首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
We use archive HST WFPC2 data for three elliptical galaxies (NGC 3379 in the Leo I group, and NGC 4472 and 4406 in the Virgo cluster) to determine their distances using the surface brightness fluctuation (SBF) method as described by Tonry &38; Schneider. A comparison of the HST results with the SBF distance moduli found by Ciardullo et al. shows significant disagreement and suggests that the rms error on these ground-based distance moduli is actually as large as ± 0.25 mag. The agreement is only slightly improved when we compare our results with the HST and ground-based SBF distances from Ajhar et al. and Tonry et al.; the comparison suggests that a lower limit on the error of the HST SBF distance moduli is ± 0.17 mag. Overall, these results suggest that previously quoted measurement errors may underestimate the true error in SBF distance moduli by at least a factor of 2–3.  相似文献   

2.
From a new mosaic image in the Hα line of the complete disc of the spiral galaxy M100, a catalogue is composed listing 1948 individual H II regions. I give details of the data collection and reduction procedure, and of the production of the H II region catalogue. For each H II region, the catalogue gives its position relative to the centre of the galaxy, its deprojected distance to the centre, its radius and its calibrated luminosity. An indication is included as to whether the H II region is located in the arms, between them, or in the circumnuclear star-forming region. I present the results of a statistical study of properties of the H II regions. The luminosity function of the complete ensemble of H II regions shows a characteristic shape well fitted by a power-law slope in the higher luminosity range, and complying with literature values for galaxies like M100. Luminosity function slopes for arm and interarm H II region populations separately are found to be equal within the errors of the fits, indicating that whereas the density wave accumulates material into the arm regions, and may trigger star formation there, it does not in fact change the mass distribution of the star-forming clouds, nor the statistical properties of the H II region population. Diameter distributions and the radial number density distribution are discussed. The latter indicates those areas where most star formation occurs: the circumnuclear region and the spiral arms. The huge number of H II regions allowed the construction of a number of independent luminosity functions at different distances to the nucleus. The slope of the luminosity function shows a marginal decrease with increasing distance from the centre, which could indicate a gradual change towards shallower IMF slopes with increasing galactocentric distance, or an evolutionary effect.  相似文献   

3.
Parallax measurements allow distances to celestial objects to be determined. Together with measurements of their position on the celestial sphere, they give a full three-dimensional picture of the location of the objects relative to the observer. The distortion of the parallax value of a distant source affected by weak microlensing is considered. This means that the weak microlensing leads to distortion of the distance scale. The gravitational deflection causes a retrograde apparent motion of the image, which is revealed as a negative parallax. It is shown that the distortions may significantly change the parallax values when they amount to several microseconds of arc. In particular, at this level many measured values of parallaxes should be negative.  相似文献   

4.
We perform a series of comparisons between distance-independent photometric and spectroscopic properties used in the surface brightness fluctuation (SBF) and fundamental plane (FP) methods of early-type galaxy distance estimation. The data are taken from two recent surveys: the SBF Survey of Galaxy Distances and the Streaming Motions of Abell Clusters (SMAC) FP survey. We derive a relation between     colour and Mg2 index using nearly 200 galaxies and discuss implications for Galactic extinction estimates and early-type galaxy stellar populations. We find that the reddenings from Schlegel et al. for galaxies with     appear to be overestimated by     per cent, but we do not find significant evidence for large-scale dipole errors in the extinction map. In comparison with stellar population models having solar elemental abundance ratios, the galaxies in our sample are generally too blue at a given Mg2; we ascribe this to the well-known enhancement of the α -elements in luminous early-type galaxies. We confirm a tight relation between stellar velocity dispersion σ and the SBF 'fluctuation count' parameter N¯ , which is a luminosity-weighted measure of the total number of stars in a galaxy. The correlation between N¯ and σ is even tighter than that between Mg2 and σ . Finally, we derive FP photometric parameters for 280 galaxies from the SBF survey data set. Comparisons with external sources allow us to estimate the errors on these parameters and derive the correction necessary to bring them on to the SMAC system. The data are used in a forthcoming paper, which compares the distances derived from the FP and SBF methods.  相似文献   

