首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A synthesis of Holocene pollen records from the Tibetan Plateau shows the history of vegetation and climatic changes during the Holocene. Palynological evidences from 24 cores/sections have been compiled and show that the vegetation shifted from subalpine/alpine conifer forest to subalpine/alpine evergreen sclerophyllous forest in the southeastern part of the plateau; from alpine steppe to alpine desert in the central, western and northern part; and from alpine meadow to alpine steppe in the eastern and southern plateau regions during the Holocene. These records show that increases in precipitation began about 9 ka from the southeast, and a wide ranging level of increased humidity developed over the entire of the plateau around 8-7 ka, followed by aridity from 6 ka and a continuous drying over the plateau after 4-3 ka. The changes in Holocene climates of the plateau can be interpreted qualitatively as a response to orbital forcing and its secondary effects on the Indian Monsoon which expanded northwards  相似文献   

2.
Cover Story     
<正>The Sierra Baguales Mountain Range comprises part of the eastern foothills of the Southern Patagonian Andes,located between 50°44'S and 72°24'W,200 km from the Pacific coast and topographically isolated from the Southern Patagonian Ice field.Evidence exists of continental and alpine glaciations controlled by Andean uplift and the Westerly Winds,in addition to the regional geological setting and the Patagonian west-east climate contrast.  相似文献   

3.
A modern research approach and working techniques in hitherto unexamined areas, produced the following results: 1). The tongues of decakilometre long Karakorum glaciers belong to temperate ice-streams with an annual meltwateroutput. The short Aghil glaciers on the contrary are continental, arid and cold. 2). The present-day oscillations of the Karakorum glaciers are related to their own mass, and are contrary to and independent of the actual climate. Only the short glaciers, with steep tongue fronts, show a present-day positive balance. 3). ^14C- dated Late Glacial moraines indicate a 400-800 m thick valley glacier at the former confluence point of the K2-, Sarpo Laggo- and Skamri glaciers. 4). From the evidence of transfluence passes with roches moutonn6es, striae and the limits of glacial polishing, as well as moraines and erratics, a High Glacial at least 12oo m thick ice-stream network between the Karakorums and the Kuen Lun north slopes was reconstructed. The Shaksgam and Yarkand valleys were occupied by glaciers coming from west Tibet. The lowest-lying moraines are to be found in the foreland down to 2000 m, indicating a depression of the High Glacial (LGM) snowline (ELA) by 13oo m.5). The approximately 10,000 measurements of the radiation balance at up to heights of 5500 m on K2 indicate that with incoming energy near the solar constant the reflection from snow- covered ice is up to 70% greater than from rock and rock waste surfaces.6).These results confirm for the very dry western margins of Tibet an almost complete ice sheet cover in an area with subtropical energy balance, conforming with the Ice Age hypothesis of the author which is based upon the presence of a 2.4 million km^2 Tibetan inland ice sheet. This inland ice developed for the first time when Tibet was uplifted over the snowline during the early Pleistocene. As the measured subtropical radiation balance shows, it was able to trigger the Quaternary Ice Ages.  相似文献   

4.
A large numbers of mountain communities in the Himalayan region depend on glacier-fed kuhl system – gravity flow irrigation, for their sustenance. The depletion and retreat of glaciers often result in disruption of melt flows to kuhl system, which ultimately impacts the agriculture as well as livelihood of the local communities. Sustainability of glacial resource was assessed for establishing kuhl irrigation system based on indices of glacier decrease by number(GDN) and glacier depletion by volume(GDV) during the 2001-2013 period. The selected factors are important in terms of understanding point source and reserve potential of glaciers for sustaining glacier-fed kuhl irrigation in this region. The sustainability of glaciers was found good(i.e. a least decrease or rather increase in glacier number and volume) in about 23.6% glaciers(ice reserves about 705.9 km~3) under 10 km~2 area class of glaciers mainly in Gilgit and Shigar river basins of the Karakoram range. In the 5–10 km~2 class of glaciers, sustainability was good in 49 glaciers(ice reserve 26.59 km~3) and under 1–5 km~2 class, in 558 glaciers(ice reserve 60.189 km~3). Overall sustainability of glaciers appears to prevail in the Karakoram basins. The lesser sustainability of glaciers in the Himalaya basins like Astore and Jhelum would apparently be compensated by monsoon and change in rainfall pattern. A regular monitoring of the glacier resource and utilizing advance water conservation techniques would help in coping with negative impacts of downwasting of glaciers and provide long-term support to kuhl irrigation system in the Himalayan region in future.  相似文献   

