首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
The upper Yangtze River region is one of the most frequent debris flow areas in China. The study area contains a cascade of six large hydropower stations located along the river with total capacity of more than 70 million kilowatts. The purpose of the study was to determine potential and dynamic differences in debris flow susceptibility and intensity with regard to seasonal monsoon events. We analyzed this region’s debris flow history by examining the effective peak acceleration of antecedent earthquakes, the impacts of antecedent droughts, the combined effects of earthquakes and droughts, with regard to topography, precipitation, and loose solid material conditions. Based on these factors, we developed a debris flow susceptibility map. Results indicate that the entire debris flow susceptibility area is 167,500 km2, of which 26,800 km2 falls within the high susceptibility area, with 60,900 km2 in medium and 79,800 km2 are in low susceptibility areas. Three of the six large hydropower stations are located within the areas with high risk of debris flows. The synthetic zonation map of debris flow susceptibility for the study area corresponds with both the investigation data and actual distribution of debris flows. The results of debris flow susceptibility provide base-line data for mitigating, assessing, controlling and monitoring of debris flows hazards.  相似文献   

2.
In this paper,an updated vegetation map of the permafrost zone in the Qinghai-Tibet Plateau(QTP) was delineated.The vegetation map model was extracted from vegetation sampling with remote sensing(RS) datasets by decision tree method.The spatial resolution of the map is 1 km×1 km,and in it the alpine swamp meadow is firstly distinguished in the high-altitude areas.The results showed that the total vegetated area in the permafrost zone of the QTP is 1,201,751 km~2.In the vegetated region,50,260 km~2 is the areas of alpine swamp meadow,583,909 km~2 for alpine meadow,332,754 km~2 for alpine steppe,and 234,828 km~2 for alpine desert.This updated vegetation map in permafrost zone of QTP could provide more details about the distribution of alpine vegetation types for studying the vegetation mechanisms in the land surface processes of highaltitude areas.  相似文献   

3.
The spatial resolution of source data, the impact factor selection on the grid model and the size of the grid might be the main limitations of global land datasets applied on a regional scale. Quantitative studies of the impacts of rasterization on data accuracy can help improve data resolution and regional data accuracy. Through a case study of cropland data for Jiangsu and Anhui provinces in China, this research compared data accuracy with different data sources, rasterization methods, and grid sizes. First, we investigated the influence of different data sources on gridded data accuracy. The temporal trends of the History Database of the Global Environment(HYDE), Chinese Historical Cropland Data(CHCD), and Suwan Cropland Data(SWCD) datasets were more similar. However, different spatial resolutions of cropland source data in the CHCD and SWCD datasets revealed an average difference of 16.61% when provincial and county data were downscaled to a 10 × 10 km~2 grid for comparison. Second, the influence of selection of the potential arable land reclamation rate and temperature factors, as well as the different processing methods for water factors, on accuracy of gridded datasets was investigated. Applying the reclamation rate of potential cropland to grid-processing increased the diversity of spatial distribution but resulted in only a slightly greater standard deviation, which increased by 4.05. Temperature factors only produced relative disparities within 10% and absolute disparities within 2 km~2 over more than 90% of grid cells. For the different processing methods for water factors, the HYDE dataset distributed 70% more cropland in grid cells along riverbanks, at the abandoned Yellow River Estuary(located in Binhai County, Yancheng City, Jiangsu Province), and around Hongze Lake, than did the SWCD dataset. Finally, we explored the influence of different grid sizes. Absolute accuracy disparities by unit area for the year 2000 were within 0.1 km~2 at a 1 km~2 grid size, a 25% improvement over the 10 km~2 grid size. Compared to the outcomes of other similar studies, this demonstrates that some model hypotheses and grid-processing methods in international land datasets are truly incongruent with actual land reclamation processes, at least in China. Combining the model-based methods with historical empirical data may be a better way to improve the accuracy of regional scale datasets. Exploring methods for the above aspects improved the accuracy of historical cropland gridded datasets for finer regional scales.  相似文献   

