height from 3.8 ± 1.6 km to 1.7 ± 2.4 km. These changes correlate with the mesospheric temperature field. In the cold collar and high latitudes the cloud top position remarkably coincides with the sharp minima in temperature inversions suggesting importance of radiative cooling in their maintenance. This behaviour is consistent with the earlier observations. Spectral trend of the cloud top altitude derived from a comparison with the earlier observations in 1.6–27 μm wavelength range is qualitatively consistent with sulphuric acid composition of the upper cloud and suggests that particle size increases from equator to pole.  相似文献   

10.
Observations of the dayside of Venus performed by the high spectral resolution channel (–H) of the Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) on board the ESA Venus Express mission have been used to measure the altitude of the cloud tops and the water vapor abundance around this level with a spatial resolution ranging from 100 to 10 km. CO2 and H2O bands between 2.48 and 2.60 μm are analyzed to determine the cloud top altitude and water vapor abundance near this level. At low latitudes (±40°) mean water vapor abundance is equal to 3 ± 1 ppm and the corresponding cloud top altitude at 2.5 μm is equal to 69.5 ± 2 km. Poleward from middle latitudes the cloud top altitude gradually decreases down to 64 km, while the average H2O abundance reaches its maximum of 5 ppm at 80° of latitude with a large scatter from 1 to 15 ppm. The calculated mass percentage of the sulfuric acid solution in cloud droplets of mode 2 (~1 μm) particles is in the range 75–83%, being in even more narrow interval of 80–83% in low latitudes. No systematic correlation of the dark UV markings with the cloud top altitude or water vapor has been observed.  相似文献   

11.
The variability of the aerosol loading in the mesosphere of Venus is investigated from a large data set obtained with SOIR, a channel of the SPICAV instrument suite onboard Venus Express. Vertical profiles of the extinction due to light absorption by aerosols are retrieved from a spectral window around 3.0 μm recorded in many solar occultations (~200) from September 2006 to September 2010. For this period, the continuum of light absorption is analyzed in terms of spatial and temporal variations of the upper haze of Venus. It is shown that there is a high short-term (a few Earth days) and a long-term (~80 Earth days) variability of the extinction profiles within the data set. Latitudinal dependency of the aerosol loading is presented for the entire period considered and for shorter periods of time as well.  相似文献   

12.
New measurements of sulfur dioxide (SO2) and monoxide (SO) in the atmosphere of Venus by SPICAV/SOIR instrument onboard Venus Express orbiter provide ample statistics to study the behavior of these gases above Venus’ clouds. The instrument (a set of three spectrometers) is capable to sound atmospheric structure above the clouds in several observation modes (nadir, solar and stellar occultations) either in the UV or in the near IR spectral ranges. We present the results from solar occultations in the absorption ranges of SO2 (190–230 nm, and at 4 μm) and SO (190–230 nm). The dioxide was detected by the SOIR spectrometer at the altitudes of 65–80 km in the IR and by the SPICAV spectrometer at 85–105 km in the UV. The monoxide’s absorption was measured only by SPICAV at 85–105 km. We analyzed 39 sessions of solar occultation, where boresights of both spectrometers are oriented identically, to provide complete vertical profiling of SO2 of the Venus’ mesosphere (65–105 km). Here we report the first firm detection and measurements of two SO2 layers. In the lower layer SO2 mixing ratio is within 0.02–0.5 ppmv. The upper layer, also conceivable from microwave measurements by Sandor et al. (Sandor, B.J., Todd Clancy, R., Moriarty-Schieven, G., Mills, F.P. [2010]. Icarus 208, 49–60) is characterized by SO2 increasing with the altitude from 0.05 to 2 ppmv, and the [SO2]/[SO] ratio varying from 1 to 5. The presence of the high-altitude SOx species could be explained by H2SO4 photodissociation under somewhat warmer temperature conditions in Venus mesosphere. At 90–100 km the content of the sulfur dioxide correlates with temperature increasing from 0.1 ppmv at 165–170 K to 0.5–1 ppmv at 190–192 K. It supports the hypothesis of SO2 production by the evaporation of H2SO4 from droplets and its subsequent photolysis at around 100 km.  相似文献   