5.
The δ18O of ice core enclosed gaseous oxygen(δ18Obub) has been widely used for climate reconstruction in polar regions. Yet, less is known about its climatic implication in the mountainous glaciers as the lack of continuous record. Here, we present a long-term, continuous δ18Obub record from the Tanggula glacier in the central Tibetan Plateau(TP). Based on comparisons of its variation with regional climate and glacier changes, we found that there was a good corre...  相似文献   

6.
Like for most parts of High Asia,researches concerning the Pleistocene landscape evolution of the Leh Basin(34°03' N/77°38' E) have also left contradictions.To push this topic,three up to now unexplored Ladakh Range tributaries of the Leh Basin(Stagmo-,Arzu-and Nang-Valley) have been investigated.U-shaped profiles,transfluence passes,moraine mantled and glacially rounded peaks and ridges,roches moutonnées,glacial flank polishings and ground moraines document the former glaciation of the study area.The ice fillings of these tributaries reached a minimum thickness up to 540 m.Even at the valley outlets and on the orographic right side of the Leh Basin,the glaciation was more than 350 m thick.Based on these empirically extracted results,theoretical snow line considerations lead to the conclusion that the whole Leh Basin was filled up by a former Indus-Valley glacier.An ice injection limited to the nourishment areas of the Ladakh Range valleys could not have caused the reconstructed ice cover(down to 3236 m a.s.l.),which is proved by extended ground moraine complexes.Only an Indus ice stream network(most likely during the LGP),nourished by inflowing glaciers of the Ladakh-and Stok Range,explains the widespread existence of the glacial sediments at the outlets of the investigated valleys.  相似文献   

7.
For the reconstruction of past climate variations,investigations on the history of glaciers are necessary.In the Himalaya,investigations like these have a rather short tradition in comparison with other mountains on earth.At the same time,this area on the southern margin of Tibet is of special interest because of the question as to the monsoon-influence that is connected with the climate-development.Anyhow,the climate of High Asia is of global importance.Here for the further and regionally intensifying answer to this question,a glacial glacier reconstruction is submitted from the CentralHimalaya,more exactly from the Manaslu-massif.Going on down-valley from the glacial-historical investigations of 1977 in the upper Marsyandi Khola(Nadi) and the partly already published results of field campaigns in the middle Marsyandi Khola and the Damodar- and Manaslu Himal in the years 1995,2000,2004 and 2007,new geomorphological and geological field- and laboratory data are introduced here from the Ngadi(Nadi) Khola and the lower Marsyandi Nadi from the inflow of the Ngadi(Nadi) Khola down to the southern mountain foreland.There has existed a connected ice-stream-network drained down to the south by a 2,100-2,200 m thick and 120 km long Marsyandi Nadi main valley glacier.At a height of the valley bottom of c.1,000 m a.s.l.the Ngadi Khola glacier joined the still c.1,300 m thick Marsyandi parent glacier from the Himalchuli-massif(Nadi(Ngadi) Chuli) – the south spur of the Manaslu Himal.From here the united glacier tongue flowed down about a further 44 km to the south up to c.400 m a.s.l.(27°57'38 "N/84°24'56" E) into the Himalaya fore-chains and thus reached one of or the lowest past ice margin position of the Himalayas.The glacial(LGP(Last glacial period),LGM(Last glacial maximum) Würm,Stage 0,MIS 3-2) climatic snowline(ELA = equilibrium line altitude) has run at 3,900 to 4,000 m a.s.l.and thus c.1,500 altitude meters below the current ELA(Stage XII) at 5,400-5,500 m a.s.l.The reconstructed,maximum lowering of the climatic snowline(ΔELA = depression of the equilibrium line altitude) about 1,500 m corresponds at a gradient of 0.6°C per 100 altitude meters to a High Glacial decrease in temperature of 9°C(0.6 × 15 = 9).At that time the Tibetan inland ice has caused a stable cold high,so that no summer monsoon can have existed there.Accordingly,during the LGP the precipitation was reduced,so that the cooling must have come to more than only 9°C.  相似文献   