5.
Microlensing promises to be a powerful tool for studying distant galaxies and quasars. As the data and models improve, there are systematic effects that need to be explored. Quasar continuum and broad-line regions may respond differently to microlensing due to their different sizes; to understand this effect, we study microlensing of finite sources by a mass function of stars. We find that microlensing is insensitive to the slope of the mass function but does depend on the mass range. For negative-parity images, diluting the stellar population with dark matter increases the magnification dispersion for small sources and decreases it for large sources. This implies that the quasar continuum and broad-line regions may experience very different microlensing in negative-parity lensed images. We confirm earlier conclusions that the surface brightness profile and geometry of the source have little effect on microlensing. Finally, we consider non-circular sources. We show that elliptical sources that are aligned with the direction of shear have larger magnification dispersions than sources with perpendicular alignment, an effect that becomes more prominent as the ellipticity increases. Elongated sources can lead to more rapid variability than circular sources, which raises the prospect of using microlensing to probe source shape.  相似文献   

6.
The main aim of microlensing experiments is to evaluate the mean mass of massive compact halo objects (MACHOs) and the mass fraction of the Galactic halo made by this type of dark matter. Statistical analysis shows that by considering a Dirac-Delta mass function (MF) for the MACHOs, their mean mass is about that of a white dwarf star. This result is, however, in discrepancy with other observations such as those of non-observed expected white dwarfs in the Galactic halo which give rise to metal abundance, polluting the interstellar medium by their evolution. Here we use the hypothesis of the spatially varying MF of MACHOs, proposed by Kerins and Evans to interpret microlensing events. In this model, massive lenses with a lower population contribute to the microlensing events more frequently than do dominant brown dwarfs. This effect causes the mean mass of the observed lenses to be larger than the mean mass of all the lenses. A likelihood analysis is performed to find the best parameters of the spatially varying MF that are compatible with the duration distribution of Large Magellanic Cloud microlensing candidates of the MACHO experiment.  相似文献   

7.
We present an analysis of X-ray variability in a sample of 156 radio-quiet quasars taken from the ROSAT archive, covering a redshift range  0.12)  in the sense that QSOs of the same X-ray luminosity are more variable at  z>2  . We discuss possible explanations for this effect. The simplest explanation may be that high-redshift QSOs are accreting at a larger fraction of the Eddington limit than local AGNs.  相似文献   

8.
A number of studies have shown that the visibility of scattered broad emission lines in Seyfert 2 galaxies is strongly dependent on the IRAS     flux ratio, where those Seyfert 2 galaxies with 'warm' IRAS colours show polarized broad line emission. It is now clear that this effect is owing to the increasing dominance of the galactic rather than the active galactic nucleus (AGN) emission at 60 μm in less-luminous 'cool' Seyfert 2 galaxies. However, we present evidence that the 25-μm emission is a good measure of the AGN luminosity for most Seyfert 2 galaxies. Using this result, we show that the visibility of scattered broad line emission has a dependence on the AGN luminosity. The observations can be interpreted self-consistently if the scaleheight of the scattering zone varies with central source luminosity whilst the scaleheight of the obscuring torus is approximately constant.  相似文献   

9.
In unified models of active galaxies the direct line of sight to the nucleus is unobscured only within a certain cone of directions. An opening angle for this cone is usually estimated by methods such as the overall ratio of Seyfert 1s to Seyfert 2s, the latter assumed to be obscured versions of the former. Here we shall show, as has often been suspected, that the opening angle of the cone depends on the luminosity of the central source, with higher luminosities corresponding to larger opening angles. This conclusion depends only on the assumption that the width of the broad emission lines at a given luminosity is a measure of inclination angle, an assumption that is supported by observation in radio-loud systems. On the other hand we show that the scatter in X-ray spectral index is not primarily an effect of viewing angle, in contrast to what might be expected if the scatter on the spectral index versus luminosity relation were a consequence of absorption in the obscuring material. The observed correlation between linewidth and spectral index appears to be a further consequence of the dependence of opening angle on luminosity.  相似文献   