13.
The Visible and Infra-Red Thermal Imaging Spectrometer (VIRTIS) instrument on board the Venus Express spacecraft has measured the O2(a1Δ) nightglow distribution at 1.27 μm in the Venus mesosphere for more than two years. Nadir observations have been used to create a statistical map of the emission on Venus nightside. It appears that the statistical 1.6 MR maximum of the emission is located around the antisolar point. Limb observations provide information on the altitude and on the shape of the emission layer. We combine nadir observations essentially covering the southern hemisphere, corrected for the thermal emission of the lower atmosphere, with limb profiles of the northern hemisphere to generate a global map of the Venus nightside emission at 1.27 μm. Given all the O2(a1Δ) intensity profiles, O2(a1Δ) and O density profiles have been calculated and three-dimensional maps of metastable molecular and atomic oxygen densities have been generated. This global O density nightside distribution improves that available from the VTS3 model, which was based on measurements made above 145 km. The O2(a1Δ) hemispheric average density is 2.1 × 109 cm?3, with a maximum value of 6.5 × 109 cm?3 at 99.2 km. The O density profiles have been derived from the nightglow data using CO2 profiles from the empirical VTS3 model or from SPICAV stellar occultations. The O hemispheric average density is 1.9 × 1011 cm?3 in both cases, with a mean altitude of the peak located at 106.1 km and 103.4 km, respectively. These results tend to confirm the modeled values of 2.8 × 1011 cm?3 at 104 km and 2.0 × 1011 cm?3 at 110 km obtained by Brecht et al. [Brecht, A., Bougher, S.W., Gérard, J.-C., Parkinson, C.D., Rafkin, S., Foster, B., 2011a. J. Geophys. Res., in press] and Krasnopolsky [Krasnopolsky, V.A., 2010. Icarus 207, 17–27], respectively. Comparing the oxygen density map derived from the O2(a1Δ) nightglow observations, it appears that the morphology is very different and that the densities obtained in this study are about three times higher than those predicted by the VTS3 model.  相似文献   

14.
The Venus Express Radio Science Experiment VeRa retrieves atmospheric profiles in the mesosphere and troposphere of Venus in the approximate altitude range of 40–90 km. A data set of more than 500 profiles was retrieved between the orbit insertion of Venus Express in 2006 and the end of occultation season No. 11 in July 2011. The atmospheric profiles cover a wide range of latitudes and local times, enabling us to study the dependence of vertical small-scale temperature perturbations on local time and latitude.Temperature fluctuations with vertical wavelengths of 4 km or less are extracted from the measured temperature profiles in order to study small-scale gravity waves. Significant wave amplitudes are found in the stable atmosphere above the tropopause at roughly 60 km as compared with the only shallow temperature perturbations in the nearly adiabatic region of the adjacent middle cloud layer, below.Gravity wave activity shows a strong latitudinal dependence with the smallest wave amplitudes located in the low-latitude range, and an increase of wave activity with increasing latitude in both hemispheres; the greatest wave activity is found in the high-northern latitude range in the vicinity of Ishtar Terra, the highest topographical feature on Venus.We find evidence for a local time dependence of gravity wave activity in the low latitude range within ±30° of the equator. Gravity wave amplitudes are at their maximum beginning at noon and continuing into the early afternoon, indicating that convection in the lower atmosphere is a possible wave source.The comparison of the measured vertical wave structures with standard linear-wave theory allows us to derive rough estimates of the wave intrinsic frequency and horizontal wavelengths, assuming that the observed wave structures are the result of pure internal gravity waves. Horizontal wavelengths of the waves at 65 km altitude are on the order of ≈300–450 km with horizontal phase speeds of roughly 5–10 m/s.  相似文献   