4.
Zhaotong Prefecture has the area of 22,434km2, where there are more than 330 debris flow ravines, with the average spatial density of 14.7 spots per 1,000km2. According to the method of evaluation on the regional risk of debris flow, this study has come to the following conclusions: Qiaojia County-risk grade V; Yongshan, Yanjin, Ludian, Daguan, Weixin and Zhenxiong counties-risk grade III; Yiliang, Suijiang-Shuifu and Zhaotong City-risk grade II. Compared with the field investigation, the result is satisfied.  相似文献   

5.
Influences of the Wenchuan Earthquake on sediment supply of debris flows   总被引:2,自引:2,他引:0  
The 5.12 Wenchuan Earthquake and the subsequent rainstorms induced a large number of landslides, which later were transformed into debris flows. To evaluate the effect of the earthquake on the sediment supply of debris flows, eight debris flow basins near Beichuan City, Sichuan Province, China were chosen as the study area. The area variations of the debris flow source after the Wenchuan Earthquake and the subsequent rainstorm are analyzed and discussed in this paper. Interpretations of aerial photographs (after the 5.12 Wenchuan Earthquake) and SPOT5 images (after the rainstorm event of September 24, 2008) as well as field investigations were compared to identify the transformation of landslide surface in the study area, indicating that the landslide area in the eight debris flow basins significantly increased. The loose sediment area on the channel bed increased after the rainstorm event. In order to estimate the relationship of the landslide area with the rainfall intensity in different return periods, a model proposed by Uchihugi was adopted. Results show that new landslide area induced by heavy rainfall with 50-year and 100-year return period will be 0.87 km2 and 1.67 km2, respectively. The study results show the Wenchuan earthquake had particular influences on subsequent rainfall-induced debris flow occurrence.  相似文献   

6.
《山地科学学报》2020,17(2):329-339
Debris-flow disasters occurred frequently after the Mw 8.0 Wenchuan earthquake on 12 May 2008 in Sichuan Province, China. Based on historical accounts of debris-flow disaster events, it found that debris flow occurrence is closely related to the impact of earthquakes and droughts, because earthquakedrought activities can increase the loose solid materials, which can transform into debris flows under the effect of rainstorms. Based on the analysis of historical earthquake activity(frequency, magnitude and location), drought indexes and the trend of climate change(amount of rainfall), a prediction method was established, and the regional debris flow susceptibility was predicted. Furthermore, in a debris flow-susceptible site, effective warning and monitoring are essential not only from an economicpoint of view but are also considered as a frontline approach to alleviate hazards. The advantages of the prediction and early monitoring include(1) the acquired results being sent to the central government for policy making;(2) lives and property in mountainous areas can be protected, such as the 570 residents in the Aizi valley, who evacuated successfully before debris flows in 2012;(3) guiding the government to identify the areas of disasters and the preparation for disaster prevention and mitigation, such as predicting disasters in high-risk areas in the period 2012-2017, helping the government to recognize the development trend of disasters;(4) the quantitative prediction of regional debris-flow susceptibility, such as after the Wenchuan earthquake, can promote scientific and sustainable development and socioeconomic planning in earthquake-struck areas.  相似文献   

7.
The assessment of the areas endangered by debris flows is a major issue in the context of mountain watershed management. Depending on the scale of analysis, different methods are required for the assessment of the areas exposed to debris flows. While 2-D numerical models are advised for detailed mapping of inundation areas on individual alluvial fans, preliminary recognition of hazard areas at the regional scale can be adequately performed by less data-demanding methods, which enable priority ranking of channels and alluvial fans at risk by debris flows. This contribution focuses on a simple and fast procedure that has been implemented for regional-scale identification of debris-flow prone channels and prioritization of the related alluvial fans. The methodology is based on the analysis of morphometric parameters derived from Digital Elevation Models (DEMs). Potential initiation sites of debris flows are identified as the DEM cells that exceed a threshold of slope-dependent contributing area. Channel reaches corresponding to debris flows propagation, deceleration and stopping conditions are derived from thresholds of local slope. An analysis of longitudinal profiles is used for the computation of the runout distance of debris flows. Information on erosion-resistant bedrock channels and sediment availability surveyed in the field are taken into account in the applications. A set of software tools was developed and made available (https://github.com/HydrogeomorphologyTools) to facilitate the application of the procedure. This approach, which has been extensively validated by means of field checks, has been extensively applied in the eastern Italian Alps. This contribution discusses potential and limitations of the method in the frame of the management of small mountain watersheds.  相似文献   