10.
We show that binned differential luminosity functions constructed using the 1/ V a method have a significant systematic error for objects close to the flux limit(s) of their parent sample. This is particularly noticeable when luminosity functions are produced for a number of different redshift ranges as is common in the study of AGN or galaxy evolution. We present a simple method of constructing a binned luminosity function which overcomes this problem and has a number of other advantages over the traditional 1/ V a method. We also describe a practical method for comparing binned and model luminosity functions, by calculating the expectation values of the binned luminosity function from the model.
Binned luminosity functions produced by the two methods are compared for simulated data and for the Large Bright QSO Survey (LBQS). It is shown that the 1/ V a method produces a very misleading picture of evolution in the LBQS. The binned luminosity function of the LBQS is then compared with a model two-power-law luminosity function undergoing pure luminosity evolution from Boyle et al. The comparison is made using a model luminosity function averaged over each redshift shell, and using the expectation values for the binned luminosity function calculated from the model. The luminosity function averaged in each redshift shell gives a misleading impression that the model over predicts the number of QSOs at low luminosity even for 1.0< z <1.5, when model and data are consistent. The expectation values show that there are significant differences between model and data: the model overpredicts the number of low luminosity sources at both low and high redshift. The luminosity function does not appear to steepen relative to the model as redshift increases.  相似文献   

11.
Low-frequency radio surveys are ideal for selecting orientation-independent samples of extragalactic sources because the sample members are selected by virtue of their isotropic steep-spectrum extended emission. We use the new 7C Redshift Survey along with the brighter 3CRR and 6C samples to investigate the fraction of objects with observed broad emission lines – the 'quasar fraction'– as a function of redshift and of radio and narrow-emission-line luminosity. We find that the quasar fraction is more strongly dependent upon luminosity (both narrow-line and radio) than it is on redshift. Above a narrow [O  ii ] emission-line luminosity of log10( L [O  ii ]/W)≳35 [or radio luminosity log10( L 151/W Hz−1 sr−1)≳ 26.5], the quasar fraction is virtually independent of redshift and luminosity; this is consistent with a simple unified scheme with an obscuring torus with a half-opening angle θ trans≈53°. For objects with less luminous narrow lines, the quasar fraction is lower. We show that this is not due to the difficulty of detecting lower luminosity broad emission lines in a less luminous, but otherwise similar, quasar population. We discuss evidence which supports at least two probable physical causes for the drop in quasar fraction at low luminosity: (i) a gradual decrease in θ trans and/or a gradual increase in the fraction of lightly reddened (0≲ A V ≲5) lines of sight with decreasing quasar luminosity; and (ii) the emergence of a distinct second population of low-luminosity radio sources which, like M87, lack a well-fed quasar nucleus and may well lack a thick obscuring torus.  相似文献   

12.
The luminosity function of galaxies is derived from a cosmological hydrodynamic simulation of a Λ cold dark matter universe with the aid of a stellar population synthesis model. At     , the resulting B -band luminosity function has a flat faint-end slope of     with the characteristic luminosity and the normalization in fair agreement with observations, while the dark matter halo mass function is steep with a slope of     . The colour distribution of galaxies also agrees well with local observations. We also discuss the evolution of the luminosity function, and the colour distribution of galaxies from     to 5. A large evolution of the characteristic mass in the stellar mass function as a result of number evolution is compensated by luminosity evolution; the characteristic luminosity increases only by 0.8 mag from     to 2, and then declines towards higher redshift, while the B -band luminosity density continues to increase from     to 5 (but only slowly at     .  相似文献   