15.
Sub-millimeter 12CO (346 GHz) and 13CO (330 GHz) line absorptions, formed in the mesosphere and lower thermosphere of Venus (70–120 km), have been mapped across the nightside Venus disk during 2001–2009 inferior conjunctions, employing the James Clerk Maxwell Telescope (JCMT). Radiative transfer analysis of these thermal line absorptions supports temperature and CO mixing profile retrievals, as well as Doppler wind fields (described in the companion paper, Clancy et al., 2012). Temporal sampling over the hourly, daily, weekly and interannual timescales was obtained over 2001–2009. On timescales inferred as several weeks, we observe changes between very distinctive CO and temperature nightside distributions. Retrieved nightside CO, temperature distributions for January 2006 and August 2007 observations display strong local time, latitudinal gradients consistent with early morning (2–3 am), low-to-mid latitude (0–40NS) peaks of 100–200% in CO and 20–30 K in temperature. The temperature increases are most pronounced above 100 km altitudes, whereas CO variations extend from 105 km (top altitude of retrieval) down to below 80 km in the mesosphere. In contrast, the 2004 and 2009 periods of observation display modest temperature (5–10 K) and CO (30–60%) increases, that are centered on antisolar (midnight) local times and equatorial latitudes. Doppler wind derived global (zonal and should be SSAS) circulations from the same data do not exhibit variations correlated with these CO, temperature short-term variations. However, large-scale residual wind fields not fit by the zonal, SSAS circulations are observed in concert with the strong temperature, CO gradients observed in 2006 and 2007 (Clancy et al., 2010). These short term variations in nightside CO, temperature distributions may also be related to observed nightside variations in O2 airglow (Hueso, H., Sánchez-Lavega, A., Piccioni, G., Drossart, P., Gérard, J.C., Khatuntsev, I., Zasova, L., Migliorini, A. [2008]. J. Geophys. Res. 113, E00B02. doi:10.1029/2008JE003081) and upper mesospheric SO and SO2 layers (Sandor, B.J., Clancy, R.T., Moriarty-Schieven, G.H., Mills, F.P. [2010]. Icarus 208, 49–60).The retrieved temperature profiles also exhibit 20 K long-term (2001–2009) variations in nightside (whole disk) average mesospheric (80–95 km) temperatures, similar to 1982–1991 variations identified in previous millimeter CO line observations (Clancy et al., 1991). Global average diurnal variations in lower thermospheric temperatures and mesospheric CO abundances decreased by a factor-of-two between 2000–2002 versus 2007–2009 periods of combined dayside and nightside observations. The infrequency and still limited temporal extent of the observations make it difficult to assign specific timescales to such longer term variations, which may be associated with longer term variations observed for cloud top SO2 (Esposito, L.W., Bertaux, J.-L., Krasnopolsky, V., Moroz, V.I., Zasova, L.V. [1997]. Chemistry of lower atmosphere and clouds. In: Bougher, S.W., Hunten, D.M., Phillips, R.J. (Eds.), VENUS II, 1362pp) and mesospheric water vapor (Sandor, B.J., Clancy, R.T. [2005]. Icarus 177, 129–143) abundances.  相似文献   

16.
On its highly elliptical 24 h orbit around Venus, the Venus Express (VEX) spacecraft briefly reaches a periapsis altitude of nominally 250 km. Recently, however, dedicated and intense radio tracking campaigns have taken place in August 2008, October 2009, February and April 2010, for which the periapsis altitude was lowered to the 186–176 km altitude range in order to be able to probe the upper atmosphere of Venus above the North Pole for the first time ever in situ. As the spacecraft experiences atmospheric drag, its trajectory is measurably perturbed during the periapsis pass, allowing us to infer total atmospheric mass density at the periapsis altitude. A Precise Orbit Determination (POD) of the VEX motion is performed through an iterative least-squares fitting process to the Doppler tracking data, acquired by the VEX radioscience experiment (VeRa). The drag acceleration is modelled using an initial atmospheric density model (VTS3 model, Hedin, A.E., Niemann, H.B., Kasprzak, W.T., Seiff, A. [1983]. J. Geophys. Res. 88, 73–83). A scale factor of the drag acceleration is estimated for each periapsis pass, which scales Hedin’s density model in order to best fit the radio tracking data. Reliable density scale factors have been obtained for 10 passes mainly from the second (October 2009) and third (April 2010) VExADE campaigns, which indicate a lower density by a factor of about 1.8 than Hedin’s model predicts. These first ever in situ polar density measurements at solar minimum have allowed us to construct a diffusive equilibrium density model for Venus’ thermosphere, constrained in the lower thermosphere primarily by SPICAV-SOIR measurements and above 175 km by the VExADE drag measurements (Müller-Wodarg et al., in preparation). The preliminary results of the VExADE campaigns show that it is possible to obtain with the POD technique reliable estimates of Venus’ upper atmosphere densities at an altitude of around 175 km. Future VExADE campaigns will benefit from the planned further lowering of VEX pericenter altitude to below 170 km.  相似文献   

17.
《Planetary and Space Science》2007,55(12):1653-1672
The Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) on board the ESA/Venus Express mission has technical specifications well suited for many science objectives of Venus exploration. VIRTIS will both comprehensively explore a plethora of atmospheric properties and processes and map optical properties of the surface through its three channels, VIRTIS-M-vis (imaging spectrometer in the 0.3–1 μm range), VIRTIS-M-IR (imaging spectrometer in the 1–5 μm range) and VIRTIS-H (aperture high-resolution spectrometer in the 2–5 μm range). The atmospheric composition below the clouds will be repeatedly measured in the night side infrared windows over a wide range of latitudes and longitudes, thereby providing information on Venus's chemical cycles. In particular, CO, H2O, OCS and SO2 can be studied. The cloud structure will be repeatedly mapped from the brightness contrasts in the near-infrared night side windows, providing new insights into Venusian meteorology. The global circulation and local dynamics of Venus will be extensively studied from infrared and visible spectral images. The thermal structure above the clouds will be retrieved in the night side using the 4.3 μm fundamental band of CO2. The surface of Venus is detectable in the short-wave infrared windows on the night side at 1.01, 1.10 and 1.18 μm, providing constraints on surface properties and the extent of active volcanism. Many more tentative studies are also possible, such as lightning detection, the composition of volcanic emissions, and mesospheric wave propagation.  相似文献   