8.
Matching soil grid unit resolutions with polygon unit map scales is important to minimize the uncertainty of regional soil organic carbon(SOC) pool simulation due to their strong influences on the modeling.A series of soil grid units at varying cell sizes was derived from soil polygon units at six map scales,namely,1:50 000(C5),1:200 000(D2),1:500 000(P5),1:1 000 000(N1),1:4 000 000(N4) and 1:14 000 000(N14),in the Taihu Region of China.Both soil unit formats were used for regional SOC pool simulation with a De Nitrification-DeC omposition(DNDC) process-based model,which spans the time period from 1982 to 2000 at the six map scales.Four indices,namely,soil type number(STN),area(AREA),average SOC density(ASOCD) and total SOC stocks(SOCS) of surface paddy soils that were simulated by the DNDC,were distinguished from all these soil polygon and grid units.Subjecting to the four index values(IV) from the parent polygon units,the variations in an index value(VIV,%) from the grid units were used to assess its dataset accuracy and redundancy,which reflects the uncertainty in the simulation of SOC pools.Optimal soil grid unit resolutions were generated and suggested for the DNDC simulation of regional SOC pools,matching their respective soil polygon unit map scales.With these optimal raster resolutions,the soil grid units datasets can have the same accuracy as their parent polygon units datasets without any redundancy,when VIV 1% was assumed to be a criterion for all four indices.A quadratic curve regression model,namely,y = – 0.80 × 10~(–6)x~2 + 0.0228 x + 0.0211(R~2 = 0.9994,P 0.05),and a power function model R? = 10.394?~(0.2153)(R~2 = 0.9759,P 0.05) were revealed,which describe the relationship between the optimal soil grid unit resolution(y,km) and soil polygon unit map scale(1:10 000x),the ratio(R?,%) of the optimal soil grid size to average polygon patch size(?,km~2) and the ?,with the highest R~2 among different mathematical regressions,respectively.This knowledge may facilitate the grid partitioning of regions during the investigation and simulation of SOC pool dynamics at a certain map scale,and be referenced to other landscape polygon patches' mesh partition.  相似文献   

9.
The Ms 8.0 May 12,2008 Wenchuan earthquake triggered tens of thousands of landslides.The widespread landslides have caused serious casualties and property losses,and posed a great threat to post-earthquake reconstruction.A spatial database,inventoried 43,842 landslides with a total area of 632 km 2,was developed by interpretation of multi-resolution remote sensing images.The landslides can be classified into three categories:swallow,disrupted slides and falls;deep-seated slides and falls,and rock avalanches.The correlation between landslides distribution and the influencing parameters including distance from co-seismic fault,lithology,slope gradient,elevation,peak ground acceleration(PGA) and distance from drainage were analyzed.The distance from co-seismic fault was the most significant parameter followed by slope gradient and PGA was the least significant one.A logistic regression model combined with bivariate statistical analysis(BSA) was adopted for landslide susceptibility mapping.The study area was classified into five categories of landslide susceptibility:very low,low,medium,high and very high.92.0% of the study area belongs to low and very low categories with corresponding 9.0% of the total inventoried landslides.Medium susceptible zones make up 4.2% of the area with 17.7% of the total landslides.The rest of the area was classified into high and very high categories,which makes up 3.9% of the area with corresponding 73.3% of the total landslides.Although the susceptibility map can reveal the likelihood of future landslides and debris flows,and it is helpful for the rebuilding process and future zoning issues.  相似文献   