8.
The Kvíárjokull,a southern outlet glacier of the Vatnajokull,is confined in the mountain foreland by lateral moraines measuring a height of up to 150 m. Each of the lateral moraines shows considerable breaches with deviations of the main moraine ridges. The paper discusses the possible origins of these modifications of the lateral moraines as result of: 1) ice overlappings during glacier advances and subsequent breaches of the lateral moraine,2) bifurcations of the Kvíárjokull glacier tongue triggered by the preglacial relief conditions and the prehistorical moraine landscape leading to afflux conditions,3) drainage of ice-marginal glacier lakes and 4. volcanic activities,such as lava flows and volcanic-induced jokulhlaups. A historic-genetic model of the formation of the lateral moraines is presented considering the breaches in the lateral moraines as result from glacier bifurcations and therefore as former tributary tongue basins. Such breaches in the lateral moraines are also common landscape features at glaciers outside of Iceland and are from wider importance for the paleoreconstruction of former glacier stages. The knowledge of their development is essential for an adequate relative age classification of individual moraine ridges. In regard to the origin of the debris supply areas of the large-sized Kvíárjokull moraines,the resedimentation of prehistoric till deposits by younger glacier advances plays a role in the formation of the lateral moraines apart from englacial and supraglacial sediment transfer processes.  相似文献   

9.
The glaciers in the Aktru River basin of Gornyi Altai, Russia currently represent some of the fastest receding glaciers in the world. Formation of the morainic complexes closest to the contemporary glaciers in the Aktru River basin took place during the 17^th-18^th centuries with recession commencing at the end of the 18 th century. Coupled with this glacial retreat, earth surface processes and vegetation succession are responding to shape the glacier forelands. This article presents the first geomorphological maps for the upper reaches of the Aktru River basin and focuses on the geomorphological landforms that occur in the rapidly changing glacier forelands. Geomorphological mapping is difficult in steep mountainous regions and, thus, mapping was completed using satellite imagery, field mapping and observations coupled with highresolution aerial photography obtained from Unmanned Aerial Vehicles(UAVs). Critical steps of the procedure used to process UAV imagery and difficulties encountered in this mountainous terrain are noted. The acquired spatial data enable the mapping and classification of small-scale transient geomorphological features such as talus, glacial and glaciofluvial landforms. Their dynamics provide insights into supraglacial and subglacial processes of the glaciers of the Aktru River basin and subsequent paraglacial adjustment. The presented highresolution spatial data, which can also be obtained at high temporal resolutions in the future, can act as a reference frame for geomorphologists and ecologists studying the temporal evolution of glacier forelands of the Aktru River basin during paraglacial adjustment and subsequent colonisation and stabilisation by biota.  相似文献   

10.
Karakoram Himalaya(KH) has continental climatic conditions and possesses largest concentration of glaciers outside the polar regions. The melt water from these glaciers is a major contributor to the Indus river. In this study, various methods have been used to estimate the ice volume in the Karakoram Range of glaciers such as Coregistration of Optically Sensed Images and Correlation(COSI-Corr) method and Area-Volume relations. Landsat 8 satellite data has been used to generate the ice displacement, velocity and thickness map. Our study for 558 Karakoram glaciers revealed that the average ice thickness in Karakoram is 90 m. Ground Penetrating Radar(GPR) survey has been conducted in one of the KH glacier i.e. Saser La glacier and the collected GPR data is used for the validation of satellite derived thickness map. GPR measured glacier thickness values are found comparable with satellite estimated values with RMSE of 4.3 m. The total ice volume of the Karakoram glaciers is estimated to be 1607±19 km3(1473±17 Gt), which is equivalent to 1473±17 km3 of water equivalent. Present study also covers the analysis of glacier surface displacement, velocity and ice thickness values with reference to glacier mean slope.  相似文献   