18.
Nightglow emissions provide insight into the global thermospheric circulation, specifically in the transition region (~70–120 km). The O2 IR nightglow statistical map created from Venus Express (VEx) Visible and InfraRed Thermal Imaging Spectrometer (VIRTIS) observations has been used to deduce a three-dimensional atomic oxygen density map. In this study, the National Center of Atmospheric Research (NCAR) Venus Thermospheric General Circulation Model (VTGCM) is utilized to provide a self-consistent global view of the atomic oxygen density distribution. More specifically, the VTGCM reproduces a 2D nightside atomic oxygen density map and vertical profiles across the nightside, which are compared to the VEx atomic oxygen density map. Both the simulated map and vertical profiles are in close agreement with VEx observations within a ~30° contour of the anti-solar point. The quality of agreement decreases past ~30°. This discrepancy implies the employment of Rayleigh friction within the VTGCM may be an over-simplification for representing wave drag effects on the local time variation of global winds. Nevertheless, the simulated atomic oxygen vertical profiles are comparable with the VEx profiles above 90 km, which is consistent with similar O2 (1Δ) IR nightglow intensities. The VTGCM simulations demonstrate the importance of low altitude trace species as a loss for atomic oxygen below 95 km. The agreement between simulations and observations provides confidence in the validity of the simulated mean global thermospheric circulation pattern in the lower thermosphere.  相似文献   

19.
The Venus Express (VEX) mission has been in orbit to Venus for more than 4 years now. The Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) instrument onboard VEX observes Venus in two channels (visible and infrared) obtaining spectra and multi-wavelength images of the planet that can be used to sample the atmosphere at different altitudes. Day-side images in the ultraviolet range (380 nm) are used to study the dynamics of the upper cloud at 66–72 km while night-side images in the near infrared (1.74 μm) map the opacity of the lower cloud deck at 44–48 km. Here we present a long-term analysis of the global atmospheric dynamics at these levels using a large selection of orbits from the VIRTIS-M dataset covering 860 Earth days that extends our previous work (Sánchez-Lavega, A. et al. [2008]. Geophys. Res. Lett. 35, L13204) and allows studying the variability of the global circulation at the two altitude levels. The atmospheric superrotation is evident with equatorial to mid-latitudes westward velocities of 100 and 60 m s?1 in the upper and lower cloud layers. These zonal velocities are almost constant in latitude from the equator to 50°S. From 50°S to 90°S the zonal winds at both cloud layers decrease steadily to zero at the pole. Individual cloud tracked winds have errors of 3–10 m s?1 with a mean of 5 m s?1 and the standard deviations for a given latitude of our zonal and meridional winds are 9 m s?1. The zonal winds in the upper cloud change with the local time in a way that can be interpreted in terms of a solar tide. The zonal winds in the lower cloud are stable at mid-latitudes to the tropics and present variability at subpolar latitudes apparently linked to the activity of the South polar vortex. While the upper cloud presents a net meridional motion consistent with the upper branch of a Hadley cell with peak velocity v = 10 m s?1 at 50°S, the lower cloud meridional motions are less organized with some cloud features moving with intense northwards and southwards motions up to v = ±15 m s?1 but, on average, with almost null global meridional motions at all latitudes. We also examine the long-term behavior of the winds at these two vertical layers by comparing our extended wind tracked data with results from previous missions.  相似文献   

20.
《Planetary and Space Science》2007,55(12):1701-1711
The Venus Express mission will focus on a global investigation of the Venus atmosphere and plasma environment, while additionally measuring some surface properties from orbit. The instruments PFS and SPICAV inherited from the Mars Express mission and VIRTIS from Rosetta form a powerful spectrometric and spectro-imaging payload suite. Venus Monitoring Camera (VMC)—a miniature wide-angle camera with 17.5° field of view—was specifically designed and built to complement these experiments and provide imaging context for the whole mission. VMC will take images of Venus in four narrow band filters (365, 513, 965, and 1000 nm) all sharing one CCD. Spatial resolution on the cloud tops will range from 0.2 km/px at pericentre to 45 km/px at apocentre when the full Venus disc will be in the field of view. VMC will fulfill the following science goals: (1) study of the distribution and nature of the unknown UV absorber; (2) determination of the wind field at the cloud tops (70 km) by tracking the UV features; (3) thermal mapping of the surface in the 1 μm transparency “window” on the night side; (4) determination of the global wind field in the main cloud deck (50 km) by tracking near-IR features; (5) study of the lapse rate and H2O content in the lower 6–10 km; (6) mapping O2 night-glow and its variability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号