10.
The Longchi area with the city of Dujiangyan, in the Sichuan province of China, is composed of Permian stone and diorites and Triassic sandstones and mudstones intercalated with slates. An abundance of loose co-seismic materials were present on the slopes after the May 12, 2008 Wenchuan earthquake, which in later years served as source material for rainfall-induced debris flows or shallow landslides. A total of 48 debris flows, all triggered by heavy rainfall on 13th August 20l0, are described in this paper. Field investigation, supported by remote sensing image interpretation, was conducted to interpret the co-seismic landslides in the debris flow gullies. Specific characteristics of the study area such as slope, aspect, elevation, channel gradient, lithology, and gully density were selected for the evaluation of debris flow susceptibility. A score was given to all the debris flow gullies based on the probability of debris flow occurrence for the selected factors. In order to get the contribution of the different factors, principal component analyses were applied. A comprehensive score was obtained for the 48 debris flow gullies which enabled us to make a susceptibility map for debris flows with three classes. Twenty-two gullies have a high susceptibility, twenty gullies show a moderate susceptibility and six gullies have a low susceptibility for debris flows.  相似文献   

11.
《山地科学学报》2020,17(1):156-172
Loose deposits, rainfall and topography are three key factors that triggering debris flows.However, few studies have investigated the effects of loose deposits on the whole debris flow process.On June 28, 2012, a catastrophic debris flow occurred in the Aizi Valley, resulting in 40 deaths.The Aizi Valley is located in the Lower Jinsha River,southwestern Sichuan Province, China. The Aizi Valley debris flow has been selected as a case for addressing loose deposits effects on the whole debris flow process through remote sensing, field investigation and field experiments. Remote sensing interpretation and laboratory experiments were used to obtain the distribution and characteristics of the loose deposits, respectively. A field experiment was conducted to explore the mechanics of slope debris flows, and another field investigation was conducted to obtain the processes of debris flow formation, movement and amplification. The results showed that loose deposits preparation, slope debris flow initiation,gully debris flow confluence and valley debris flow amplification were dominated by the loose deposits.Antecedent droughts and earthquake activities may have increased the potential for loose soil sources in the Aizi Valley, which laid the foundation for debris flow formation. Slope debris flow initiated under rainfall, and the increase in the water content as well as the pore water pressure of the loose deposits were the key factors affecting slope failure. The nine gully debris flows converged in the valley, and the peak discharge was amplified 3.3 times due to a blockage and outburst caused by a large boulder. The results may help in predicting and assessing regional debris flows in dry-hot and seismic-prone areas based on loose deposits, especially considering large boulders.  相似文献   

12.
Data collection, factor composition, nappe analysis and integrative simulation of natural geographical factors in Erlong Lake watershed have been carried out based on GIS. The risk areas where non-point source pollution may occur were compartmentalized and assessed, and the total soil erosion and the runoffs of N and P with rainfall in this valley were worked out by experiment and GIS mapping. The study indicated that the main type of soil erosion was moderate (erosion modulus is 1000–2500t/(km2·a)) at present, and the intense erosion areas are located in dry land with variable slope east of the lake and the middle-south parts of steep slope mountainous region (erosion modulus is more than 5000t/(km2·a)). Though the area is small, it should be paid attention to. The trend of non-point source pollution (NSP) of nitrogen and phosphorus loss was corresponded with the soil erosion. Spatial distribution and the reasons of the distribution difference have been presented and it was emphasized that the human activities among the influence factors was the most important. It surely offers a scientific basis to control and prevent non-point source pollution in the watershed. Foundation item: Under the auspices of the National Natural Science Foundation of China (No.50139020-5-2) and Science & Technology Committee of Jilin Province (No. 20010602) Biography: WANG Ning (1952–), female, a native of Beijing, associate professor, Ph.D., specialized in water and soil conservation and pollution control. E-mail: nwang@nenu.edu.cn  相似文献   