13.
14.
We exclude hydrogen-burning stars, of any mass above the hydrogen-burning limit and any metallicity, as significant contributors to the massive haloes deduced from rotation curves to dominate the outer parts of spiral galaxies. We present and analyse images of four nearly edge-on bulgeless spiral galaxies (UGC 711, NGC 2915, UGC 12426, UGC 1459) obtained with ISOCAM (The CAMera instrument on board the Infrared Space Observatory ) at 14.5 and 6.75 μm. Our sensitivity limit for detection of any diffuse infrared emission associated with the dark haloes in these galaxies is a few tens of μJy per 6 × 6 arcsec2 pixel, with this limit currently set by remaining difficulties in modelling the non-linear behaviour of the detectors. All four galaxies show zero detected signal from extended non-disc emission, consistent with zero halo-like luminosity density distribution. The 95 per cent upper limit on any emission, for NGC 2915 in particular, allows us to exclude very low mass main-sequence stars ( M  > 0.08 M⊙) and young brown dwarfs (≲1 Gyr) as significant contributors to dark matter in galactic haloes. Combining our results with those of the Galactic microlensing surveys, which exclude objects with M  < 0.01 M⊙, excludes almost the entire possible mass range of compact baryonic objects from contributing to Galactic dark matter.  相似文献   

15.
We use K '-band (2.1-μm) imaging to investigate the angular size and morphology of 10 6C radio galaxies, at redshifts 1≤ z ≤1.4. Two radio galaxies appear to be undergoing mergers, another contains, within a single envelope, two intensity peaks aligned with the radio jets, while the other seven appear consistent with being normal ellipticals in the K band.
Intrinsic half-light radii are estimated from the areas of each radio galaxy image above a series of thresholds. The 6C galaxy radii are found to be significantly smaller than those of the more radio-luminous 3CR galaxies at similar redshifts. This would indicate that the higher mean K -band luminosity of the 3CR galaxies reflects a difference in the size of the host galaxies, and not solely a difference in the power of the active nuclei.
The size–luminosity relation of the z ∼1.1 6C galaxies indicates a 1.0–1.6 mag enhancement of their rest frame R -band surface brightness relative to either local ellipticals of the same size or FRII radio galaxies at z <0.2. The 3CR galaxies at z ∼1.1 show a comparable enhancement in surface brightness. The mean radius of the 6C galaxies suggests that they evolve into ellipticals of L ∼ L * luminosity, and is consistent with their low-redshift counterparts being relatively small FRII galaxies ∼25 times lower in radio luminosity, or small FRI galaxies ∼1000 times lower in radio luminosity. Hence the 6C radio galaxies appear to undergo as much optical and radio evolution as the 3CR galaxies.  相似文献   

16.
We present the results from a CCD survey of the B -band luminosity function of nine clusters of galaxies, and compare them to published photographic luminosity functions of nearby poor clusters like Virgo and Fornax, and also to the field luminosity function. We derive a composite luminosity function by taking the weighted mean of all the individual cluster luminosity functions; this composite luminosity function is steep at bright and faint magnitudes and is shallow in-between.
All clusters have luminosity functions consistent with this single composite function. This is true both for rich clusters like Coma and for poor clusters like Virgo.
This same composite function is also individually consistent with the deep field luminosity functions found by Cowie et al. and Ellis et al., and also with the faint end of the Las Campanas Redshift Survey R -band luminosity function, shifted by 1.5 mag. A comparison with the Loveday et al. field luminosity function, which is well determined at the bright end, shows that the composite function, which fits the field data well fainter than M B=−19, drops too steeply between M B=−19 and −22 to fit the field data there.  相似文献   

17.
We measure the local galaxy far-infrared (FIR) 60 to 100 μm colour–luminosity distribution using an all-sky IRAS survey. This distribution is an important reference for the next generation of FIR–submillimetre surveys that have and will conduct deep extragalactic surveys at 250–500 μm. With the peak in dust-obscured star-forming activity leading to present-day giant ellipticals now believed to occur in submillimetre galaxies near   z ∼ 2.5  , these new FIR–submillimetre surveys will directly sample the spectral energy distributions of these distant objects at rest-frame FIR wavelengths similar to those at which local galaxies were observed by IRAS . We have taken care to correct for the temperature bias and the evolution effects in our IRAS 60-μm-selected sample. We verify that our colour–luminosity distribution is consistent with the measurements of the local FIR luminosity function, before applying it to the higher redshift Universe. We compare our colour–luminosity correlation with recent dust–temperature measurements of submillimetre galaxies and find evidence for pure luminosity evolution of the form  (1 + z )3  . This distribution will be useful for the development of evolutionary models for Balloon-borne Large Aperture Submillimeter Telescope (BLAST) and Spectral and Photometric Imaging Receiver (SPIRE) surveys as it provides a statistical distribution of the rest-frame dust temperatures for galaxies as a function of luminosity.  相似文献   