11.
The distribution of borehole temperature at four high-altitude alpine glaciers was investigated. The result shows that the temperature ranges from -13.4℃ to -1.84℃, indicating the glaciers are cold throughout the boreholes. The negative gradient (i.e., the temperature decreasing with the increasing of depth) due to the advection of ice and climate warming, and the negative gradient moving downwards relates to climate warming, are probably responsible for the observed minimum temperature moving to lower depth in boreholes of the Gyabrag glacier and Miaoergou glacier compared to the previously investigated continental ice core borehole temperature in West China. The borehole temperature at 10m depth ranges from -8.0℃ in the Gyabrag glacier in the central Himalayas to -12.9℃ in the Tsabagarav glacier in the Altai range. The borehole temperature at 10 m depth is 3-4 degrees higher than the calculated mean annual air temperature on the surface of the glaciers and the higher 10 m depth temperature is mainly caused by the production of latent heat due to melt-water percolation and refreezing. The basal temperature is far below the melting point, indicating that the glaciers are frozen to bedrock. The very low temperature gradients near the bedrock suggest that the influence of geothermal flux and ice flow on basal temperature is very weak. The low temperature and small velocity of ice flow of glaciers are beneficial for preservation of the chemical and isotopic information in ice cores.  相似文献   

12.
Measurement of ice velocities of the Antarctic glaciers is very important for studies on Antarctic ice and snow mass balance. The polar area environmental change and its influences on the global environment. Conventional methods may be used for measuring the ice velocities, but they suffer from severe weather conditions in the Polar areas. Use of satellite multi-spectral and muki-temporal images makes it easier to measure the velocities of the glacier movements. This paper discusses a new method for monitoring the glacial change by means of multi-temporal satellite images. Temporal remotely sensed images in the Ingrid Christensen coast were processed with respect to geometric rectification, registration and overlay, The average ice velocities of the Polar Record Glacier and the Dark Glacier were then calculated, with the changing characteristics analyzed and evaluated. The advantages of the method reported here include promise of all-weather operation and potentials of dynamic monitoring through suitabl  相似文献   

13.
In the last few decades, a large quantity of research has been performed to elucidate the current behavior of glaciers in southern Chile, especially with respect to the volumetric changes in the outlets of the Northern and Southern Patagonian Icefields (NPI and SPI, respectively). Calculations have shown a generalized thinning and withdrawal, which greatly contributes to the increase in sea level attributed to the ice melt from non-polar glaciers. However, these icefields are surrounded by many small icecaps, which have yet to be studied in detail. A precise estimation of the volume of ice located in these mountain chains could provide new information with respect to this area's exact contribution to the increase in sea level. Thus, this study presents an inventory of relatively small Northern Patagonian glaciers in the surrounding of the three summits: Mount Queulat, and the Macá and Hudson volcanoes. The study used remote sensing techniques in a GIS environment to determine the margins, surface areas, thickness changes and hypsometry for the glaciated zones. Landsat images from different dates were analyzed using standard band ratio and screen delineation techniques. Additionally, digital elevation models from different dates were compared using map algebra, calculating thickness changes. Based on the results, we propose that there are important volumetric changes in the glaciers studied, which could be explained by precipitation trends in a general context, and an influence of the glaciers' sizes in some local response. Therefore, we suggest the exact contribution of the Patagonia to the increase in sea level corresponds to a regional pattern rather than just the behavior of a single ice field.  相似文献   