13.
Debris flow is a common natural hazard in the mountain areas of Western China due to favorable natural conditions,and also exacerbated by mountainous exploitation activities.This paper concentrated on the characteristics,causes and mitigation of a catastrophic mine debris flow hazard at Longda Watershed in Songpan County,Sichuan Province,on 21 July 2011.This debris flow deposited in the front of the No.1 dam,silted the drainage channel for flood and then rushed into tailing sediment reservoir in the main channel and made the No.2 dam breached.The outburst debris flow blocked Fu River,formed dammed lake and generated outburst flood,which delivered heavy metals into the lower reaches of Fu River,polluted the drink water source of the population of over 1 million.The debris flow was characterized with a density of 1.87~2.15 t/m 3 and a clay content of less than 1.63%.The peak velocity and flux at Longda Gully was over 10.0~10.9 m/s and 429.0~446.0 m 3 /s,respectively,and the flux was about 700 m 3 /s in main channel,equaling to the flux of the probability of 1%.About 330,000m 3 solid materials was transported by debris flow and deposited in the drainage tunnel(120,000~130,000 m 3),the front of No.1 dam(100,000 m 3) and the mouth of the watershed(100,000~110,000 m 3),respectively.When the peak flux and magnitude of debris flow was more than 462 m 3 /s and 7,423 m 3,respectively,it would block Fu River and produce a hazard chain which was composed of debris flow,dammed lake and outburst flood.Furthermore,the 21 July large-scale debris flow was triggered by rainstorm with an intensity of 21.2 mm/0.5 h and the solid materials of debris flow were provided by landslides,slope deposits,mining wastes and tailing sediments.The property losses were mainly originated from the silting of the drainage tunnel for flash flood but not for debris flow and the irrational location of tailing sediment reservoir.Therefore,the mitigation measures for mine debris flows were presented:(1) The disastrous debris flow watershed should be identified in planning period and prohibited from being taken as the site of mining factories;(2) The mining facilities are constructed at the safe areas or watersheds;(3) Scoria plots,concentrator factory and tailing sediment reservoir are constructed in safe areas where the protection measures be easily made against debris flows;(4) The appropriate system and plan of debris flow mitigation including monitoring,remote monitoring and early-warning and emergency plan is established;(5) The stability of waste dump and tailing sediment reservoir are monitored continuously to prevent mining debris flows.  相似文献   

14.
Earthquake-triggered landslides have aroused widespread attention because of their tremendous ability to harm people's lives and properties.The best way to avoid and mitigate their damage is to develop landslide hazard maps and make them available to the public in advance of an earthquake.Future construction can then be built according to the level of hazard and existing structures can be retrofit as necessary.During recent years various approaches have been made to develop landslide hazard maps using statistical analysis or physical models.However,these methods have limitations.This study introduces a new GIS-based approach,using the contributing weight model,to evaluate the hazard of seismically-induced landslides.In this study,the city and surrounding area of Dujiangyan was selected as the research area because of its moderate-high seismic activity.The parameters incorporated into the model that related to the probability of landslide occurrence were:slope gradient,slope aspect,geomorphology,lithology,base level,surface roughness,earthquake intensity,fault proximity,drainage proximity,and road proximity.The parameters were converted into raster data format with a resolution of 25×25m2 pixels.Analysis of the GIS correlations shows that the highest earthquake-induced landslide hazard areas are mainly in the hills and in some of the moderately steep mountainous areas of central Dujiangyan.The highest hazard zone covers an area of 11.1% of the study area,and the density distribution of seismically-induced landslides was 3.025/km2 from the 2008 Wenchuan earthquake.The moderately hazardous areas are mainly distributed within the moderately steep mountainous regions of the northern and southeastern parts of the study area and the hills of the northeastern part;covering 32.0% of the study area and with a density distribution of 2.123/km2 resulting from the Wenchuan earthquake.The lowest hazard areas are mainly distributed in the topographically flat plain in the northeastern part and some of the relatively gently slopes in the moderately steep mountainous areas of the northern part of Dujiangyan and the surrounding area.The lowest hazard areas cover 56.9% of the study area and exhibited landslide densities of 0.941/km2 and less from the Wenchuan earthquake.The quality of the hazard map was validated using a comparison with the distribution of landslides that were cataloged as occurring from the Wenchuan earthquake.43.1% of the study area consists of high and moderate hazardous zones,and these regions include 83.5% of landslides caused by the Wenchuan earthquake.The successful analysis shows that the contributing weight model can be effective for earthquake-triggered landslide hazard appraisal.The model's results can provide the basis for risk management and regional planning is.  相似文献   