18.
We study the location of massive disc galaxies on the Tully–Fisher (TF) relation. Using a combination of K -band photometry and high-quality rotation curves, we show that in traditional formulations of the TF relation (using the width of the global H  i profile or the maximum rotation velocity), galaxies with rotation velocities larger than 200 km s−1 lie systematically to the right of the relation defined by less massive systems, causing a characteristic 'kink' in the relations. Massive, early-type disc galaxies in particular have a large offset, up to 1.5 mag, from the main relation defined by less massive and later-type spirals.
The presence of a change in slope at the high-mass end of the TF relation has important consequences for the use of the TF relation as a tool for estimating distances to galaxies or for probing galaxy evolution. In particular, the luminosity evolution of massive galaxies since z ≈ 1 may have been significantly larger than estimated in several recent studies.
We also show that many of the galaxies with the largest offsets have declining rotation curves and that the change in slope largely disappears when we use the asymptotic rotation velocity as kinematic parameter. The remaining deviations from linearity can be removed when we simultaneously use the total baryonic mass (stars + gas) instead of the optical or near-infrared luminosity. Our results strengthen the view that the TF relation fundamentally links the mass of dark matter haloes with the total baryonic mass embedded in them.  相似文献   

19.
We report the discovery of 42 red supergiant variables (RSVs) in the late-type spiral galaxy M101. Periods for the luminosity variation of these RSVs were determined from 20 epochs of ground-based CCD photometry in the Kron–Cousins R band obtained with the KPNO 2.1-m and WIYN 3.5-m telescopes over a span of three years. The periods found were in the range 200–1300 days. Using the relationship between the RSV periods and their luminosity in the Kron–Cousins I band, we estimate a reddening-corrected distance modulus to M101 of 29.40±0.16 mag (based on a distance modulus of 18.5±0.1 mag for the Large Magellanic Cloud). This distance is consistent with the Hubble Space Telescope Key Project Cepheid distances of 29.34±0.17 mag for the outer field of M101 and 29.21±0.17 mag for the inner field.  相似文献   

20.
Based on measured broad line region sizes in the reverberation-mapping AGN sample, two new empirical relations are introduced to estimate the central black hole masses of radio-loud high-redshift (z > 0.5) AGNs. First, using the archival IUE/HST spectroscopy data at UV band for the reverberation-mapping objects, we obtained two new empirical relations between the BLR size and Mg II/C IV emission line luminosity. Secondly, using the newly determined black hole masses of the reverberation-mapping sample as calibration, we found two new relationships for determining the black hole mass with the full width at half maximum and the luminosity of Mg II/C IV line. We then apply the relations to estimate the black hole masses of the AGNs in the Large Bright Quasar Survey and a sample of radio-loud quasars. For the objects with small radio-loudness, the black hole mass estimated using the RBLR-LMgII/C IV relation is consistent with that from the RBLR-L3000 (?)/1350(?) relation. For radio-loud AGNs, however, the mass estimated from the RBLR-LMgII/CIV relation is sys- tematically lower than that from the continuum luminosity L3000(?)/1350(?). Because jets could have significant contributions to the UV/optical continuum luminosity of radio-loud AGNs, we emphasize once again that for radio-loud AGNs, the emission line luminosity may be a better tracer of the ionizing luminosity than the continuum luminosity, so that the relations between the BLR size and UV emission line luminosities should be used to estimate the black hole masses of high redshift radio-loud AGNs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号