14.
Maritime-type glaciers in the eastern Nyainqêntanglha Range, located in the southeastern part of the Tibetan Plateau, are an important water source for downstream residents and ecological systems. To better understand the variability of glaciers in this region, we used the band ratio threshold(TM3/TM5 for the Landsat TM /ETM+ and TM4/TM6 for Landsat OLI) to extract glacier outlines in ~1999 and ~2013. After that, we also generated a series of glacier boundaries and monitored glacier variations in the past 40 years with the help of the Chinese Glacier Inventory data(1975) and Landsat TM, ETM+ and OLI data. The total glacier area decreased by 37.69 ± 2.84% from 1975 to 2013. The annual percentage area change(APAC) was ~1.32% a-1 and ~1.29% a-1 in the periods 1975-1999 and 1999-2013, respectively. According to the lag theory, the reaction time is probably about 10 years and we discuss the variations of temperature and precipitation between 1965 and 2011. Temperature and precipitation increased between 1965 and 2011 at a rate of 0.34°C /10 a and 15.4 mm/10 a, respectively. Extensive meteorological data show that the glacier shrinkage rate over the period may be mainly due to increasing air temperature, while the increasing precipitation partly made up for the mass loss of glacier ice resulting from increasing temperature may also lead to the low APAC between 1999 and 2013. The lag theory suggests that glacier shrinkage may accelerate in the next 10 years. Small glaciers were more sensitive to climate change, and there was a normal distribution between glacier area and elevation. Glaciers shrank in all aspects, and south aspects diminished faster than others.  相似文献   

15.
A field investigation on Quaternary glacial landforms in Laoshan Mountain has discovered many glacial potholes, scouring grooves on top of granite ridges, and large boulders. These erosional landforms were formed by the meltwater from the overlying ice cap, suggesting that there was at least an ice cap covering Laoshan Mountain and the surrounding areas or even a continental ice sheet over the vast area of Shandong Province in the Late Pleistocene. The ice sheet was obstructed by the Laoshan Mountain, Dazhu Mountain and Xiaozhu Mountain in the coastal areas as it moved toward the Yellow Sea. The ice flows eroded the bedrock and carved the weak intersection of the fault systems in the NE and NW directions into a deep channel, which gradually formed a fjord in the area of the Jiaozhou Bay basin by 20.00 ka BP. The seawater gradually invaded the fjord from the beginning of the Holocene (11.00 ka BP) and Jiaozhou Bay was eventually formed. Similar fjords are easily found along the east of China and they share a similar origin because of the Quaternary glaciation in the region.  相似文献   

16.
Glaciers in the Tomor region of Tianshan Mountains preserve vital water resources.However,these glaciers suffer from strong mass losses in the recent years because of global warming.From 2008 to 2009,a large-scale scientific expedition has been carried out in this region.As an individual reference glacier,the tongue area of Qingbingtan glacier No.72 was measured by the high precise Real Time Kinematic-Global Position System (RTK-GPS).In this paper,changes of the tongue area of Qingbingtan glacier No.72 has been studied based on topographic map,remote sensing image and the survey during 2008-2009 field campaign.Results indicated that the ice surface-elevation of the tongue area changed-0.22±0.14 m a-1 from 1964 to 2008.The estimated loss in ice volume was 0.014±0.009 km3,which represented a ~20 % decrease from the 1964 volume and was equivalent to average annual mass balance of-0.20±0.12 m water equivalent for the tongue area during 1964-2008.Terminus retreated by 1852 m,approximately 41 m a-1,with the area reduction of 1.533 km2 (0.034 km2 a-1) from 1964 to 2009.Furthermore,the annual velocity reached to ~70 m a-1.Comparing with the other monitored glaciers in the eastern Tianshan Mountains,Qingbingtan glacier No.72 experienced more intensive in shrinkage,which resulted from the combined effects of climate change and glacier dynamic,providing evidence of the response to climatic warming.  相似文献   

17.
The studies on prediction of climate in Xinjiang almost show that the precipitation would increase in the coming 50 years, although there were surely some uncertainties in precipitation predictions. On the basis of the structure of glacier system and nature of equilibrium line altitude at steady state (ELAo), a functional model of the glacier system responding to climate changes was established, and it simultaneously involved the rising of summer mean temperature and increasing of mean precipitation. The results from the functional model under the climatic scenarios with temperature increasing rates of 0.01, 0.03 and 0.05 K/year indicated that the precipitation increasing would play an evident role in glacier system responding to climate change: if temperature become 1 ℃ higher, the precipitation would be increased by 10%, which can slow down the glaciers retreating rate in the area by 4 %, accelerate runoff increasing rate by 8 % and depress the ELAo rising gradient by 24 m in northern Xinjiang glacier system where semi-continental glaciers dominate, while it has corresponding values of only 1%, 5 % and 18m respectively in southern Xinjiang glacier system, where extremely continental glaciers dominate.  相似文献   