15.
To mitigate the damage caused by debris flows resulting from heavy precipitation and to aid in evacuation plan preparation, areas at risk should be mapped on a scale appropriate for affected individuals and communities. We tested the effectiveness of simply identifying debris-flow hazards through automated derivation of surface curvatures using LiDAR digital elevation models. We achieved useful correspondence between plan curvatures and areas of existing debris-flow damage in two localities in Japan using the analysis of digital elevation models(DEMs). We found that plan curvatures derived from 10 m DEMs may be useful to indicate areas that are susceptible to debris flow in mountainous areas. In residential areas located on gentle sloping debris flow fans, the greatest damage to houses was found to be located in the elongated depressions that are connected to mountain stream valleys. Plan curvaturederived from 5 m DEM was the most sensitive indicators for susceptibility to debris flows.  相似文献   

16.
A debris flow forecast model based on a water-soil coupling mechanism that takes the debrisflow watershed as a basic forecast unit was established here for the prediction of disasters at the watershed scale.This was achieved through advances in our understanding of the formation mechanism of debris flow.To expand the applicable spatial scale of this forecasting model,a method of identifying potential debris flow watersheds was used to locate areas vulnerable to debris flow within a forecast region.Using these watersheds as forecasting units and a prediction method based on the water-soil coupling mechanism,a new forecasting method of debris flow at the regional scale was established.In order to test the prediction ability of this new forecasting method,the Sichuan province,China was selected as a study zone and the large-scale debris flow disasters attributable to heavy rainfall in this region on July 9,2013 were taken as the study case.According to debris flow disaster data on July 9,2013 which were provided by the geo-environmental monitoring station of Sichuan province,there were 252 watersheds in which debris flow events actually occurred.The current model predicted that 265 watersheds were likely to experience a debris flow event.Among these,43 towns including 204 debrisflow watersheds were successfully forecasted and 24 towns including 48 watersheds failed.The false prediction rate and failure prediction rate of thisforecast model were 23% and 19%,respectively.The results show that this method is more accurate and more applicable than traditional methods.  相似文献   

17.
The Wenchuan earthquake on May 12, 2008 caused numerous collapses, landslides, barrier lakes, and debris flows. Landslide susceptibility mapping is important for evaluation of environmental capacity and also as a guide for post-earthquake reconstruction. In this paper, a logistic regression model was developed within the framework of GIS to map landslide susceptibility. Qingchuan County, a heavily affected area, was selected for the study. Distribution of landslides was prepared by interpretation of multi-temporal and multi-resolution remote sensing images (ADS40 aerial imagery, SPOT5 imagery and TM imagery, etc.) and field surveys. The Certainly Factor method was used to find the influencial factors, indicating that lithologic groups, distance from major faults, slope angle, profile curvature, and altitude are the dominant factors influencing landslides. The weight of each factor was determined using a binomial logistic regression model. Landslide susceptibility mapping was based on spatial overlay analysis and divided into five classes. Major faults have the most significant impact, and landslides will occur most likely in areas near the faults. Onethird of the area has a high or very high susceptibility, located in the northeast, south and southwest, including 65.3% of all landslides coincident with the earthquake. The susceptibility map can reveal the likelihood of future failures, and it will be useful for planners during the rebuilding process and for future zoning issues.  相似文献   