18.
Glacier changes since the early 1960s,eastern Pamir,China   总被引:2,自引:0,他引:2  
Glaciers in the eastern Pamir are important for water resources and the social and economic development of the region.In the last 50 years,these glaciers have shrunk and lost ice mass due to climate change.In order to understand recent glacier dynamics in the region,a new inventory was compiled from Landsat TM/ETM+ images acquired in2009,free of clouds and with minimal snow cover on the glacierized mountains.The first glacier inventory of the area was also updated by digitizing glacier outlines from topographical maps that had been modified and verified using aerial photographs.Total glacier area decreased by 10.8%±1.1%,mainly attributed to an increase in air temperature,although precipitation,glacier size and topographic features also combined to affect the general shrinkage of the glaciers.The 19.3–21.4 km~3 estimated glacier mass loss has contributed to an increase in river runoff and water resources.  相似文献   

19.
Geomorphological and Quaternarygeological field- and laboratory data (Fig.1) are introduced and interpreted with regard to the maximum Ice Age (LGM) glaciation of the Central and South Karakoram in the Braldu-, Basna-, Shigar and Indus valley system as well as on the Deosai plateau between the Skardu Basin and the Astor valley (Fig.2). These data result from two research expeditions in the years 1997 and 2000. They show that between c. 6o and 2o Ka the Central Karakorum and its south slope were covered by a continuous c. 125000 km^2 sized ice stream network. This ice stream network flowed together to a joint parent glacier, the Indus glacier. The tongue end of the Indus glacier reached down to 850 ~ 800m a.s.l. In its centre the surface of this Indus ice stream network reached a height of a good 6ooo m. Its most important ice thicknesses amounted to c. 2400 ~ 2900 m.  相似文献   

20.
This study reports on the clean ice area and surface elevation changes of the Khersan and Merjikesh glaciers in the north of Iran between 1955 and 2010 based on several high to medium spatial resolution remote sensing data.The object-oriented classification technique has been applied to nine remote sensing images to estimate the debris-free areas.The satellite-based analysis revealed that the clean ice areas of Khersan and Merjikesh glaciers shrank since 2010 with an overall area decrease of about 45% and 60% respectively.It means that the dramatic proportions of 1955 glaciers surface area are covered with debris during the last five decades.Although the general trend is a clean ice area decrease,some advancement is observed over the period of 1997-2004.During 1987-1991 the maximum decrease in the clean ice area was observed.However,the clean ice area had steadily increased between 1997 and 2010.To quantify the elevation changes besides the debris-free change analysis,several Digital Elevation Models(DEMs) were extracted from aerial photo(1955),topographic map(1997),ASTER image(2002) and Worldview-2 image(2010) and after it a 3-D Coregistration and a linear relationship adjustments techniques were used to remove the systematic shifts and elevation dependent biases.Unlike the sinusoidal variation of our case studies which was inferred from planimetric analysis,the elevation change results revealed that the glacier surface lowering has occurred during 1955-2010 continuously without any thickening with the mean annual thinning of about 0.4 ± 0.04 m per year and 0.3 ± 0.026 m per year for Khersan and Merjikesh glaciers,respectively.The maximum thinning rate has been observed during 1997-2002(about 1.1 ± 0.09 per year and 0.96 ± 0.01 mper year,respectively),which was compatible partially with debris-free change analysis.The present result demonstrates that although in debris-covered glaciers clean ice area change analysis can illustrate the direction of changes(retreat or advance),due to the high uncertainty in glacier area delineation in such glaciers,it cannot reveal the actual glacier changes.Thus,both planimetric and volumetric change analyses are very critical to obtain accurate glacier variation results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号