18.
Soil erosion and associated off-site sedimentation are threatening the sustainable use of the Three Gorges Dam.To initiate management intervention to reduce sediment yields,there is an increasing need for reliable information on soil erosion in the Three Gorges Reservoir Region(TGRR).The purpose of this study is to use 137 Cs tracing methods to construct a sediment budget for a small agricultural catchment in the TGRR.Cores were taken from a pond and from paddy fields,for 137 Cs measurements.The results show that the average sedimentation rate in the pond since 1963 is 1.50 g cm-2 yr-1 and the corresponding amount of sediment deposited is 1,553 t.The surface erosion rate for the sloping cultivated lands and the sedimentation rate in the paddy fields were estimated to be 3,770 t km-2 yr-1 and 2,600 t km-2 yr-1,respectively.Based on the estimated erosion and deposition rates,and the area of each unit,the post 1970 sediment budget for the catchment has been constructed.A sediment delivery ratio of 0.5 has been estimated for the past 42 years.The data indicate that the sloping cultivated lands are the primary sediment source areas,and that the paddy fields are deposition zones.The typical land use pattern(with the upper parts characterized by sloping cultivated land and the lower parts by paddy fields) plays an important role in reducing sediment yield from agricultural catchments in the TGRR.A 137 Cs profile for the sediment deposited in a pond is shown to provide an effective means of estimating the land surface erosion rate in the upstream catchment.  相似文献   

19.
The existing models of population distribution often focus on the region with a single city or even multiple centers, and lack the detailed explorations of the common and special type of urbanization areas with two centers. Taking Beijing-Tianjin region of China, which is a distinct dual-nuclei metropolitan area in the world, as an example and choosing Landsat-5 TM image in 2005, population, etc. as the data, this paper devotes to comprehending and illustrating a model of Cassini growth of population between the two metropolitan cities through the research of spatial population distribution pattern, aided with RS and GIS techniques. Main technical processes include Kriging interpolation of the population data and character simulation of the Cassini ovals. According to the calculation of a/b, a key characteristic index of Cassini growth model, the spatial structures of population distribution were given. When a/b<1, it is a curve with two separated loops with a population density more than 3000 persons/km2. When a/b=1, it is a lemniscate curve with a population density about 3000 persons/km2. When 1<a/b√2, it is a dog-bone shaped concave curve with a population density between 500–3000 persons/km2. When a/b=√2, it is an oblate curve with a population density about 500 persons/km2. When a/b>√2, there is an oval-shaped convex curve with a population density less than 500 persons/km2. The results show that owing to the combined action and influence of the regional dual-nuclei, the population distribution of Beijing-Tianjin region is in accord with Cassini model significantly. There-fore, there is Cassini growth of population between the two metropolitan cities in Beijing-Tianjin region. In addition, the process of Cassini growth has extraordinarily instructive significance for judging the development stages of the dual-nuclei metropolitan areas. Foundation item: Under the auspices of National High-Tech Research and Development Program of China (863 Program) (No. 2007AA12Z235), National Natural Science Foundation of China (No. 40471058)  相似文献   

20.
This paper investigates the size distribution of submarine landslides on the middle continental slope of the East China Sea (ECS) using the size of the landslide source regions. Geomorphometric mapping is used to identify 102 mass movements from multibeam bathymetric data and to extract morphological information about the head scarps and side walls. These mass movements have areas ranging between 0.06 km2 and 15.51 km2 and volumes between 0.002 km3 and 2 km3. The area vs volume relationship of these failure scarps is approximately linear, suggesting a fairly uniform failure thickness in each event with scarce deep excavating landslides. The cumulative area distribution of the slope failures can be described by an inverse power law. The submarine landslides on the mid-ECS continental slope could be considered as a large-scale self-organizing system because they have the characteristics of a dissipative system in a critical state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号